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Inheritance 
 you know a lot about an object by knowing its class 

 for example what is a Komondor? 
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http://en.wikipedia.org/wiki/File:Komondor_delvin.jpg 
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... Komondor BloodHound 

PureBreed Mix 

Dog 

Object 

Dog is-a Object 

PureBreed is-a Dog 

PureBreed is-a Object 

Komondor is-a PureBreed 

Komondor is-a Dog 

Komondor is-a Object 
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... Komondor BloodHound 

PureBreed Mix 

Dog 

Object 

subclass of Object 

superclass of PureBreed 

subclass of Dog 

superclass of Komondor 

superclass of Dog 

(and all other classes) 
superclass == 

  base class 

  parent class 

 

subclass == 

  derived class 

  extended class 

  child class 
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... Komondor BloodHound 

PureBreed Mix 

Dog 

Object 

Dog extends Object 

PureBreed extends Dog 

Komondor extends 

       PureBreed 



Some Definitions 
 we say that a subclass is derived from its superclass 

 with the exception of Object, every class in Java has 
one and only one superclass 

 Java only supports single inheritance  

 a class X can be derived from a class that is derived 
from a class, and so on, all the way back to Object  

 X is said to be descended from all of the classes in the 
inheritance chain going back to Object  

 all of the classes X is derived from are called ancestors of X  
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Why Inheritance? 
 a subclass inherits all of the non-private members 

(attributes and methods but not constructors) from 
its superclass 

 if there is an existing class that provides some of the 
functionality you need you can derive a new class from the 
existing class 

 the new class has direct access to the public and 
protected attributes and methods without having to re-
declare or re-implement them 

 the new class can introduce new fields and methods 

 the new class can re-define (override) its superclass 
methods 
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Is-A 
 inheritance models the is-a relationship between 

classes 

 from a Java point of view, is-a means you can use a 
derived class instance in place of an ancestor class 
instance 
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public someMethod(Dog dog) 

{ // does something with dog } 

 

// client code of someMethod 
 

Komondor shaggy = new Komondor(); 

someMethod( shaggy ); 
 

Mix mutt = new Mix (); 

someMethod( mutt ); 



Is-A Pitfalls 
 is-a has nothing to do with the real world 

 is-a has everything to do with how the implementer 
has modelled the inheritance hierarchy 

 the classic example: 
 Circle is-a Ellipse? 
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Circle 

Ellipse 



Circle is-a Ellipse? 
 if Ellipse can do something that Circle cannot, 

then Circle is-a Ellipse is false 

 remember: is-a means you can substitute a derived class 
instance for one of its ancestor instances 

 if Circle cannot do something that Ellipse can do then you 
cannot (safely) substitute a Circle instance for an Ellipse 
instance 
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// method in Ellipse 

/* 

 * Change the width and height of the ellipse. 

 * @param width The desired width. 

 * @param height The desired height. 

 * @pre. width > 0 && height > 0 

 */ 

public void setSize(double width, double height) 

{ 

  this.width = width; 

  this.height = height; 

} 
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 there is no good way for Circle to support setSize 
(assuming that the attributes width and height are 
always the same for a Circle) because clients expect 
setSize to set both the width and height 

 can't Circle override setSize so that it throws an 
exception if width != height? 

 no; this will surprise clients because Ellipse setSize 
does not throw an exception if width != height  

 can't Circle override setSize so that it sets  
width == height? 

 no; this will surprise clients because Ellipse setSize 
says that the width and height can be different 
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 But I have a Ph.D. in Mathematics, and I'm sure a 
Circle is a kind of an Ellipse! Does this mean Marshall 
Cline is stupid? Or that C++ is stupid? Or that OO is 
stupid? [C++ FAQs http://www.parashift.com/c++-faq-lite/proper-inheritance.html#faq-21.8 ] 

 Actually, it doesn't mean any of these things. But I'll tell you 
what it does mean — you may not like what I'm about to 
say: it means your intuitive notion of "kind of" is leading 
you to make bad inheritance decisions. Your tummy is lying 
to you about what good inheritance really means — stop 
believing those lies. 
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 what if there is no setSize method? 

