
Inheritance (Part 3)

1

Preconditions and Inheritance
 precondition

 what the method assumes to be true about the arguments
passed to it

 inheritance (is-a)

 a subclass is supposed to be able to do everything its
superclasses can do

 how do they interact?

2

Strength of a Precondition
 to strengthen a precondition means to make the

precondition more restrictive

 // Dog setEnergy

 // 1. no precondition

 // 2. 1 <= energy

 // 3. 1 <= energy <= 10

 // 4. energy == 5

 public void setEnergy(int energy)

 { ... }

3

weakest precondition

strongest precondition

Preconditions on Overridden Methods
 a subclass can change a precondition on a method but

it must not strengthen the precondition

 a subclass that strengthens a precondition is saying that it
cannot do everything its superclass can do

4

// Dog setEnergy

// assume non-final

// @pre. none

public

void setEnergy(int nrg)

{ // ... }

// Mix setEnergy

// bad : strengthen precond.

// @pre. 1 <= nrg <= 10

public

void setEnergy(int nrg)

{

 if (nrg < 1 || nrg > 10)

 { // throws exception }

 // ...

}

 client code written for Dogs now fails when given a
Mix

 remember: a subclass must be able to do everything its
ancestor classes can do; otherwise, clients will be
(unpleasantly) surprised

5

// client code that sets a Dog's energy to zero

public void walk(Dog d)

{

 d.setEnergy(0);

}

Postconditions and Inheritance
 postcondition

 what the method promises to be true when it returns

 the method might promise something about its return value

 "returns size where size is between 1 and 10 inclusive"

 the method might promise something about the state of the
object used to call the method

 "sets the size of the dog to the specified size"

 the method might promise something about one of its parameters

 how do postconditions and inheritance interact?

6

Strength of a Postcondition
 to strengthen a postcondition means to make the

postcondition more restrictive

 // Dog getSize

 // 1. no postcondition

 // 2. return value >= 1

 // 3. return value

 // between 1 and 10

 // 4. return 5

 public int getSize()

 { ... }

7

weakest postcondition

strongest postcondition

Postconditions on Overridden Methods
 a subclass can change a postcondition on a method but

it must not weaken the postcondition

 a subclass that weakens a postcondition is saying that it
cannot do everything its superclass can do

8

// Dog getSize

//

// @post. 1 <= size <= 10

public

int getSize()

{ // ... }

// Dogzilla getSize

// bad : weaken postcond.

// @post. 1 <= size

public

int getSize()

{ // ... }

Dogzilla: a made-up breed of dog
that has no upper limit on its size

 client code written for Dogs can now fail when given a
Dogzilla

 remember: a subclass must be able to do everything its
ancestor classes can do; otherwise, clients will be
(unpleasantly) surprised

9

// client code that assumes Dog size <= 10

public String sizeToString(Dog d)

{

 int sz = d.getSize();

 String result = "";

 if (sz < 4) result = "small";

 else if (sz < 7) result = "medium";

 else if (sz <= 10) result = "large";

 return result;

}

Exceptions
 all exceptions are objects that are subclasses of
java.lang.Throwable

10

Throwable

Exception

RuntimeException and many, many more

IllegalArgumentException and many more

AJ chapter 9

User Defined Exceptions
 you can define your own exception hierarchy

 often, you will subclass Exception

11

Exception

DogException

BadSizeException NoFoodException BadDogException

public

class DogException extends Exception

Exceptions and Inheritance
 a method that claims to throw a checked exception of

type X is allowed to throw any checked exception type
that is a subclass of X

 this makes sense because exceptions are objects and
subclass objects are substitutable for ancestor classes

// in Dog

public void someDogMethod() throws DogException

{

 // can throw a DogException, BadSizeException,

 // NoFoodException, or BadDogException

}

12

 a method that overrides a superclass method that
claims to throw a checked exception of type X can also
claim to throw a checked exception of type X or a
subclass of X

 remember: a subclass is substitutable for the parent type

// in Mix

@Override

public void someDogMethod() throws DogException

{

 // ...

}

13

Which are Legal?
 in Mix

@Override

public void someDogMethod() throws BadDogException

@Override

public void someDogMethod() throws Exception

@Override

public void someDogMethod()

@Override

public void someDogMethod()

 throws DogException, IllegalArgumentException

14

Review
1. Inheritance models the ______ relationship between

classes.

2. Dog is a ______ of Object.

3. Dog is a ______ of Mix.

4. Can a Dog instance do everything a Mix instance
can?

5. Can a Mix instance do everything a Dog instance
can?

6. Is a Dog instance substitutable for a Mix instance?

7. Is a Mix instance substitutable for a Dog instance?

15

8. Can a subclass use the private fields of its superclass?

9. Can a subclass use the private methods of its
superclass?

10. Suppose you have a class X that you do not want
anyone to extend. How do you enforce this?

11. Suppose you have an immutable class X. Someone
extends X to make it mutable. Is this legal?

12. What do you need to do to enforce immutability?

16

13. Suppose you have a class Y that extends X.

a. Does each Y instance have a X instance inside of it?

b. How do you construct the X subobject inside of the Y
instance?

c. What syntax is used to call the superclass constructor?

d. What is constructed first–the X subobject or the Y object?

e. Suppose Y introduces a brand new method that needs to
call a public method in X named xMethod. How does the
new Y method call xMethod?

f. Suppose Y overrides a public method in X named
xMethod. How does the overriding Y method call
xMethod?

17

14. Suppose you have a class Y that extends X. X has a
method with the following precondition:
@pre. value must be a multiple of 2

If Y overrides the method which of the following are
acceptable preconditions for the overriding method:

a. @pre. value must be a multiple of 2

b. @pre. value must be odd

c. @pre. value must be a multiple of 2 and must be less

than 100

d. @pre. value must be a multiple of 10

e. @pre. none

18

14. Suppose you have a class Y that extends X. X has a
method with the following postcondition:

@return – A String of length 10

If Y overrides the method which of the following are
acceptable postconditions for the overriding method:

a. @return – A String of length 9 or 10

b. @return – The String "weimaraner"

c. @return – An int

d. @return – The same String returned by toString

e. @return – A random String of length 10

19

15. Suppose Dog toString has the following Javadoc:
 /*

 * Returns a string representation of a dog.

 * The string is the size of the dog followed by a

 * a space followed by the energy.

 * @return The string representation of the dog.

 */

 Does this affect subclasses of Dog?

20

Inheritance Recap
 inheritance allows you to create subclasses that are

substitutable for their ancestors

 inheritance interacts with preconditions, postconditions,
and exception throwing

 subclasses

 inherit all non-private features

 can add new features

 can change the behaviour of non-final methods by
overriding the parent method

 contain an instance of the superclass

 subclasses must construct the instance via a superclass
constructor

21

