
Recursion 

notes Chapter 8 
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Decrease and Conquer 
 a common strategy for solving computational 

problems 

 solves a problem by taking the original problem and 
converting it to one smaller version of the same problem 

 note the similarity to recursion 

 decrease and conquer, and the closely related divide 
and conquer method, are widely used in computer 
science 

 allow you to solve certain complex problems easily 

 help to discover efficient algorithms 
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Root Finding 
 suppose you have a mathematical function f(x) and 

you want to find x0 such that f(x0) = 0 

 why would you want to do this? 

 many problems in computer science, science, and 
engineering reduce to optimization problems 

 find the shape of an automobile that minimizes aerodynamic drag 

 find an image that is similar to another image (minimize the 
difference between the images) 

 find the sales price of an item that maximizes profit 

 if you can write the optimization criteria as a function g(x) 
then its derivative f(x) = dg/dx = 0 at the minimum 
or maximum of g (as long as g has certain properties) 
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Bisection Method 
 suppose you can evaluate f(x) at two points x = a 

and x = b such that 

 f(a) > 0 

 f(b) < 0  
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Bisection Method 
 evaluate f(c) where c is halfway between a and b  

 if f(c) is close enough to zero done 
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Bisection Method 
 otherwise c becomes the new end point (in this case, 
'minus') and recursively search the range  
'plus' – 'minus'  
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public class Bisect { 

 

  // the function we want to find the root of 

  public static double f(double x) { 

    return Math.cos(x); 

 } 
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  public static double bisect(double xplus, double xminus, 

                              double tolerance) { 

   // base case 

   double c = (xplus + xminus) / 2.0; 

   double fc = f(c); 

   if( Math.abs(fc) < tolerance ) { 

     return c; 

   } 

   else if (fc < 0.0) { 

     return bisect(xplus, c, tolerance); 

   } 

   else { 

     return bisect(c, xminus, tolerance); 

   } 

 } 
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 public static void main(String[] args) 

 { 

  System.out.println("bisection returns: " +  

                            bisect(1.0, Math.PI, 0.001)); 

  System.out.println("true answer      : "  

                            + Math.PI / 2.0); 

 } 

} 

 

prints: 

 

bisection returns: 1.5709519476855602 

true answer      : 1.5707963267948966 
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Divide and Conquer 
 bisection works by recursively finding which half of 

the range 'plus' – 'minus' the root lies in 

 each recursive call solves the same problem (tries to find 
the root of the function by guessing at the midpoint of the 
range) 

 each recursive call solves one smaller problem because half 
of the range is discarded 

 bisection method is decrease and conquer 

 divide and conquer algorithms typically recursively 
divide a problem into several smaller sub-problems 
until the sub-problems are small enough that they can 
be solved directly 
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Merge Sort 
 merge sort is a divide and conquer algorithm that sorts 

a list of numbers by recursively splitting the list into 
two halves 
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1 2 7 4 5 6 3 8 

1 7 6 8 2 4 5 3 

2 5 4 3 1 6 7 8 

4 3 2 5 7 8 1 6 



 the split lists are then merged into sorted sub-lists 
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4 3 2 5 7 8 1 6 

5 2 3 4 6 1 8 7 

8 6 7 1 5 2 4 3 

8 4 6 1 3 7 2 5 



Merging Sorted Sub-lists 
 two sub-lists of length 1 
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LinkedList<Integer> result = new LinkedList<Integer>(); 

 

int fL = left.getFirst(); 

int fR = right.getFirst(); 

if (fL < fR) { 

  result.add(fL); 

  left.removeFirst(); 

} 

else { 

  result.add(fR); 

  right.removeFirst(); 

} 

if (left.isEmpty()) { 

  result.addAll(right); 

} 

else { 

  result.addAll(left); 

} 



Merging Sorted Sub-lists 
 two sub-lists of length 2 
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LinkedList<Integer> result = new LinkedList<Integer>(); 

 

while (left.size() > 0 && right.size() > 0 ) { 

  int fL = left.getFirst(); 

  int fR = right.getFirst(); 

  if (fL < fR) { 

    result.add(fL); 

    left.removeFirst(); 

  } 

  else { 

    result.add(fR); 

    right.removeFirst(); 

  } 

} 

if (left.isEmpty()) { 

  result.addAll(right); 

