
Inheritance (Part 2)

Notes Chapter 6

1

2

... Komondor BloodHound

PureBreed Mix

Dog

Object

Dog extends Object

PureBreed extends Dog

Komondor extends

 PureBreed

Implementing Inheritance
 suppose you want to implement an inheritance

hierarchy that represents breeds of dogs for the
purpose of helping people decide what kind of dog
would be appropriate for them

 many possible fields:

 appearance, size, energy, grooming requirements, amount
of exercise needed, protectiveness, compatibility with
children, etc.

 we will assume two fields measured on a 10 point scale

 size from 1 (small) to 10 (giant)

 energy from 1 (lazy) to 10 (high energy)

3

Dog
public class Dog extends Object

{

 private int size;

 private int energy;

 // creates an "average" dog

 Dog()

 { this(5, 5); }

 Dog(int size, int energy)

 { this.setSize(size); this.setEnergy(energy); }

4

 public int getSize()

 { return this.size; }

 public int getEnergy()

 { return this.energy; }

 public final void setSize(int size)

 { this.size = size; }

 public final void setEnergy(int energy)

 { this.energy = energy; }

}

5

why final? stay tuned…

What is a Subclass?
 a subclass looks like a new class that has the same API

as its superclass with perhaps some additional
methods and fields
 the new class has direct access to the public and
protected* fields and methods without having to re-
declare or re-implement them

 the new class can introduce new fields and methods

 the new class can re-define (override) its superclass
methods

6 * the notes does not discuss protected access

Mix UML Diagram
 a mixed breed dog is a dog whose ancestry is unknown

or includes more than one pure breed

7

Dog

Mix

1

ArrayList<String>

breeds

8

Dog

- size : int

- energy : int

+ setSize()

+ setEnergy()

+ equals(Object) : boolean

+ hashCode() : int

+ toString() : String

...

Mix

- breeds : ArrayList<String>

+ getBreeds() : List<String>

+ equals(Object) : boolean

+ hashCode() : int

+ toString() : String

...

• subclass can add new fields

• subclass can add new methods

• subclass can change the implementation
of inherited methods

What is a Subclass?
 a subclass looks like a new class that has the same API

as its superclass with perhaps some additional
methods and fields

 inheritance does more than copy the API of the
superclass

 the derived class contains a subobject of the parent class

 the superclass subobject needs to be constructed (just like a
regular object)

 the mechanism to perform the construction of the superclass
subobject is to call the superclass constructor

9

What is a Subclass?
 another model of inheritance is to imagine that the

subclass contains all of the fields of the parent class
(including the private fields), but cannot directly use
the private fields

10

Mix Memory Diagram

11

500 Mix object

size 1

energy 10

breeds 1000

•belongs to superclass
•private in superclass
•not accessible by name to Mix

Constructors of Subclasses
 the purpose of a constructor is to set the values of the

fields of this object

 how can a constructor set the value of a field that
belongs to the superclass?
 by calling the superclass constructor and passing this as

an implicit argument

12

Constructors of Subclasses
1. the first line in the body of every constructor must

be a call to another constructor

 if it is not then Java will insert a call to the superclass
default constructor

 if the superclass default constructor does not exist or is private
then a compilation error occurs

2. a call to another constructor can only occur on the
first line in the body of a constructor

3. the superclass constructor must be called during
construction of the derived class

13

Mix (version 1)
public final class Mix extends Dog {

 // no declaration of size or energy; part of Dog

 private ArrayList<String> breeds;

 public Mix () {

 // call to a Dog constructor

 super();

 this.breeds = new ArrayList<String>();

 }

 public Mix(int size, int energy) {

 // call to a Dog constructor

 super(size, energy);

 this.breeds = new ArrayList<String>();

 }

14

 public Mix(int size, int energy,

 ArrayList<String> breeds) {

 // call to a Dog constructor

 super(size, energy);

 this.breeds = new ArrayList<String>(breeds);

