
Recursion 

notes Chapter 8 
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Decrease and Conquer 
 a common strategy for solving computational 

problems 

 solves a problem by taking the original problem and 
converting it to one smaller version of the same problem 

 note the similarity to recursion 

 decrease and conquer, and the closely related divide 
and conquer method, are widely used in computer 
science 

 allow you to solve certain complex problems easily 

 help to discover efficient algorithms 
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Root Finding 
 suppose you have a mathematical function f(x) and 

you want to find x0 such that f(x0) = 0 

 why would you want to do this? 

 many problems in computer science, science, and 
engineering reduce to optimization problems 

 find the shape of an automobile that minimizes aerodynamic drag 

 find an image that is similar to another image (minimize the 
difference between the images) 

 find the sales price of an item that maximizes profit 

 if you can write the optimization criteria as a function g(x) 
then its derivative f(x) = dg/dx = 0 at the minimum 
or maximum of g (as long as g has certain properties) 
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Bisection Method 
 suppose you can evaluate f(x) at two points x = a 

and x = b such that 

 f(a) > 0 

 f(b) < 0  
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Bisection Method 
 evaluate f(c) where c is halfway between a and b  

 if f(c) is close enough to zero done 
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Bisection Method 
 otherwise c becomes the new end point (in this case, 
'minus') and recursively search the range  
'plus' – 'minus'  
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public class Bisect { 

 

  // the function we want to find the root of 

  public static double f(double x) { 

    return Math.cos(x); 

 } 
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  public static double bisect(double xplus, double xminus, 

                              double tolerance) { 

   // base case 

   double c = (xplus + xminus) / 2.0; 

   double fc = f(c); 

   if( Math.abs(fc) < tolerance ) { 

     return c; 

   } 

   else if (fc < 0.0) { 

     return bisect(xplus, c, tolerance); 

   } 

   else { 

     return bisect(c, xminus, tolerance); 

   } 

 } 
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 public static void main(String[] args) 

 { 

  System.out.println("bisection returns: " +  

                            bisect(1.0, Math.PI, 0.001)); 

  System.out.println("true answer      : "  

                            + Math.PI / 2.0); 

 } 

} 

 

prints: 

 

bisection returns: 1.5709519476855602 

true answer      : 1.5707963267948966 
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Divide and Conquer 
 bisection works by recursively finding which half of 

the range 'plus' – 'minus' the root lies in 

 each recursive call solves the same problem (tries to find 
the root of the function by guessing at the midpoint of the 
range) 

 each recursive call solves one smaller problem because half 
of the range is discarded 

 bisection method is decrease and conquer 

 divide and conquer algorithms typically recursively 
divide a problem into several smaller sub-problems 
until the sub-problems are small enough that they can 
be solved directly 
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Merge Sort 
 merge sort is a divide and conquer algorithm that sorts 

a list of numbers by recursively splitting the list into 
two halves 
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1 2 7 4 5 6 3 8 

1 7 6 8 2 4 5 3 

2 5 4 3 1 6 7 8 

4 3 2 5 7 8 1 6 



 the split lists are then merged into sorted sub-lists 
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4 3 2 5 7 8 1 6 

5 2 3 4 6 1 8 7 

8 6 7 1 5 2 4 3 

8 4 6 1 3 7 2 5 



Merging Sorted Sub-lists 
 two sub-lists of length 1 
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LinkedList<Integer> result = new LinkedList<Integer>(); 

 

int fL = left.getFirst(); 

int fR = right.getFirst(); 

if (fL < fR) { 

  result.add(fL); 

  left.removeFirst(); 

} 

else { 

  result.add(fR); 

  right.removeFirst(); 

} 

if (left.isEmpty()) { 

  result.addAll(right); 

} 

else { 

  result.addAll(left); 

} 



Merging Sorted Sub-lists 
 two sub-lists of length 2 
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LinkedList<Integer> result = new LinkedList<Integer>(); 

 

while (left.size() > 0 && right.size() > 0 ) { 

  int fL = left.getFirst(); 

  int fR = right.getFirst(); 

  if (fL < fR) { 

    result.add(fL); 

    left.removeFirst(); 

  } 

  else { 

    result.add(fR); 

    right.removeFirst(); 

  } 

} 

if (left.isEmpty()) { 

  result.addAll(right); 

