Recursion

notes Chapter 8

Decrease and Conquer

- a common strategy for solving computational problems
- solves a problem by taking the original problem and converting it to one smaller version of the same problem
- note the similarity to recursion
- decrease and conquer, and the closely related divide and conquer method, are widely used in computer science
- allow you to solve certain complex problems easily
- help to discover efficient algorithms

Root Finding

- suppose you have a mathematical function $f(x)$ and you want to find \mathbf{x}_{0} such that $f\left(x_{0}\right)=0$
- why would you want to do this?
- many problems in computer science, science, and engineering reduce to optimization problems
- find the shape of an automobile that minimizes aerodynamic drag
- find an image that is similar to another image (minimize the difference between the images)
- find the sales price of an item that maximizes profit
- if you can write the optimization criteria as a function $\mathbf{g}(\mathbf{x})$ then its derivative $\mathbf{f}(\mathbf{x})=\mathrm{dg} / \mathrm{dx}=0$ at the minimum or maximum of g (as long as \mathbf{g} has certain properties)

Bisection Method

- suppose you can evaluate $\mathbf{f}(\mathbf{x})$ at two points $\mathbf{x}=\mathbf{a}$ and $\mathbf{x}=b$ such that
- $f(a)>0$
- $\mathrm{f}(\mathrm{b})<0$

Bisection Method

- evaluate $\mathbf{f}(\mathbf{c})$ where \mathbf{c} is halfway between \mathbf{a} and \mathbf{b}
- if $\mathrm{f}(\mathrm{c})$ is close enough to zero done

Bisection Method

- otherwise c becomes the new end point (in this case, 'minus ') and recursively search the range 'plus' - 'minus'

public class Bisect \{
// the function we want to find the root of public static double $f($ double $x)\{$
return Math.cos(x);
\}
public static double bisect(double xplus, double xminus, double tolerance) \{

```
    // base case
    double c = (xplus + xminus) / 2.0;
    double fc = f(c);
    if( Math.abs(fc) < tolerance ) {
        return c;
    }
    else if (fc < 0.0) {
        return bisect(xplus, c, tolerance);
    }
    else {
        return bisect(c, xminus, tolerance);
    }
```

\}

```
    public static void main(String[] args)
    {
            System.out.println("bisection returns: " +
                            bisect(1.0, Math.PI, 0.001));
                    System.out.println("true answer : "
                        + Math.PI / 2.0);
    }
}
prints:
bisection returns: 1.5709519476855602
true answer : 1.5707963267948966
```


Divide and Conquer

- bisection works by recursively finding which half of the range 'plus' - 'minus' the root lies in
- each recursive call solves the same problem (tries to find the root of the function by guessing at the midpoint of the range)
- each recursive call solves one smaller problem because half of the range is discarded
- bisection method is decrease and conquer
- divide and conquer algorithms typically recursively divide a problem into several smaller sub-problems until the sub-problems are small enough that they can be solved directly

Merge Sort

- merge sort is a divide and conquer algorithm that sorts a list of numbers by recursively splitting the list into two halves

- the split lists are then merged into sorted sub-lists

Merging Sorted Sub-lists

- two sub-lists of length 1

left	right
4	3

$$
\begin{aligned}
& \text { result } \\
& \begin{array}{|c|c|}
\hline 3 & 4 \\
\hline
\end{array}
\end{aligned}
$$

1 comparison
2 copies

```
int fL = left.getFirst();
int fR = right.getFirst();
if (fL < fR) {
    result.add(fL);
    left.removeFirst();
}
else {
    result.add(fR);
    right.removeFirst();
}
if (left.isEmpty()) {
    result.addAll(right);
}
else {
    result.addAll(left);
}
```

LinkedList<Integer> result = new LinkedList<Integer>();

Merging Sorted Sub-lists

- two sub-lists of length 2

left	right	
3	4	

3 comparisons
4 copies

```
LinkedList<Integer> result = new LinkedList<Integer>();
```

```
while (left.size() > O && right.size() > O ) {
```

while (left.size() > O \&\& right.size() > O) {
int fL = left.getFirst();
int fL = left.getFirst();
int fR = right.getFirst();
int fR = right.getFirst();
if (fL < fR) {
if (fL < fR) {
result.add(fL);
result.add(fL);
left.removeFirst();
left.removeFirst();
}
}
else {
else {
result.add(fR);
result.add(fR);
right.removeFirst();
right.removeFirst();
}
}
}
}
if (left.isEmpty()) {
if (left.isEmpty()) {
result.addAll (right);
result.addAll (right);
}
}
else {
else {
result.addAll(left);
result.addAll(left);
}

```
}
```


Merging Sorted Sub-lists

- two sub-lists of length 4

5 comparisons
8 copies

Simplified Complexity Analysis

- in the worst case merging a total of n elements requires
n - 1 comparisons +
n copies
$=2 \mathrm{n}-1$ total operations
- we say that the worst-case complexity of merging is the order of $O(n)$
- $O(\ldots)$ is called Big O notation
- notice that we don't care about the constants 2 and 1
- formally, a function $f(n)$ is an element of $O(g(n))$ if and only if there is a positive real number M and a real number m such that

$$
|f(n)|<M|g(n)| \text { for all } n>m
$$

- is $2 n-1$ an element of $O(n)$?
- yes, let $M=2$ and $m=0$, then $2 n-1<2 n$ for all $n>0$

