
Recursion

notes Chapter 8

1

Decrease and Conquer
 a common strategy for solving computational

problems

 solves a problem by taking the original problem and
converting it to one smaller version of the same problem

 note the similarity to recursion

 decrease and conquer, and the closely related divide
and conquer method, are widely used in computer
science

 allow you to solve certain complex problems easily

 help to discover efficient algorithms

2

Root Finding
 suppose you have a mathematical function f(x) and

you want to find x0 such that f(x0) = 0

 why would you want to do this?

 many problems in computer science, science, and
engineering reduce to optimization problems

 find the shape of an automobile that minimizes aerodynamic drag

 find an image that is similar to another image (minimize the
difference between the images)

 find the sales price of an item that maximizes profit

 if you can write the optimization criteria as a function g(x)
then its derivative f(x) = dg/dx = 0 at the minimum
or maximum of g (as long as g has certain properties)

3

Bisection Method
 suppose you can evaluate f(x) at two points x = a

and x = b such that

 f(a) > 0

 f(b) < 0

4

x

f(x)

f(a)

f(b)

'plus'

'minus'

Bisection Method
 evaluate f(c) where c is halfway between a and b

 if f(c) is close enough to zero done

5

x

f(x)

f(a)

f(b)

f(c)

'plus'

'minus'

Bisection Method
 otherwise c becomes the new end point (in this case,
'minus') and recursively search the range
'plus' – 'minus'

6

x

f(x)

f(a)

f(b)

'plus'

'minus'

f(c)

public class Bisect {

 // the function we want to find the root of

 public static double f(double x) {

 return Math.cos(x);

 }

7

 public static double bisect(double xplus, double xminus,

 double tolerance) {

 // base case

 double c = (xplus + xminus) / 2.0;

 double fc = f(c);

 if(Math.abs(fc) < tolerance) {

 return c;

 }

 else if (fc < 0.0) {

 return bisect(xplus, c, tolerance);

 }

 else {

 return bisect(c, xminus, tolerance);

 }

 }

8

 public static void main(String[] args)

 {

 System.out.println("bisection returns: " +

 bisect(1.0, Math.PI, 0.001));

 System.out.println("true answer : "

 + Math.PI / 2.0);

 }

}

prints:

bisection returns: 1.5709519476855602

true answer : 1.5707963267948966

9

Divide and Conquer
 bisection works by recursively finding which half of

the range 'plus' – 'minus' the root lies in

 each recursive call solves the same problem (tries to find
the root of the function by guessing at the midpoint of the
range)

 each recursive call solves one smaller problem because half
of the range is discarded

 bisection method is decrease and conquer

 divide and conquer algorithms typically recursively
divide a problem into several smaller sub-problems
until the sub-problems are small enough that they can
be solved directly

10

Merge Sort
 merge sort is a divide and conquer algorithm that sorts

a list of numbers by recursively splitting the list into
two halves

11

1 2 7 4 5 6 3 8

1 7 6 8 2 4 5 3

2 5 4 3 1 6 7 8

4 3 2 5 7 8 1 6

 the split lists are then merged into sorted sub-lists

12

4 3 2 5 7 8 1 6

5 2 3 4 6 1 8 7

8 6 7 1 5 2 4 3

8 4 6 1 3 7 2 5

Merging Sorted Sub-lists
 two sub-lists of length 1

13

4 3

left right

result

3 4

1 comparison
2 copies

14

LinkedList<Integer> result = new LinkedList<Integer>();

int fL = left.getFirst();

int fR = right.getFirst();

if (fL < fR) {

 result.add(fL);

 left.removeFirst();

}

else {

 result.add(fR);

 right.removeFirst();

}

if (left.isEmpty()) {

 result.addAll(right);

}

else {

 result.addAll(left);

}

Merging Sorted Sub-lists
 two sub-lists of length 2

15

4 3

left right

result

3 4

3 comparisons
4 copies

5 2

2 5

16

LinkedList<Integer> result = new LinkedList<Integer>();

while (left.size() > 0 && right.size() > 0) {

 int fL = left.getFirst();

 int fR = right.getFirst();

 if (fL < fR) {

 result.add(fL);

 left.removeFirst();

 }

 else {

 result.add(fR);

 right.removeFirst();

 }

}

if (left.isEmpty()) {

 result.addAll(right);

}

else {

 result.addAll(left);

