
Inheritance (Part 4)

Abstract Classes

1

Abstract Classes
 sometimes you will find that you want the API for a

base class to have a method that the base class cannot
define
 e.g. you might want to know what a Dog's bark sounds like

but the sound of the bark depends on the breed of the dog

 you want to add the method bark to Dog but only the subclasses
of Dog can implement bark

2

Abstract Classes
 sometimes you will find that you want the API for a

base class to have a method that the base class cannot
define
 e.g. you might want to know the breed of a Dog but only the

subclasses have information about the breed

 you want to add the method getBreed to Dog but only the
subclasses of Dog can implement getBreed

3

 if the base class has methods that only subclasses can
define and the base class has fields common to all
subclasses then the base class should be abstract

 if you have a base class that just has methods that it cannot
implement then you probably want an interface

 abstract :
 (dictionary definition) existing only in the mind

 in Java an abstract class is a class that you cannot make
instances of

 e.g. http://docs.oracle.com/javase/7/docs/api/java/util/AbstractList.html

4

http://docs.oracle.com/javase/7/docs/api/java/util/AbstractList.html
http://docs.oracle.com/javase/7/docs/api/java/util/AbstractList.html

 an abstract class provides a partial definition of a class

 the "partial definition" contains everything that is common
to all of the subclasses

 the subclasses complete the definition

 an abstract class can define fields and methods

 subclasses inherit these

 an abstract class can define constructors

 subclasses must call these

 an abstract class can declare abstract methods

 subclasses must define these (unless the subclass is also
abstract)

 5

Abstract Methods
 an abstract base class can declare, but not define, zero

or more abstract methods

 the base class is saying "all Dogs can provide a String
describing the breed, but only the subclasses know
enough to implement the method"

6

public abstract class Dog

{

 // fields, ctors, regular methods

 public abstract String getBreed();

}

Abstract Methods

 the non-abstract subclasses must provide definitions
for all abstract methods
 consider getBreed in Mix

7

public class Mix extends Dog

{ // stuff from before...

 @Override

 public String getBreed() {

 if(this.breeds.isEmpty()) {

 return "mix of unknown breeds";

 }

 StringBuffer b = new StringBuffer();

 b.append("mix of");

 for(String breed : this.breeds) {

 b.append(" " + breed);

 }

 return b.toString();

}

8

PureBreed
 a purebreed dog is a dog with a single breed

 one String field to store the breed

 note that the breed is determined by the subclasses
 the class PureBreed cannot give the breed field a value

 but it can implement the method getBreed

 the class PureBreed defines an field common to all
subclasses and it needs the subclass to inform it of the
actual breed
 PureBreed is also an abstract class

9

public abstract class PureBreed extends Dog

{

 private String breed;

 public PureBreed(String breed) {

 super();

 this.breed = breed;

 }

 public PureBreed(String breed, int size, int energy) {

 super(size, energy);

 this.breed = breed;

 }

10

 @Override public String getBreed()

 {

 return this.breed;

 }

}

11

Subclasses of PureBreed

 the subclasses of PureBreed are responsible for
setting the breed
 consider Komondor

12

Komondor
public class Komondor extends PureBreed

{

 private final String BREED = "komondor";

 public Komondor() {

 super(BREED);

 }

 public Komondor(int size, int energy) {

 super(BREED, size, energy);

 }

 // other Komondor methods...

}

13

Another example: Tetris
 played with 7 standard

blocks called tetriminoes

 blocks drop from the top

 player can move blocks
left, right, and down

 player can spin blocks
left and right

14

Tetriminoes
 spinning the I, J, and S blocks

15

Tetriminoes
 features common to all tetriminoes

 has-a color

 has-a shape

 has-a position

 draw

 move left, right, and down

 features unique to each kind of tetrimino

 the actual shape

 spin left and right

16

17

Block

- color : Color

- position : IPoint2D

- grid : BlockGrid

+ draw()

+ moveDown()

+ moveLeft()

+ moveRight()

...

