
Inheritance (Part 5)

Odds and ends

1

Static Methods and Inheritance
 there is a significant difference between calling a static

method and calling a non-static method when dealing
with inheritance

 there is no dynamic dispatch on static methods

 therefore, you cannot override a static method

 if you use a variable name instead of the class name to
invoke the static method, you get the method that belongs
to the declared type of the variable

2

3

public abstract class Dog {

 private static int numCreated = 0;

 public static int getNumCreated() {

 return Dog.numCreated;

 }

}

public class Mix {

 private static int numMixCreated = 0;

 public static int getNumCreated() {

 return Mix.numMixCreated;

 }

}

public class Komondor {

 private static int numKomondorCreated = 0;

 public static int getNumCreated() {

 return Komondor.numKomondorCreated;

 }

}

notice no @Override

notice no @Override

4

public class WrongCount {

 public static void main(String[] args) {

 Dog mutt = new Mix();

 Dog shaggy = new Komondor();

 System.out.println(mutt.getNumCreated());

 System.out.println(shaggy.getNumCreated());

 System.out.println(Mix.getNumCreated());

 System.out.println(Komondor.getNumCreated());

 }

}

prints 2

 2

 1

 1

Dog version

Dog version

Mix version

Komondor
 version

What's Going On?
 there is no dynamic dispatch on static methods

 because the declared type of mutt is Dog, it is the Dog
version of getNumCreated that is called

 because the declared type of shaggy is Dog, it is the
Dog version of getNumCreated that is called

5

Hiding Methods
 notice that Mix.getNumCreated and
Komondor.getNumCreated work as expected

 if a subclass declares a static method with the same
name as a superclass static method, we say that the
subclass static method hides the superclass static
method

 you cannot override a static method, you can only hide it

 hiding static methods is considered bad form because it
makes code hard to read and understand

6

 the client code in WrongCount illustrates two cases of
bad style, one by the client and one by the
implementer of the Dog hierarchy

1. the client should not have used an instance to call a static
method

2. the implementer should not have hidden the static
method in Dog

7

Using superclass methods

8

Other Methods
 methods in a subclass will often need or want to call

methods in the immediate superclass
 a new method in the subclass can call any public or
protected method in the superclass without using any
special syntax

 a subclass can override a public or protected
method in the superclass by declaring a method that
has the same signature as the one in the superclass

 a subclass method that overrides a superclass method can
call the overridden superclass method using the super
keyword

9

Dog equals
 we will assume that two Dogs are equal if their size

and energy are the same

@Override public boolean equals(Object obj)

{

 boolean eq = false;

 if(obj != null && this.getClass() == obj.getClass())

 {

 Dog other = (Dog) obj;

 eq = this.getSize() == other.getSize() &&

 this.getEnergy() == other.getEnergy();

 }

 return eq;

}

10

Mix equals (version 1)
 two Mix instances are equal if their Dog subobjects are

equal and they have the same breeds

@Override public boolean equals(Object obj)

{ // the hard way

 boolean eq = false;

 if(obj != null && this.getClass() == obj.getClass()) {

 Mix other = (Mix) obj;

 eq = this.getSize() == other.getSize() &&

 this.getEnergy() == other.getEnergy() &&

 this.breeds.size() == other.breeds.size() &&

 this.breeds.containsAll(other.breeds);

 }

 return eq;

}
11

subclass can call
public method of
the superclass

Mix equals (version 2)
 two Mix instances are equal if their Dog subobjects are

equal and they have the same breeds

 Dog equals already tests if two Dog instances are equal

 Mix equals can call Dog equals to test if the Dog subobjects
are equal, and then test if the breeds are equal

 also notice that Dog equals already checks that the
Object argument is not null and that the classes are
the same

 Mix equals does not have to do these checks again

12

@Override public boolean equals(Object obj)

{

 boolean eq = false;

 if(super.equals(obj))

 { // the Dog subobjects are equal

 Mix other = (Mix) obj;

 eq = this.breeds.size() == other.breeds.size() &&

 this.breeds.containsAll(other.breeds);

 }

 return eq;

}

13

subclass method that overrides a superclass
method can call the original superclass method

Dog toString

@Override public String toString()

{

 String s = "size " + this.getSize() +

 "energy " + this.getEnergy();

 return s;

}

14

Mix toString

@Override public String toString()

{

 StringBuffer b = new StringBuffer();

 b.append(super.toString());

 for(String s : this.breeds)

 b.append(" " + s);

 b.append(" mix");

 return b.toString();

}

15

size and energy of the dog

breeds of the mix

Dog hashCode

// similar to code generated by Eclipse

@Override public int hashCode()

{

 final int prime = 31;

 int result = 1;

 result = prime * result + this.getEnergy();

 result = prime * result + this.getSize();

 return result;

}

16

use this.energy and
this.size to compute
the hash code

Mix hashCode

// similar to code generated by Eclipse

@Override public int hashCode()

{

 final int prime = 31;

 int result = super.hashCode();

 result = prime * result + this.breeds.hashCode();

 return result;

}

17

use this.energy,
this.size, and this.breeds
 to compute the hash code

Review

18

Review
1. Inheritance models the ______ relationship between

classes.

2. Dog is a ______ of Object.

3. Dog is a ______ of Mix.

4. Can a Dog instance do everything a Mix instance
can?

5. Can a Mix instance do everything a Dog instance
can?

6. Is a Dog instance substitutable for a Mix instance?

7. Is a Mix instance substitutable for a Dog instance?

19

8. Can a subclass use the private fields of its superclass?

9. Can a subclass use the private methods of its
superclass?

10. Suppose you have a class X that you do not want
anyone to extend. How do you enforce this?

11. Suppose you have an immutable class X. Someone
extends X to make it mutable. Is this legal?

12. What do you need to do to enforce immutability?

20

13. Suppose you have a class Y that extends X.

a. Does each Y instance have a X instance inside of it?

b. How do you construct the X subobject inside of the Y
instance?

c. What syntax is used to call the superclass constructor?

d. What is constructed first–the X subobject or the Y object?

e. Suppose Y introduces a brand new method that needs to
call a public method in X named xMethod. How does the
new Y method call xMethod?

f. Suppose Y overrides a public method in X named
xMethod. How does the overriding Y method call
xMethod?

21

14. Suppose you have a class Y that extends X. X has a
method with the following precondition:
@pre. value must be a multiple of 2

If Y overrides the method which of the following are
acceptable preconditions for the overriding method:

a. @pre. value must be a multiple of 2

b. @pre. value must be odd

c. @pre. value must be a multiple of 2 and must be less

than 100

d. @pre. value must be a multiple of 10

e. @pre. none

22

14. Suppose you have a class Y that extends X. X has a
method with the following postcondition:

@return – A String of length 10

If Y overrides the method which of the following are
acceptable postconditions for the overriding method:

a. @return – A String of length 9 or 10

b. @return – The String "weimaraner"

c. @return – An int

d. @return – The same String returned by toString

e. @return – A random String of length 10

23

15. Suppose Dog toString has the following Javadoc:
 /*

 * Returns a string representation of a dog.

 * The string is the size of the dog followed by a

 * a space followed by the energy.

 * @return The string representation of the dog.

 */

 Does this affect subclasses of Dog?

24

Inheritance Recap
 inheritance allows you to create subclasses that are

substitutable for their ancestors

 inheritance interacts with preconditions, postconditions,
and exception throwing

 subclasses

 inherit all non-private features

 can add new features

 can change the behaviour of non-final methods by
overriding the parent method

 contain an instance of the superclass

 subclasses must construct the instance via a superclass
constructor

25