Informal Analysis of Merge Sort

- suppose the running time (the number of operations) of merge sort is a function of the number of elements to sort
- let the function be $T(n)$
- merge sort works by splitting the list into two sub-lists (each about half the size of the original list) and sorting the sub-lists
- this takes $2 T(n / 2)$ running time
- then the sub-lists are merged
- this takes $O(n)$ running time
- total running time $T(n)=2 T(n / 2)+O(n)$

Solving the Recurrence Relation

$$
\begin{array}{rlr}
T(n) & \rightarrow 2 T(n / 2)+O(n) & T(n) \text { approaches... } \\
& \approx 2 T(n / 2)+n \\
& =2[2 T(n / 4)+n / 2]+n \\
& =4 T(n / 4)+2 n \\
& =4[2 T(n / 8)+n / 4]+2 n \\
& =8 T(n / 8)+3 n \\
& =8[2 T(n / 16)+n / 8]+3 n \\
& =16 T(n / 16)+4 n \\
& =2^{k} T\left(n / 2^{k}\right)+k n
\end{array}
$$

Solving the Recurrence Relation

$T(n)=2^{k} T\left(n / 2^{k}\right)+k n$

- for a list of length 1 we know $T(1)=1$
- if we can substitute $T(1)$ into the right-hand side of $T(n)$ we might be able to solve the recurrence

$$
n / 2^{k}=1 \Rightarrow 2^{k}=n \Rightarrow k=\log (n)
$$

Solving the Recurrence Relation

$$
\begin{aligned}
T(n) & =\quad 2^{\log (n)} T\left(n / 2^{\log (n)}\right)+n \log (n) \\
& =n T(1)+n \log (n) \\
& =n+n \log (n) \\
& \in \quad n \log (n) \quad \text { (prove this) }
\end{aligned}
$$

Is Merge Sort Efficient?

- consider a simpler (non-recursive) sorting algorithm called insertion sort

```
// to sort an array a[0]..a[n-1]
not Java!
for i = 0 to (n-1) {
    k = index of smallest element in sub-array a[i]..a[n-1]
    swap a[i] and a[k]
}
```

```
for i = 0 to (n-1) {
    for j = (i+1) to (n-1) {
        if (a[j] < a[i]) {
            k = j;
        }
    }
    tmp =a[i]; a[i] = a[k]; a[k] = tmp; 3
}
```

$$
\begin{aligned}
T(n) & =\sum_{i=0}^{n-1}\left(\left(\sum_{j=(i+1)}^{n-1} 2\right)+3\right) \\
& =\sum_{i=0}^{n-1}(2(n-i-1))+3 n \\
& =2 \sum_{i=0}^{n-1} n-2 \sum_{i=0}^{n-1} i-2 \sum_{i=0}^{n-1} 1+3 n \\
& =2 n^{2}-2 \frac{n(n-1)}{2}-2 n+3 n \\
& =2 n^{2}-n^{2}+n-2 n+3 n \\
=n^{2} & +2 n \in O\left(n^{2}\right)
\end{aligned}
$$

Comparing Rates of Growth

Comments

- big O complexity tells you something about the running time of an algorithm as the size of the input, n, approaches infinity
- we say that it describes the limiting, or asymptotic, running time of an algorithm
- for small values of n it is often the case that a less efficient algorithm (in terms of big O) will run faster than a more efficient one
- insertion sort is typically faster than merge sort for short lists of numbers

Revisiting the Fibonacci Numbers

- the recursive implementation based on the definition of the Fibonacci numbers is inefficient

```
public static int fibonacci(int n) {
    if (n == 0) {
        return 0;
    }
    else if (n == 1) {
        return 1;
    }
    int f = fibonacci (n - 1) + fibonacci(n - 2);
    return f;
}
```

- how inefficient is it?
- let $T(n)$ be the running time to compute the nth Fibonacci number
- $T(0)=T(1)=1$
- $T(n)$ is a recurrence relation

$$
\begin{aligned}
T(n) & \rightarrow T(n-1)+T(n-2) \\
& =(T(n-2)+T(n-3))+T(n-2) \\
& =2 T(n-2)+T(n-3) \\
& >2 T(n-2) \\
& >2(2 T(n-4))=4 T(n-4) \\
& >4(2 T(n-6))=8 T(n-6) \\
& >8(2 T(n-8))=16 T(n-8) \\
& >2^{k} T(n-2 k)
\end{aligned}
$$

Solving the Recurrence Relation

$$
T(n)>\quad 2^{k} T(\underline{n-2 k})
$$

- we know $T(1)=1$
- if we can substitute $T(1)$ into the right-hand side of $T(n)$ we might be able to solve the recurrence

$$
n-2 k=1 \Rightarrow 1+2 k=n \Rightarrow k=(\mathrm{n}-1) / 2
$$

$$
T(n)>2^{k} T(n-2 k)=2^{(n-1) / 2} T(1)=2^{(n-1) / 2} \in O\left(2^{n}\right)
$$

