
Inheritance (Part 3) 

1 



Preconditions and Inheritance 
 precondition 

 what the method assumes to be true about the arguments 
passed to it 

 

 inheritance (is-a) 

 a subclass is supposed to be able to do everything its 
superclasses can do 

 

 how do they interact? 

2 



Strength of a Precondition 
 to strengthen a precondition means to make the 

precondition more restrictive 

 
 // Dog setEnergy 

 // 1. no precondition 

 // 2. 1 <= energy 

 // 3. 1 <= energy <= 10 

  // 4. energy == 5 

 public void setEnergy(int energy) 

 { ... } 

 

 

3 

weakest precondition 

strongest precondition 



Preconditions on Overridden Methods 
 a subclass can change a precondition on a method but 

it must not strengthen the precondition 

 a subclass that strengthens a precondition is saying that it 
cannot do everything its superclass can do 

4 

// Dog setEnergy 

// assume non-final 

// @pre. none 

 

public 

void setEnergy(int nrg) 

{ // ... } 

// Mix setEnergy 

// bad : strengthen precond. 

// @pre. 1 <= nrg <= 10 

 

public 

void setEnergy(int nrg) 

{ 

  if (nrg < 1 || nrg > 10) 

  { // throws exception } 

  // ... 

} 



 client code written for Dogs now fails when given a 
Mix  

 

 

 

 

 remember: a subclass must be able to do everything its 
ancestor classes can do; otherwise, clients will be 
(unpleasantly) surprised 

5 

// client code that sets a Dog's energy to zero 

public void walk(Dog d) 

{ 

  d.setEnergy(0); 

} 

 



Postconditions and Inheritance 
 postcondition 

 what the method promises to be true when it returns 

 the method might promise something about its return value 

 "returns size where size is between 1 and 10 inclusive" 

 the method might promise something about the state of the 
object used to call the method 

 "sets the size of the dog to the specified size" 

 the method might promise something about one of its parameters 

 

 how do postconditions and inheritance interact? 

6 



Strength of a Postcondition 
 to strengthen a postcondition means to make the 

postcondition more restrictive 

 
 // Dog getSize 

 // 1. no postcondition 

 // 2. return value >= 1 

 // 3. return value 

  //       between 1 and 10  

  // 4. return 5 

 public int getSize() 

 { ... } 

 

 
7 

weakest postcondition 

strongest postcondition 



Postconditions on Overridden Methods 
 a subclass can change a postcondition on a method but 

it must not weaken the postcondition 

 a subclass that weakens a postcondition is saying that it 
cannot do everything its superclass can do 

8 

// Dog getSize 

// 

// @post. 1 <= size <= 10 

 

public 

int getSize() 

{ // ... } 

// Dogzilla getSize 

// bad : weaken postcond. 

// @post. 1 <= size 

 

public 

int getSize() 

{ // ... } 

Dogzilla: a made-up breed of dog 
that has no upper limit on its size 



 client code written for Dogs can now fail when given a 
Dogzilla  

 

 

 

 

 

 

 remember: a subclass must be able to do everything its 
ancestor classes can do; otherwise, clients will be 
(unpleasantly) surprised 

9 

// client code that assumes Dog size <= 10 

public String sizeToString(Dog d) 

{ 

  int sz = d.getSize(); 

  String result = ""; 

  if (sz < 4)        result = "small"; 

  else if (sz < 7)   result = "medium"; 

  else if (sz <= 10) result = "large"; 

  return result; 

} 

 



Exceptions 
 all exceptions are objects that are subclasses of 
java.lang.Throwable  

10 

Throwable 

Exception 

RuntimeException ... ... and many, many more 

IllegalArgumentException ... ... and many more 

AJ chapter 9 



User Defined Exceptions 
 you can define your own exception hierarchy 

 often, you will subclass Exception 

11 

Exception 

DogException 

BadSizeException NoFoodException BadDogException 

public 

class DogException extends Exception 



Exceptions and Inheritance 
 a method that claims to throw a checked exception of 

type X is allowed to throw any checked exception type 
that is a subclass of X  

 this makes sense because exceptions are objects and 
subclass objects are substitutable for ancestor classes 

