
Inheritance

Notes Chapter 6

1

Inheritance
 you know a lot about an object by knowing its class

 for example what is a Komondor?

2

http://en.wikipedia.org/wiki/File:Komondor_delvin.jpg

3

... Komondor BloodHound

PureBreed Mix

Dog

Object

Dog is-a Object

PureBreed is-a Dog

PureBreed is-a Object

Komondor is-a PureBreed

Komondor is-a Dog

Komondor is-a Object

4

... Komondor BloodHound

PureBreed Mix

Dog

Object

subclass of Object

superclass of PureBreed

subclass of Dog

superclass of Komondor

superclass of Dog

(and all other classes)
superclass ==

 base class

 parent class

subclass ==

 derived class

 extended class

 child class

5

... Komondor BloodHound

PureBreed Mix

Dog

Object

Dog extends Object

PureBreed extends Dog

Komondor extends

 PureBreed

Some Definitions
 we say that a subclass is derived from its superclass

 with the exception of Object, every class in Java has
one and only one superclass

 Java only supports single inheritance

 a class X can be derived from a class that is derived
from a class, and so on, all the way back to Object

 X is said to be descended from all of the classes in the
inheritance chain going back to Object

 all of the classes X is derived from are called ancestors of X

6

Why Inheritance?
 a subclass inherits all of the non-private members

(attributes and methods but not constructors) from
its superclass

 if there is an existing class that provides some of the
functionality you need you can derive a new class from the
existing class

 the new class has direct access to the public and
protected attributes and methods without having to re-
declare or re-implement them

 the new class can introduce new fields and methods

 the new class can re-define (override) its superclass
methods

7

Is-A
 inheritance models the is-a relationship between

classes

 from a Java point of view, is-a means you can use a
derived class instance in place of an ancestor class
instance

8

public someMethod(Dog dog)

{ // does something with dog }

// client code of someMethod

Komondor shaggy = new Komondor();

someMethod(shaggy);

Mix mutt = new Mix ();

someMethod(mutt);

Is-A Pitfalls
 is-a has nothing to do with the real world

 is-a has everything to do with how the implementer
has modelled the inheritance hierarchy

 the classic example:
 Circle is-a Ellipse?

9

Circle

Ellipse

Circle is-a Ellipse?
 if Ellipse can do something that Circle cannot,

then Circle is-a Ellipse is false

 remember: is-a means you can substitute a derived class
instance for one of its ancestor instances

 if Circle cannot do something that Ellipse can do then you
cannot (safely) substitute a Circle instance for an Ellipse
instance

10

// method in Ellipse

/*

 * Change the width and height of the ellipse.

 * @param width The desired width.

 * @param height The desired height.

 * @pre. width > 0 && height > 0

 */

public void setSize(double width, double height)

{

 this.width = width;

 this.height = height;

}

11

 there is no good way for Circle to support setSize
(assuming that the attributes width and height are
always the same for a Circle) because clients expect
setSize to set both the width and height

 can't Circle override setSize so that it throws an
exception if width != height?

 no; this will surprise clients because Ellipse setSize
does not throw an exception if width != height

 can't Circle override setSize so that it sets
width == height?

 no; this will surprise clients because Ellipse setSize
says that the width and height can be different

 12

 But I have a Ph.D. in Mathematics, and I'm sure a
Circle is a kind of an Ellipse! Does this mean Marshall
Cline is stupid? Or that C++ is stupid? Or that OO is
stupid? [C++ FAQs http://www.parashift.com/c++-faq-lite/proper-inheritance.html#faq-21.8]

 Actually, it doesn't mean any of these things. But I'll tell you
what it does mean — you may not like what I'm about to
say: it means your intuitive notion of "kind of" is leading
you to make bad inheritance decisions. Your tummy is lying
to you about what good inheritance really means — stop
believing those lies.