 }

15

Mix (version 2 using chaining)
public final class Mix extends Dog {

 // no declaration of size or energy; part of Dog

 private ArrayList<String> breeds;

 public Mix () {

 // call to a Mix constructor

 this(5, 5);

 }

 public Mix(int size, int energy) {

 // call to a Mix constructor

 this(size, energy, new ArrayList<String>());

 }

16

 public Mix(int size, int energy,

 ArrayList<String> breeds) {

 // call to a Dog constructor

 super(size, energy);

 this.breeds = new ArrayList<String>(breeds);

 }

17

 why is the constructor call to the superclass needed?
 because Mix is-a Dog and the Dog part of Mix needs to be

constructed

18

19

Mix object

Dog object

Object object

size 1

energy 10

breeds 1000

Mix mutt = new Mix(1, 10);

1. Mix constructor starts running

• creates new Dog subobject by invoking

the Dog constructor

2. Dog constructor starts running

• creates new Object subobject

by (silently) invoking the
Object constructor

3. Object constructor runs

• sets size and energy

• creates a new empty ArrayList and

assigns it to breeds

Mix Memory Diagram

20

500 Mix object

size 1

energy 10

breeds 1000

1000 ArrayList<String> object

...

Invoking the Superclass Ctor

 why is the constructor call to the superclass needed?
 because Mix is-a Dog and the Dog part of Mix needs to be

constructed

 similarly, the Object part of Dog needs to be constructed

21

Invoking the Superclass Ctor
 a derived class can only call its own constructors or the

constructors of its immediate superclass
 Mix can call Mix constructors or Dog constructors

 Mix cannot call the Object constructor

 Object is not the immediate superclass of Mix

 Mix cannot call PureBreed constructors

 cannot call constructors across the inheritance hierarchy

 PureBreed cannot call Komondor constructors

 cannot call subclass constructors

22

Constructors & Overridable Methods
 if a class is intended to be extended then its

constructor must not call an overridable method

 Java does not enforce this guideline

 why?

 recall that a derived class object has inside of it an object of
the superclass

 the superclass object is always constructed first, then the
subclass constructor completes construction of the subclass
object

 the superclass constructor will call the overridden version
of the method (the subclass version) even though the
subclass object has not yet been constructed

23

Superclass Ctor & Overridable Method

public class SuperDuper {

 public SuperDuper() {

 // call to an over-ridable method; bad

 this.overrideMe();

 }

 public void overrideMe() {

 System.out.println("SuperDuper overrideMe");

 }

}

24

Subclass Overrides Method
public class SubbyDubby extends SuperDuper {

 private final Date date;

 public SubbyDubby() {

 super();

 this.date = new Date();

 }

 @Override

 public void overrideMe() {

 System.out.println("SubbyDubby overrideMe : " + this.date);

 }

 public static void main(String[] args) {

 SubbyDubby sub = new SubbyDubby();

 sub.overrideMe();

 }

}

25

 the programmer's intent was probably to have the
program print:

SuperDuper overrideMe

SubbyDubby overrideMe : <the date>

or, if the call to the overridden method was intentional

SubbyDubby overrideMe : <the date>

SubbyDubby overrideMe : <the date>

 but the program prints:

SubbyDubby overrideMe : null

SubbyDubby overrideMe : <the date>

26

final attribute in
two different states!

What's Going On?
1. new SubbyDubby() calls the SubbyDubby

constructor

2. the SubbyDubby constructor calls the SuperDuper
constructor

3. the SuperDuper constructor calls the method
overrideMe which is overridden by SubbyDubby

4. the SubbyDubby version of overrideMe prints the
SubbyDubby date field which has not yet been
assigned to by the SubbyDubby constructor (so date is
null)

5. the SubbyDubby constructor assigns date

6. SubbyDubby overrideMe is called by the client

27

 remember to make sure that your base class
constructors only call final methods or private
methods

 if a base class constructor calls an overridden method, the
method will run in an unconstructed derived class

28

