
Recursion

notes Chapter 8

1

Decrease and Conquer
 a common strategy for solving computational

problems

 solves a problem by taking the original problem and
converting it to one smaller version of the same problem

 note the similarity to recursion

 decrease and conquer, and the closely related divide
and conquer method, are widely used in computer
science

 allow you to solve certain complex problems easily

 help to discover efficient algorithms

2

Root Finding
 suppose you have a mathematical function f(x) and

you want to find x0 such that f(x0) = 0

 why would you want to do this?

 many problems in computer science, science, and
engineering reduce to optimization problems

 find the shape of an automobile that minimizes aerodynamic drag

 find an image that is similar to another image (minimize the
difference between the images)

 find the sales price of an item that maximizes profit

 if you can write the optimization criteria as a function g(x)
then its derivative f(x) = dg/dx = 0 at the minimum
or maximum of g (as long as g has certain properties)

3

Bisection Method
 suppose you can evaluate f(x) at two points x = a

and x = b such that

 f(a) > 0

 f(b) < 0

4

x

f(x)

f(a)

f(b)

'plus'

'minus'

Bisection Method
 evaluate f(c) where c is halfway between a and b

 if f(c) is close enough to zero done

5

x

f(x)

f(a)

f(b)

f(c)

'plus'

'minus'

Bisection Method
 otherwise c becomes the new end point (in this case,
'minus') and recursively search the range
'plus' – 'minus'

6

x

f(x)

f(a)

f(b)

'plus'

'minus'

f(c)

public class Bisect {

 // the function we want to find the root of

 public static double f(double x) {

 return Math.cos(x);

 }

7

 public static double bisect(double xplus, double xminus,

 double tolerance) {

 // base case

 double c = (xplus + xminus) / 2.0;

 double fc = f(c);

 if(Math.abs(fc) < tolerance) {

 return c;

 }

 else if (fc < 0.0) {

 return bisect(xplus, c, tolerance);

 }

 else {

 return bisect(c, xminus, tolerance);

 }

 }

8

 public static void main(String[] args)

 {

 System.out.println("bisection returns: " +

 bisect(1.0, Math.PI, 0.001));

 System.out.println("true answer : "

 + Math.PI / 2.0);

 }

}

prints:

bisection returns: 1.5709519476855602

true answer : 1.5707963267948966

9

Divide and Conquer
 bisection works by recursively finding which half of

the range 'plus' – 'minus' the root lies in

 each recursive call solves the same problem (tries to find
the root of the function by guessing at the midpoint of the
range)

 each recursive call solves one smaller problem because half
of the range is discarded

 bisection method is decrease and conquer

 divide and conquer algorithms typically recursively
divide a problem into several smaller sub-problems
until the sub-problems are small enough that they can
be solved directly

10

Merge Sort
 merge sort is a divide and conquer algorithm that sorts

a list of numbers by recursively splitting the list into
two halves

11

1 2 7 4 5 6 3 8

1 7 6 8 2 4 5 3

2 5 4 3 1 6 7 8

4 3 2 5 7 8 1 6

 the split lists are then merged into sorted sub-lists

12

4 3 2 5 7 8 1 6

5 2 3 4 6 1 8 7

8 6 7 1 5 2 4 3

8 4 6 1 3 7 2 5

Merging Sorted Sub-lists
 two sub-lists of length 1

13

4 3

left right

result

3 4

1 comparison
2 copies

14

LinkedList<Integer> result = new LinkedList<Integer>();

int fL = left.getFirst();

int fR = right.getFirst();

if (fL < fR) {

 result.add(fL);

 left.removeFirst();

}

else {

 result.add(fR);

 right.removeFirst();

}

if (left.isEmpty()) {

 result.addAll(right);

}

else {

 result.addAll(left);

}

Merging Sorted Sub-lists
 two sub-lists of length 2

15

4 3

left right

result

3 4

3 comparisons
4 copies

5 2

2 5

16

LinkedList<Integer> result = new LinkedList<Integer>();

while (left.size() > 0 && right.size() > 0) {

 int fL = left.getFirst();

 int fR = right.getFirst();

 if (fL < fR) {

 result.add(fL);

 left.removeFirst();

 }

 else {

 result.add(fR);

 right.removeFirst();

 }

}

if (left.isEmpty()) {

 result.addAll(right);

}

else {

 result.addAll(left);

