
A Singleton Puzzle: What is Printed?

1

public class Elvis {

 public static final Elvis INSTANCE = new Elvis();

 private final int beltSize;

 private static final int CURRENT_YEAR =

 Calendar.getInstance().get(Calendar.YEAR);

 private Elvis() { this.beltSize = CURRENT_YEAR – 1930; }

 public int getBeltSize() { return this.beltSize; }

 public static void main(String[] args) {

 System.out.println("Elvis has a belt size of " +

 INSTANCE.getBeltSize());

 }

}

from Java Puzzlers by Joshua Bloch and Neal Gafter

A Singleton Puzzle: Solution
 Elvis has a belt size of -1930 is printed

 to solve the puzzle you need to know how Java
initializes classes (JLS 12.4)

 the call to main() triggers initialization of the Elvis
class (because main() belongs to the class Elvis)

 the static attributes INSTANCE and CURRENT_YEAR are
first given default values (null and 0, respectively)

 then the attributes are initialized in order of
appearance

2

1. public static final Elvis INSTANCE = new Elvis();

2. this.beltSize = CURRENT_YEAR – 1930;

3. private static final int CURRENT_YEAR =

 Calendar.getInstance().get(Calendar.YEAR);

• the problem occurs because initializing INSTANCE
requires a valid CURRENT_YEAR

• solution: move CURRENT_YEAR before INSTANCE

3

CURRENT_YEAR == 0

at this point

Aggregation and Composition

[notes Chapter 4]

4

Aggregation and Composition

 the terms aggregation and composition are used to
describe a relationship between objects

 both terms describe the has-a relationship
 the university has-a collection of departments

 each department has-a collection of professors

5

Aggregation and Composition

 composition implies ownership
 if the university disappears then all of its departments disappear

 a university is a composition of departments

 aggregation does not imply ownership
 if a department disappears then the professors do not disappear

 a department is an aggregation of professors

6

Aggregation
 suppose a Person has a name and a date of birth

public class Person {

 private String name;

 private Date birthDate;

 public Person(String name, Date birthDate) {

 this.name = name;

 this.birthDate = birthDate;

 }

 public Date getBirthDate() {

 return birthDate;

 }

}

7

 the Person example uses aggregation

 notice that the constructor does not make a new copy of the
name and birth date objects passed to it

 the name and birth date objects are shared with the client

 both the client and the Person instance are holding
references to the same name and birth date

8

// client code somewhere

String s = "Billy Bob";

Date d = new Date(91, 2, 26); // March 26, 1991

Person p = new Person(s, d);

9

64 client

s 250

d 350

p 450

...

250 String object

...

...

350 Date object

...

...

450 Person object

name 250

birthDate 350

 what happens when the client modifies the Date
instance?

 prints Fri Nov 03 00:00:00 EST 1995

10

// client code somewhere

String s = "Billy Bob";

Date d = new Date(90, 2, 26); // March 26, 1990

Person p = new Person(s, d);

d.setYear(95); // November 3, 1995

d.setMonth(10);

d.setDate(3);

System.out.println(p.getBirthDate());

 because the Date instance is shared by the client and
the Person instance:

 the client can modify the date using d and the Person
instance p sees a modified birthDate

 the Person instance p can modify the date using birthDate
and the client sees a modified date d

11

 note that even though the String instance is shared
by the client and the Person instance p, neither the
client nor p can modify the String

 immutable objects make great building blocks for other
objects

 they can be shared freely without worrying about their state

12

UML Class Diagram for Aggregation

13

Person String Date

1 1

number of Date
objects each Person has

number of String
objects each Person has

open diamonds
indicate aggregation

Another Aggregation Example
 3D videogames use models that are a three-

dimensional representations of geometric data

 the models may be represented by:

 three-dimensional points (particle systems)

 simple polygons (triangles, quadrilaterals)

 smooth, continuous surfaces (splines, parametric surfaces)

 an algorithm (procedural models)

 rendering the objects to the screen usually results in
drawing triangles

 graphics cards have specialized hardware that does this very
fast

14

15

16

Aggregation Example
 a Triangle has 3 three-dimensional Points

17

A

B C

Aggregation Example

18

Triangle Point
3

Triangle

+ Triangle(Point, Point, Point)

+ getA() : Point

+ getB() : Point

+ getC() : Point

+ setA(Point) : void

+ setB(Point) : void

+ setC(Point) : void

Point

+ Point(double, double, double)