} 

else { 

  result.addAll(left); 

} 

 



Merging Sorted Sub-lists 
 two sub-lists of length 4 
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Simplified Complexity Analysis 
 in the worst case merging a total of n elements 

requires 
n – 1  comparisons  +  

n    copies 

= 2n – 1  total operations 

 we say that the worst-case complexity of merging is 
the order of O(n) 

 O(...) is called Big O notation 

 notice that we don't care about the constants 2 and 1 
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 formally, a function f(n) is an element of O(g(n)) if and 

only if there is a positive real number M and a real 
number m such that 

| f(n) | < M| g(n) |  for all  n > m  

 

 is 2n – 1 an element of O(n)? 

 yes, let M = 2 and m = 0, then 2n – 1 < 2n for all n > 0  
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Informal Analysis of Merge Sort 
 suppose the running time (the number of operations) 

of merge sort is a function of the number of elements 
to sort 

 let the function be T(n)  

 merge sort works by splitting the list into two sub-lists 
(each about half the size of the original list) and 
sorting the sub-lists 
 this takes  2T(n/2)  running time 

 then the sub-lists are merged 

 this takes O(n) running time 

 total running time T(n) = 2T(n/2) + O(n) 
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Solving the Recurrence Relation 
T(n)  2T(n/2) + O(n)                 T(n) approaches... 

    2T(n/2) + n 

  = 2[ 2T(n/4) + n/2 ] + n 

  = 4T(n/4) + 2n  

  = 4[ 2T(n/8) + n/4 ] + 2n 

  = 8T(n/8) + 3n  

  = 8[ 2T(n/16) + n/8 ] + 3n 

  = 16T(n/16) + 4n  

  = 2
kT(n/2k) + kn  
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Solving the Recurrence Relation 
T(n) = 2

kT(n/2k) + kn  

 

 for a list of length 1 we know T(1) = 1  

 if we can substitute T(1) into the right-hand side of T(n) we 
might be able to solve the recurrence 

 

n/2k = 1    2k = n  k = log(n) 
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Solving the Recurrence Relation 
 

T(n) = 2
log(n)T(n/2log(n)) + n log(n)  

  = n T(1) + n log(n)  

  =  n + n log(n)  

    n log(n)     (prove this) 
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Is Merge Sort Efficient? 
 consider a simpler (non-recursive) sorting algorithm 

called insertion sort 

24 

// to sort an array a[0]..a[n-1]               not Java! 

for i = 0 to (n-1) { 

  k = index of smallest element in sub-array a[i]..a[n-1] 

  swap a[i] and a[k] 

} 

for i = 0 to (n-1) {                            not Java! 

  for j = (i+1) to (n-1) { 

    if (a[j] < a[i]) { 

      k = j; 

    } 

  } 

  tmp = a[i];   a[i] = a[k];   a[k] = tmp; 

} 

1 comparison + 
1 assignment 

3 assignments 



 

 T(n)  
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Comparing Rates of Growth 
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O(n) 

O(n logn) 

O(n2) O(2n) 

n 



Comments 
 big O complexity tells you something about the 

running time of an algorithm as the size of the input, 
n, approaches infinity 

 we say that it describes the limiting, or asymptotic, running 
time of an algorithm 

 for small values of n it is often the case that a less 
efficient algorithm (in terms of big O) will run faster 
than a more efficient one 

 insertion sort is typically faster than merge sort for short 
lists of numbers 
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Revisiting the Fibonacci Numbers 
 the recursive implementation based on the definition 

of the Fibonacci numbers is inefficient 

 
public static int fibonacci(int n) { 

  if (n == 0) { 

   return 0; 

  } 

  else if (n == 1) { 

   return 1; 

  } 

  int f = fibonacci(n - 1) + fibonacci(n - 2); 

  return f; 

} 
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 how inefficient is it? 

 let T(n) be the running time to compute the nth 
Fibonacci number 

 T(0) = T(1) = 1 

 T(n) is a recurrence relation 
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 T(n) 
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Solving the Recurrence Relation 
T(n) > 2

kT(n - 2k) 

 

 we know T(1) = 1  

 if we can substitute T(1) into the right-hand side of T(n) we 
might be able to solve the recurrence 

 

n - 2k = 1    1 + 2k = n  k = (n – 1)/2 
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