 if a Circle can do everything an Ellipse can do then 
Circle can extend Ellipse  
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A Naïve Inheritance Example 
 a stack is an important data structure in computer 

science 

 data structure: an organization of information for better 
algorithm efficiency or conceptual unity 

 e.g., list, set, map, array 

 widely used in computer science and computer 
engineering 

 e.g., undo/redo can be implemented using two stacks 
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Stack 
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 examples of stacks 



Top of Stack 
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 top of the stack 



Stack Operations 
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 classically, stacks only support two operations 

1. push 

 add to the top of the stack 

2. pop 

 remove from the top of the stack 

 

 there is no way to access elements of the stack except 
at the top of the stack 

 



Push 
1.  st.push("A")  

2.  st.push("B")  

3.  st.push("C")  

4.  st.push("D")  

5.  st.push("E")  
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"A" 

"B" 

"C" 

"D" 

"E" 

top 

top 

top 

top 

top 



Pop 
1.  String s = st.pop()  

2.  s = st.pop()  

3.  s = st.pop()  

4.  s = st.pop()  

5.  s = st.pop()  
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"A" 

"B" 

"C" 

"D" 

"E" 

top 

top 

top 

top 

top 



Implementing stack using inheritance 
 a stack looks a lot like a list 

 pushing an element onto the top of the stack looks like 
adding an element to the end of a list 

 popping an element from the top of a stack looks like 
removing an element from the end of the list 

 

 if we have stack inherit from list, our stack class 
inherits the add and remove methods from list 

 we don't have to implement them ourselves 

 

 let's try making a stack of integers by inheriting from 
ArrayList<Integer>  
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Implementing stack using inheritance 
import java.util.ArrayList; 

 

public class BadStack extends ArrayList<Integer> { 

 

   

} 
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use the keyword extends 
followed by the name of 
the class that you want 
to extend 



Implementing stack using inheritance 
import java.util.ArrayList; 

 

public class BadStack extends ArrayList<Integer> { 

 

  public void push(int value) { 

    this.add(value); 

  } 

   

  public int pop() { 

    int last = this.remove(this.size() - 1); 

    return last; 

  } 

 

} 
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push = add to end of this list 

pop = remove from end of this list 



Implementing stack using inheritance 
 that's it, we’re done! 

 

 public static void main(String[] args) { 

    BadStack t = new BadStack(); 

    t.push(0); 

    t.push(1); 

    t.push(2); 

    System.out.println(t); 

    System.out.println("pop: " + t.pop()); 

    System.out.println("pop: " + t.pop()); 

    System.out.println("pop: " + t.pop()); 

  } 
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[0, 1, 2] 
pop: 2 
pop: 1 
pop: 0 



Implementing stack using inheritance 
 why is this a poor implementation? 

 by having BadStack inherit from 
ArrayList<Integer> we are saying that a stack is a list 

 anything a list can do, a stack can also do, such as: 

 get a element from the middle of the stack (instead of only from the 
top of the stack) 

 set an element in the middle of the stack 

 iterate over the elements of the stack 
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Implementing stack using inheritance 
 

 public static void main(String[] args) { 

    BadStack t = new BadStack();     

    t.push(100); 

    t.push(200); 

    t.push(300); 

    System.out.println("get(1)?: " + t.get(1)); 

    t.set(1, -1000); 

    System.out.println("set(1, -1000)?: " + t); 

  } 
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[100, 200, 300] 
get(1)?: 200 
set(1, -1000)?: [100, -1000, 300] 



Implementing stack using inheritance 
 using inheritance to implement a stack is an example 

of an incorrect usage of inheritance 

 inheritance should only be used when an is-a 
relationship exists 

 a stack is not a list, therefore, we should not use inheritance 
to implement a stack 

 even experts sometimes get this wrong 

 early versions of the Java class library provided a stack class 
that inherited from a list-like class 

 java.util.Stack  
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