}

Merging Sorted Sub-lists
 two sub-lists of length 4

17

left right

result

5 comparisons
8 copies

8 6 7 1 5 2 4 3

8 4 6 1 3 7 2 5

Simplified Complexity Analysis
 in the worst case merging a total of n elements

requires
n – 1 comparisons +

n copies

= 2n – 1 total operations

 we say that the worst-case complexity of merging is
the order of O(n)

 O(...) is called Big O notation

 notice that we don't care about the constants 2 and 1

18

 formally, a function f(n) is an element of O(g(n)) if and

only if there is a positive real number M and a real
number m such that

| f(n) | < M| g(n) | for all n > m

 is 2n – 1 an element of O(n)?

 yes, let M = 2 and m = 0, then 2n – 1 < 2n for all n > 0

19

Informal Analysis of Merge Sort
 suppose the running time (the number of operations)

of merge sort is a function of the number of elements
to sort

 let the function be T(n)

 merge sort works by splitting the list into two sub-lists
(each about half the size of the original list) and
sorting the sub-lists
 this takes 2T(n/2) running time

 then the sub-lists are merged

 this takes O(n) running time

 total running time T(n) = 2T(n/2) + O(n)

20

Solving the Recurrence Relation
T(n) 2T(n/2) + O(n) T(n) approaches...

 2T(n/2) + n

 = 2[2T(n/4) + n/2] + n

 = 4T(n/4) + 2n

 = 4[2T(n/8) + n/4] + 2n

 = 8T(n/8) + 3n

 = 8[2T(n/16) + n/8] + 3n

 = 16T(n/16) + 4n

 = 2
kT(n/2k) + kn

21

Solving the Recurrence Relation
T(n) = 2

kT(n/2k) + kn

 for a list of length 1 we know T(1) = 1

 if we can substitute T(1) into the right-hand side of T(n) we
might be able to solve the recurrence

n/2k = 1 2k = n k = log(n)

22

Solving the Recurrence Relation

T(n) = 2
log(n)T(n/2log(n)) + n log(n)

 = n T(1) + n log(n)

 = n + n log(n)

 n log(n) (prove this)

23

Is Merge Sort Efficient?
 consider a simpler (non-recursive) sorting algorithm

called insertion sort

24

// to sort an array a[0]..a[n-1] not Java!

for i = 0 to (n-1) {

 k = index of smallest element in sub-array a[i]..a[n-1]

 swap a[i] and a[k]

}

for i = 0 to (n-1) { not Java!

 for j = (i+1) to (n-1) {

 if (a[j] < a[i]) {

 k = j;

 }

 }

 tmp = a[i]; a[i] = a[k]; a[k] = tmp;

}

1 comparison +
1 assignment

3 assignments

 T(n)

25

1

0

1

)1(

32
n

i

n

ij

 nin
n

i

312
1

0

nin
n

i

n

i

n

i

31222
1

0

1

0

1

0

nn

nn
n 32

2

1
22 2

nnnnn 322 22

 22 2 nOnn

Comparing Rates of Growth

26

O(n)

O(n logn)

O(n2) O(2n)

n

Comments
 big O complexity tells you something about the

running time of an algorithm as the size of the input,
n, approaches infinity

 we say that it describes the limiting, or asymptotic, running
time of an algorithm

 for small values of n it is often the case that a less
efficient algorithm (in terms of big O) will run faster
than a more efficient one

 insertion sort is typically faster than merge sort for short
lists of numbers

27

Revisiting the Fibonacci Numbers
 the recursive implementation based on the definition

of the Fibonacci numbers is inefficient

public static int fibonacci(int n) {

 if (n == 0) {

 return 0;

 }

 else if (n == 1) {

 return 1;

 }

 int f = fibonacci(n - 1) + fibonacci(n - 2);

 return f;

}

28

 how inefficient is it?

 let T(n) be the running time to compute the nth
Fibonacci number

 T(0) = T(1) = 1

 T(n) is a recurrence relation

29

 T(n)

30

)2()1(nTnT

)2()3()2(nTnTnT

)3()2(2 nTnT

)2(2 nT

)4(4)4(22 nTnT

)6(8)6(24 nTnT

)8(16)8(28 nTnT

)2(2 knTk

Solving the Recurrence Relation
T(n) > 2

kT(n - 2k)

 we know T(1) = 1

 if we can substitute T(1) into the right-hand side of T(n) we
might be able to solve the recurrence

n - 2k = 1 1 + 2k = n k = (n – 1)/2

31

)2(2)1(2)2(2)(2121 nnnk OTknTnT