13

http://www.parashift.com/c++-faq-lite/proper-inheritance.html
http://www.parashift.com/c++-faq-lite/proper-inheritance.html
http://www.parashift.com/c++-faq-lite/proper-inheritance.html
http://www.parashift.com/c++-faq-lite/proper-inheritance.html
http://www.parashift.com/c++-faq-lite/proper-inheritance.html
http://www.parashift.com/c++-faq-lite/proper-inheritance.html
http://www.parashift.com/c++-faq-lite/proper-inheritance.html
http://www.parashift.com/c++-faq-lite/proper-inheritance.html
http://www.parashift.com/c++-faq-lite/proper-inheritance.html

 what if there is no setSize method?

 if a Circle can do everything an Ellipse can do then
Circle can extend Ellipse

14

A Naïve Inheritance Example
 a stack is an important data structure in computer

science

 data structure: an organization of information for better
algorithm efficiency or conceptual unity

 e.g., list, set, map, array

 widely used in computer science and computer
engineering

 e.g., undo/redo can be implemented using two stacks

15

Stack

16

 examples of stacks

Top of Stack

17

 top of the stack

Stack Operations

18

 classically, stacks only support two operations

1. push

 add to the top of the stack

2. pop

 remove from the top of the stack

 there is no way to access elements of the stack except
at the top of the stack

Push
1. st.push("A")

2. st.push("B")

3. st.push("C")

4. st.push("D")

5. st.push("E")

19

"A"

"B"

"C"

"D"

"E"

top

top

top

top

top

Pop
1. String s = st.pop()

2. s = st.pop()

3. s = st.pop()

4. s = st.pop()

5. s = st.pop()

20

"A"

"B"

"C"

"D"

"E"

top

top

top

top

top

Implementing stack using inheritance
 a stack looks a lot like a list

 pushing an element onto the top of the stack looks like
adding an element to the end of a list

 popping an element from the top of a stack looks like
removing an element from the end of the list

 if we have stack inherit from list, our stack class
inherits the add and remove methods from list

 we don't have to implement them ourselves

 let's try making a stack of integers by inheriting from
ArrayList<Integer>

21

Implementing stack using inheritance
import java.util.ArrayList;

public class BadStack extends ArrayList<Integer> {

}

22

use the keyword extends
followed by the name of
the class that you want
to extend

Implementing stack using inheritance
import java.util.ArrayList;

public class BadStack extends ArrayList<Integer> {

 public void push(int value) {

 this.add(value);

 }

 public int pop() {

 int last = this.remove(this.size() - 1);

 return last;

 }

}

 23

push = add to end of this list

pop = remove from end of this list

Implementing stack using inheritance
 that's it, we’re done!

 public static void main(String[] args) {

 BadStack t = new BadStack();

 t.push(0);

 t.push(1);

 t.push(2);

 System.out.println(t);

 System.out.println("pop: " + t.pop());

 System.out.println("pop: " + t.pop());

 System.out.println("pop: " + t.pop());

 }

24

[0, 1, 2]
pop: 2
pop: 1
pop: 0

Implementing stack using inheritance
 why is this a poor implementation?

 by having BadStack inherit from
ArrayList<Integer> we are saying that a stack is a list

 anything a list can do, a stack can also do, such as:

 get a element from the middle of the stack (instead of only from the
top of the stack)

 set an element in the middle of the stack

 iterate over the elements of the stack

25

Implementing stack using inheritance

 public static void main(String[] args) {

 BadStack t = new BadStack();

 t.push(100);

 t.push(200);

 t.push(300);

 System.out.println("get(1)?: " + t.get(1));

 t.set(1, -1000);

 System.out.println("set(1, -1000)?: " + t);

 }

26

[100, 200, 300]
get(1)?: 200
set(1, -1000)?: [100, -1000, 300]

Implementing stack using inheritance
 using inheritance to implement a stack is an example

of an incorrect usage of inheritance

 inheritance should only be used when an is-a
relationship exists

 a stack is not a list, therefore, we should not use inheritance
to implement a stack

 even experts sometimes get this wrong

 early versions of the Java class library provided a stack class
that inherited from a list-like class

 java.util.Stack

27