} 

else { 

  result.addAll(left); 

} 

 



Merging Sorted Sub-lists 
 two sub-lists of length 4 
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Simplified Complexity Analysis 
 in the worst case merging a total of n elements 

requires 
n – 1  comparisons  +  

n    copies 

= 2n – 1  total operations 

 we say that the worst-case complexity of merging is 
the order of O(n) 

 O(...) is called Big O notation 

 notice that we don't care about the constants 2 and 1 
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 formally, a function f(n) is an element of O(g(n)) if and 

only if there is a positive real number M and a real 
number m such that 

| f(n) | < M| g(n) |  for all  n > m  

 

 is 2n – 1 an element of O(n)? 

 yes, let M = 2 and m = 0, then 2n – 1 < 2n for all n > 0  
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Informal Analysis of Merge Sort 
 suppose the running time (the number of operations) 

of merge sort is a function of the number of elements 
to sort 

 let the function be T(n)  

 merge sort works by splitting the list into two sub-lists 
(each about half the size of the original list) and 
sorting the sub-lists 
 this takes  2T(n/2)  running time 

 then the sub-lists are merged 

 this takes O(n) running time 

 total running time T(n) = 2T(n/2) + O(n) 
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Solving the Recurrence Relation 
T(n)  2T(n/2) + O(n)                 T(n) approaches... 

    2T(n/2) + n 

  = 2[ 2T(n/4) + n/2 ] + n 

  = 4T(n/4) + 2n  

  = 4[ 2T(n/8) + n/4 ] + 2n 

  = 8T(n/8) + 3n  

  = 8[ 2T(n/16) + n/8 ] + 3n 

  = 16T(n/16) + 4n  

  = 2
kT(n/2k) + kn  
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Solving the Recurrence Relation 
T(n) = 2

kT(n/2k) + kn  

 

 for a list of length 1 we know T(1) = 1  

 if we can substitute T(1) into the right-hand side of T(n) we 
might be able to solve the recurrence 

 

n/2k = 1    2k = n  k = log(n) 
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Solving the Recurrence Relation 
 

T(n) = 2
log(n)T(n/2log(n)) + n log(n)  

  = n T(1) + n log(n)  

  =  n + n log(n)  

    n log(n)     (prove this) 
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Is Merge Sort Efficient? 
 consider a simpler (non-recursive) sorting algorithm 

called insertion sort 
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// to sort an array a[0]..a[n-1]               not Java! 

for i = 0 to (n-1) { 

  k = index of smallest element in sub-array a[i]..a[n-1] 

  swap a[i] and a[k] 

} 

for i = 0 to (n-1) {                            not Java! 

  for j = (i+1) to (n-1) { 

    if (a[j] < a[i]) { 

      k = j; 

    } 

  } 

  tmp = a[i];   a[i] = a[k];   a[k] = tmp; 

} 

1 comparison + 
1 assignment 

3 assignments 



 

 T(n)  
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Comparing Rates of Growth 
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O(n) 

O(n logn) 

O(n2) O(2n) 

n 



Comments 
 big O complexity tells you something about the 

running time of an algorithm as the size of the input, 
n, approaches infinity 

 we say that it describes the limiting, or asymptotic, running 
time of an algorithm 

 for small values of n it is often the case that a less 
efficient algorithm (in terms of big O) will run faster 
than a more efficient one 

 insertion sort is typically faster than merge sort for short 
lists of numbers 
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Revisiting the Fibonacci Numbers 
 the recursive implementation based on the definition 

of the Fibonacci numbers is inefficient 

 
public static int fibonacci(int n) { 

  if (n == 0) { 

   return 0; 

  } 

  else if (n == 1) { 

   return 1; 

  } 

  int f = fibonacci(n - 1) + fibonacci(n - 2); 

  return f; 

} 
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 how inefficient is it? 

 let T(n) be the running time to compute the nth 
Fibonacci number 

 T(0) = T(1) = 1 

 T(n) is a recurrence relation 
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 T(n) 
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Solving the Recurrence Relation 
T(n) > 2

kT(n - 2k) 

 

 we know T(1) = 1  

 if we can substitute T(1) into the right-hand side of T(n) we 
might be able to solve the recurrence 

 

n - 2k = 1    1 + 2k = n  k = (n – 1)/2 
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