IBlock

+ IBlock(IPoint2D, Color)

+ spinLeft()

+ spinRight()

• constructor defines the shape

• methods modify the shape to produce
the rotated version of the block

• class name in italics for abstract classes

• an immutable 2D point

• a grid object that stores the shape

http://www.eecs.yorku.ca/course_archive/2013-14/F/1030/labs/06/lab6.html

http://www.eecs.yorku.ca/course_archive/2013-14/F/1030/labs/06/lab6.html
http://www.eecs.yorku.ca/course_archive/2013-14/F/1030/labs/06/lab6.html
http://www.eecs.yorku.ca/course_archive/2013-14/F/1030/labs/06/lab6.html
http://www.eecs.yorku.ca/course_archive/2013-14/F/1030/labs/06/lab6.html

Inheritance (Part 5)

Static Features; Interfaces

18

Static Fields and Inheritance

 static fields behave the same as non-static fields in
inheritance

 public and protected static fields are inherited by
subclasses, and subclasses can access them directly by name

 private static fields are not inherited and cannot be
accessed directly by name

 but they can be accessed/modified using public and protected
methods

19

Static Fields and Inheritance

 the important thing to remember about static fields
and inheritance

 there is only one copy of the static field shared among the
declaring class and all subclasses

 consider trying to count the number of Dog objects
created by using a static counter

20

// the wrong way to count the number of Dogs created

public abstract class Dog {

 // other fields...

 static protected int numCreated = 0;

 Dog() {

 // ...

 Dog.numCreated++;

 }

 public static int getNumberCreated() {

 return Dog.numCreated;

 }

 // other contructors, methods...

}

21

protected, not private, so that
subclasses can modify it directly

// the wrong way to count the number of Dogs created

public class Mix extends Dog

{

 // fields...

 Mix()

 {

 super();

 Mix.numCreated++;

 }

 // other contructors, methods...

}

22

// too many dogs!

public class TooManyDogs

{

 public static void main(String[] args)

 {

 Mix mutt = new Mix();

 System.out.println(Mix.getNumberCreated());

 }

}

prints 2

23

What Went Wrong?
 there is only one copy of the static field shared among

the declaring class and all subclasses
 Dog declared the static field

 Dog increments the counter everytime its constructor is
called

 Mix inherits and shares the single copy of the field

 Mix constructor correctly calls the superclass constructor

 which causes numCreated to be incremented by Dog

 Mix constructor then incorrectly increments the counter

24

Counting Dogs and Mixes

 suppose you want to count the number of Dog
instances and the number of Mix instances

 Mix must also declare a static field to hold the count

 somewhat confusingly, Mix can give the counter the same name
as the counter declared by Dog

25

public class Mix extends Dog

{

 // other fields...

 private static int numCreated = 0; // bad style

 public Mix()

 {

 super(); // will increment Dog.numCreated

 // other Mix stuff...

 numCreated++; // will increment Mix.numCreated

 }

 // ...

26

Hiding Fields
 note that the Mix field numCreated has the same

name as an field declared in a superclass
 whenever numCreated is used in Mix, it is the Mix

version of the field that is used

 if a subclass declares an field with the same name as a
superclass field, we say that the subclass field hides the
superclass field

 considered bad style because it can make code hard to read
and understand

 should change numCreated to numMixCreated in Mix

27

Static Methods and Inheritance
 there is a significant difference between calling a static

method and calling a non-static method when dealing
with inheritance

 there is no dynamic dispatch on static methods

 therefore, you cannot override a static method

28

29

public abstract class Dog {

 private static int numCreated = 0;

 public static int getNumCreated() {

 return Dog.numCreated;

 }

}

public class Mix {

 private static int numMixCreated = 0;

 public static int getNumCreated() {

 return Mix.numMixCreated;

 }

}

public class Komondor {

 private static int numKomondorCreated = 0;

 public static int getNumCreated() {

 return Komondor.numKomondorCreated;

 }

}

notice no @Override

notice no @Override

30

public class WrongCount {

 public static void main(String[] args) {

 Dog mutt = new Mix();

 Dog shaggy = new Komondor();

 System.out.println(mutt.getNumCreated());

 System.out.println(shaggy.getNumCreated());

 System.out.println(Mix.getNumCreated());

 System.out.println(Komondor.getNumCreated());

 }

}

prints 2

 2

 1

 1

What's Going On?
 there is no dynamic dispatch on static methods

 because the declared type of mutt is Dog, it is the Dog
version of getNumCreated that is called

 because the declared type of shaggy is Dog, it is the
Dog version of getNumCreated that is called

31

Hiding Methods
 notice that Mix.getNumCreated and
Komondor.getNumCreated work as expected

 if a subclass declares a static method with the same
name as a superclass static method, we say that the
subclass static method hides the superclass static
method

 you cannot override a static method, you can only hide it

 hiding static methods is considered bad form because it
makes code hard to read and understand

32

 the client code in WrongCount illustrates two cases of
bad style, one by the client and one by the
implementer of the Dog hierarchy

1. the client should not have used an instance to call a static
method

2. the implementer should not have hidden the static
method in Dog

33

