
Composition

1

Composition
 recall that an object of type X that is composed of an

object of type Y means

 X has-a Y object and

 X owns the Y object

 in other words

2

the X object has exclusive access to its Y object

Composition

 this means that the X object will generally not share
references to its Y object with clients

 constructors will create new Y objects

 accessors will return references to new Y objects

 mutators will store references to new Y objects

 the “new Y objects” are called defensive copies

3

the X object has exclusive access to its Y object

Composition & the Default Constructor

 if a default constructor is defined it must create a
suitable Y object

 public X()

 {

 // create a suitable Y; for example

 this.y = new Y(/* suitable arguments */);

 }

4

defensive copy

the X object has exclusive access to its Y object

Test Your Knowledge
1. Re-implement Triangle so that it is a composition of

3 points. Start by adding a default constructor to
Triangle that creates 3 new Point objects with
suitable values.

5

Composition & Copy Constructor

 if a copy constructor is defined it must create a new Y
that is a deep copy of the other X object’s Y object

 public X(X other)

 {

 // create a new Y that is a copy of other.y

 this.y = new Y(other.getY());

 }

6

defensive copy

the X object has exclusive access to its Y object

Composition & Copy Constructor
 what happens if the X copy constructor does not make

a deep copy of the other X object’s Y object?

 // don’t do this

 public X(X other)

 {

 this.y = other.y;

 }

 every X object created with the copy constructor ends up
sharing its Y object

 if one X modifies its Y object, all X objects will end up with a
modified Y object

 this is called a privacy leak

7

Test Your Knowledge
1. Suppose Y is an immutable type. Does the X copy

constructor need to create a new Y? Why or why not?

2. Implement the Triangle copy constructor.

8

9

3. Suppose you have a Triangle copy constructor and
main method like so:

 public Triangle(Triangle t)

 { this.pA = t.pA; this.pB = t.pB; this.pC = t.pC; }

 public static void main(String[] args) {

 Triangle t1 = new Triangle();

 Triangle t2 = new Triangle(t1);

 t1.getA().set(-100.0, -100.0, 5.0);

 System.out.println(t2.getA());

 }

 What does the program print? How many Point
objects are there in memory? How many Point
objects should be in memory?

Composition & Other Constructors

 a constructor that has a Y parameter must first deep
copy and then validate the Y object

 public X(Y y)

 {

 // create a copy of y

 Y copyY = new Y(y);

 // validate; will throw an exception if copyY is invalid

 this.checkY(copyY);

 this.y = copyY;

 }

10

defensive copy

the X object has exclusive access to its Y object

Composition and Other Constructors
 why is the deep copy required?

 if the constructor does this

 // don’t do this for composition

 public X(Y y) {

 this.y = y;

 }

 then the client and the X object will share the same Y object

 this is called a privacy leak

11

the X object has exclusive access to its Y object

Test Your Knowledge
1. Suppose Y is an immutable type. Does the X

constructor need to copy the other X object’s Y
object? Why or why not?

2. Implement the following Triangle constructor:
 /**

 * Create a Triangle from 3 points

 * @param p1 The first point.

 * @param p2 The second point.

 * @param p3 The third point.

 * @throws IllegalArgumentException if the 3 points are

 * not unique

 */

12

Triangle has a class
invariant: the 3 points
of a Triangle are unique

Composition and Accessors

 never return a reference to a field; always return a deep
copy

 public Y getY()

 {

 return new Y(this.y);

 }

13

defensive copy

the X object has exclusive access to its Y object

Composition and Accessors
 why is the deep copy required?

 if the accessor does this

 // don’t do this for composition

 public Y getY() {

 return this.y;

 }

 then the client and the X object will share the same Y object

 this is called a privacy leak

14

the X object has exclusive access to its Y object

Test Your Knowledge
1. Suppose Y is an immutable type. Does the X accessor

need to copy it’s Y object before returning it? Why
or why not?

2. Implement the following 3 Triangle accessors:
 /**

 * Get the first/second/third point of the triangle.

 * @return The first/second/third point of the triangle

 */

15

Test Your Knowledge
3. Given your Triangle accessors from question 2,

can you write an improved Triangle copy
constructor that does not make copies of the point
attributes?

16

Composition and Mutators

 if X has a method that sets its Y object to a client-
provided Y object then the method must make a deep
copy of the client-provided Y object and validate it

 public void setY(Y y)

 {

 Y copyY = new Y(y);

 // validate; will throw an exception if copyY is invalid

 this.checkY(copyY);

 this.y = copyY;

 }

17

defensive copy

the X object has exclusive access to its Y object

Composition and Mutators
 why is the deep copy required?

 if the mutator does this

 // don’t do this for composition

 public void setY(Y y) {

 this.y = y;

 }

 then the client and the X object will share the same Y object

 this is called a privacy leak

18

the X object has exclusive access to its Y object

Test Your Knowledge
1. Suppose Y is an immutable type. Does the X mutator

need to copy the Y object? Why or why not? Does it
need to the validate the Y object?

2. Implement the following 3 Triangle mutators:
 /**

 * Set the first/second/third point of the triangle.

 * @param p The desired first/second/third point of

 * the triangle.

 * @return true if the point could be set;

 * false otherwise

 */

19

Triangle has a class
invariant: the 3 points
of a Triangle are unique

Price of Defensive Copying
 defensive copies are often required, but the price of

defensive copying is time and memory needed to
create and garbage collect defensive copies of objects

 recall the triangle demo from the previous lecture

 a triangle was an aggregation of three points

 because it was an aggregation, the client could change the
location of a point without asking the triangle

20

Price of Defensive Copying
 if triangle is composed of three points, there is no way

for the client to directly change the location of a point

 to change the location of a point, the client must
either:

A.

i. ask the triangle for the point (1 defensive copy)

ii. change the location of the point

iii. ask the triangle to change its point (1 defensive copy)

B.

i. keep an independent copy of the point

ii. change the location of the copy

iii. ask the triangle to change its point (1 defensive copy)

21

22

 pointB = new Point(0.0, 1.0, -3.0);

 tri = new Triangle(new Point(-1.0, -1.0, -3.0),

 pointB,

 new Point(2.0, 0.0, -3.0));

 // Draw triangle

 gl.glBegin(GL2.GL_TRIANGLES);

 gl.glColor3f(0.0f, 1.0f, 1.0f); // set the color

 gl.glVertex3d(tri.getA().getX(),

 tri.getA().getY(),

 tri.getA().getZ());

 gl.glVertex3d(tri.getB().getX(),

 tri.getB().getY(),

 tri.getB().getZ());

 gl.glVertex3d(tri.getC().getX(),

 tri.getC().getY(),

 tri.getC().getZ());

 gl.glEnd();

 // the client moves its point, then asks the triangle to change

 delta += 0.05f;

 pointB.setY(1.0 + Math.sin(delta));

 tri.setB(pointB);

triangle makes
defensive copies of
all three points

draw the triangle
by asking tri for
the coordinates
of each of its points

triangle makes
defensive copy

Price of Defensive Copying
 run triangle demo using composition here

 that's a lot of points being created!

23