}

Merging Sorted Sub-lists
 two sub-lists of length 4

17

left right

result

5 comparisons
8 copies

8 6 7 1 5 2 4 3

8 4 6 1 3 7 2 5

Simplified Complexity Analysis
 in the worst case merging a total of n elements

requires
n – 1 comparisons +

n copies

= 2n – 1 total operations

 we say that the worst-case complexity of merging is
the order of O(n)

 O(...) is called Big O notation

 notice that we don't care about the constants 2 and 1

18

 formally, a function f(n) is an element of O(g(n)) if and

only if there is a positive real number M and a real
number m such that

| f(n) | < M| g(n) | for all n > m

 is 2n – 1 an element of O(n)?

 yes, let M = 2 and m = 0, then 2n – 1 < 2n for all n > 0

19

Informal Analysis of Merge Sort
 suppose the running time (the number of operations)

of merge sort is a function of the number of elements
to sort

 let the function be T(n)

 merge sort works by splitting the list into two sub-lists
(each about half the size of the original list) and
sorting the sub-lists
 this takes 2T(n/2) running time

 then the sub-lists are merged

 this takes O(n) running time

 total running time T(n) = 2T(n/2) + O(n)

20

Solving the Recurrence Relation
T(n)  2T(n/2) + O(n) T(n) approaches...

  2T(n/2) + n

 = 2[2T(n/4) + n/2] + n

 = 4T(n/4) + 2n

 = 4[2T(n/8) + n/4] + 2n

 = 8T(n/8) + 3n

 = 8[2T(n/16) + n/8] + 3n

 = 16T(n/16) + 4n

 = 2
kT(n/2k) + kn

21

Solving the Recurrence Relation
T(n) = 2

kT(n/2k) + kn

 for a list of length 1 we know T(1) = 1

 if we can substitute T(1) into the right-hand side of T(n) we
might be able to solve the recurrence

n/2k = 1  2k = n  k = log(n)

22

Solving the Recurrence Relation

T(n) = 2
log(n)T(n/2log(n)) + n log(n)

 = n T(1) + n log(n)

 = n + n log(n)

  n log(n) (prove this)

23

Is Merge Sort Efficient?
 consider a simpler (non-recursive) sorting algorithm

called insertion sort

24

// to sort an array a[0]..a[n-1] not Java!

for i = 0 to (n-1) {

 k = index of smallest element in sub-array a[i]..a[n-1]

 swap a[i] and a[k]

}

for i = 0 to (n-1) { not Java!

 for j = (i+1) to (n-1) {

 if (a[j] < a[i]) {

 k = j;

 }

 }

 tmp = a[i]; a[i] = a[k]; a[k] = tmp;

}

1 comparison +
1 assignment

3 assignments

 T(n)

25

 



































1

0

1

)1(

32
n

i

n

ij

   nin
n

i

312
1

0






nin
n

i

n

i

n

i

31222
1

0

1

0

1

0

 












 
nn

nn
n 32

2

1
22 2 




nnnnn 322 22 

 22 2 nOnn 

Comparing Rates of Growth

26

O(n)

O(n logn)

O(n2) O(2n)

n

Comments
 big O complexity tells you something about the

running time of an algorithm as the size of the input,
n, approaches infinity

 we say that it describes the limiting, or asymptotic, running
time of an algorithm

 for small values of n it is often the case that a less
efficient algorithm (in terms of big O) will run faster
than a more efficient one

 insertion sort is typically faster than merge sort for short
lists of numbers

27

Revisiting the Fibonacci Numbers
 the recursive implementation based on the definition

of the Fibonacci numbers is inefficient

public static int fibonacci(int n) {

 if (n == 0) {

 return 0;

 }

 else if (n == 1) {

 return 1;

 }

 int f = fibonacci(n - 1) + fibonacci(n - 2);

 return f;

}

28

 how inefficient is it?

 let T(n) be the running time to compute the nth
Fibonacci number

 T(0) = T(1) = 1

 T(n) is a recurrence relation

29

 T(n)

30

)2()1( nTnT

 )2()3()2( nTnTnT

)3()2(2  nTnT

)2(2  nT

 )4(4)4(22  nTnT

 )6(8)6(24  nTnT

 )8(16)8(28  nTnT

)2(2 knTk 

Solving the Recurrence Relation
T(n) > 2

kT(n - 2k)

 we know T(1) = 1

 if we can substitute T(1) into the right-hand side of T(n) we
might be able to solve the recurrence

n - 2k = 1  1 + 2k = n  k = (n – 1)/2

31

   )2(2)1(2)2(2)(2121 nnnk OTknTnT  