 
// in Dog 

public void someDogMethod() throws DogException 

{ 

  // can throw a DogException, BadSizeException, 

  //             NoFoodException, or BadDogException 

} 

12 



 a method that overrides a superclass method that 
claims to throw a checked exception of type X can also 
claim to throw a checked exception of type X or a 
subclass of X  

 remember: a subclass is substitutable for the parent type 

 
 

// in Mix 

@Override 

public void someDogMethod() throws DogException 

{ 

  // ... 

} 

 

13 



Which are Legal? 
 in Mix  

@Override 

public void someDogMethod() throws BadDogException 

 

@Override 

public void someDogMethod() throws Exception 

 

@Override 

public void someDogMethod() 

 

@Override 

public void someDogMethod() 

      throws DogException, IllegalArgumentException 

 

 

 

 

 

 

 

14 



Review 
1. Inheritance models the ______ relationship between 

classes. 

2. Dog is a ______ of Object. 

3. Dog is a ______ of Mix. 

4. Can a Dog instance do everything a Mix instance 
can? 

5. Can a Mix instance do everything a Dog instance 
can? 

6. Is a Dog instance substitutable for a Mix instance? 

7. Is a Mix instance substitutable for a Dog instance? 

15 



8. Can a subclass use the private fields of its superclass? 

9. Can a subclass use the private methods of its 
superclass? 

10. Suppose you have a class X that you do not want 
anyone to extend. How do you enforce this? 

11. Suppose you have an immutable class X. Someone 
extends X to make it mutable. Is this legal? 

12. What do you need to do to enforce immutability? 

16 



13. Suppose you have a class Y that extends X. 

a. Does each Y instance have a X instance inside of it? 

b. How do you construct the X subobject inside of the Y 
instance? 

c. What syntax is used to call the superclass constructor? 

d. What is constructed first–the X subobject or the Y object? 

e. Suppose Y introduces a brand new method that needs to 
call a public method in X named xMethod. How does the 
new Y method call xMethod? 

f. Suppose Y overrides a public method in X named 
xMethod. How does the overriding Y method call 
xMethod? 

17 



14. Suppose you have a class Y that extends X. X has a 
method with the following precondition: 
@pre. value must be a multiple of 2  
 
If Y overrides the method which of the following are 
acceptable preconditions for the overriding method: 
 

a. @pre. value must be a multiple of 2 

b. @pre. value must be odd 

c. @pre. value must be a multiple of 2 and must be less 

than 100 

d. @pre. value must be a multiple of 10 

e. @pre. none 

18 



14. Suppose you have a class Y that extends X. X has a 
method with the following postcondition: 
 
@return – A String of length 10 

 
If Y overrides the method which of the following are 
acceptable postconditions for the overriding method: 
 

a. @return – A String of length 9 or 10 

b. @return – The String "weimaraner" 

c. @return – An int 

d. @return – The same String returned by toString 

e. @return – A random String of length 10 

19 



15. Suppose Dog toString has the following Javadoc: 
 /* 

  * Returns a string representation of a dog. 

  * The string is the size of the dog followed by a 

  * a space followed by the energy. 

  * @return The string representation of the dog. 

  */ 

 Does this affect subclasses of Dog? 

20 



Inheritance Recap 
 inheritance allows you to create subclasses that are 

substitutable for their ancestors 

 inheritance interacts with preconditions, postconditions, 
and exception throwing 

 subclasses 

 inherit all non-private features 

 can add new features 

 can change the behaviour of non-final methods by 
overriding the parent method 

 contain an instance of the superclass 

 subclasses must construct the instance via a superclass 
constructor 

21 