+ getX() : double

+ getY() : double

+ getZ() : double

+ setX(double) : void

+ setY(double) : void

+ setZ(double) : void

Triangle
// attributes and constructor

public class Triangle {

 private Point pA;

 private Point pB;

 private Point pC;

 public Triangle(Point c, Point b, Point c) {

 this.pA = a;

 this.pB = b;

 this.pC = c;

 }

19

3 fields to represent the 3 points

constructor sets the 3 fields to
refer to the client provided points

Triangle
 // accessors

 public Point getA() {

 return this.pA;

 }

 public Point getB() {

 return this.pB;

 }

 public Point getC() {

 return this.pC;

 }

20

Triangle
 // mutators

 public void setA(Point p) {

 this.pA = p;

 }

 public void setB(Point p) {

 this.pB = p;

 }

 public void setC(Point p) {

 this.pC = p;

 }

}

21

Triangle Aggregation
 implementing Triangle is very easy

 fields (3 Point references)

 are references to existing objects provided by the client

 accessors
 give clients a reference to the aggregated Points

 mutators
 set attributes to existing Points provided by the client

 we say that the Triangle attributes are aliases

22

 // client code

 Point a = new Point(-1.0, -1.0, -3.0);

 Point b = new Point(0.0, 1.0, -3.0);

 Point c = new Point(2.0, 0.0, -3.0);

 Triangle tri = new Triangle(a, b, c);

23

24

64 client

a 250

b 350

c 450

tri 550

250 Point object

x -1.0

y -1.0

z -3.0

350 Point object

x 0.0

y 1.0

z -3.0

450 Point object

x 2.0

y 0.0

z -3.0

550 Triangle object

pA 250

pB 350

pC 450

 // client code

 Point a = new Point(-1.0, -1.0, -3.0);

 Point b = new Point(0.0, 1.0, -3.0);

 Point c = new Point(2.0, 0.0, -3.0);

 Triangle tri = new Triangle(a, b, c);

 Point d = tri.getA();

 boolean sameObj = a == d;

25

client asks the triangle for one
of the triangle points and checks
if the point is the same object
that was used to create the triangle

26

64 client

a 250

b 350

c 450

tri 550

d 250

sameObj true

250 Point object

x -1.0

y -1.0

z -3.0

350 Point object

x 0.0

y 1.0

z -3.0

450 Point object

x 2.0

y 0.0

z -3.0

550 Triangle object

pA 250

pB 350

pC 450

 // client code

 Point a = new Point(-1.0, -1.0, -3.0);

 Point b = new Point(0.0, 1.0, -3.0);

 Point c = new Point(2.0, 0.0, -3.0);

 Triangle tri = new Triangle(a, b, c);

 Point d = tri.getA();

 boolean sameObj = a == d;

 tri.setC(d);

27

client asks the triangle to set
one point of the triangle to d

28

64 client

a 250

b 350

c 450

tri 550

d 250

sameObj true

250 Point object

x -1.0

y -1.0

z -3.0

350 Point object

x 0.0

y 1.0

z -3.0

450 Point object

x 2.0

y 0.0

z -3.0

550 Triangle object

pA 250

pB 350

pC 250

 // client code

 Point a = new Point(-1.0, -1.0, -3.0);

 Point b = new Point(0.0, 1.0, -3.0);

 Point c = new Point(2.0, 0.0, -3.0);

 Triangle tri = new Triangle(a, b, c);

 Point d = tri.getA();

 boolean sameObj = a == d;

 tri.setC(d);

 b.setX(0.5);

 b.setY(6.0);

 b.setZ(2.0);

29

client changes the coordinates of
one of the points (without asking
the triangle for the point first)

30

64 client

a 250

b 350

c 450

tri 550

d 250

sameObj true

250 Point object

x -1.0

y -1.0

z -3.0

350 Point object

x 0.5

y 6.0

z 2.0

450 Point object

x 2.0

y 0.0

z -3.0

550 Triangle object

pA 250

pB 350

pC 250

Triangle Aggregation
 if a client gets a reference to one of the triangle's

points, then the client can change the position of the
point without asking the triangle

 run demo program in class here

31

32

 pointB = new Point(0.0, 1.0, -3.0);

 tri = new Triangle(new Point(-1.0, -1.0, -3.0),

 pointB,

 new Point(2.0, 0.0, -3.0));

 // Draw triangle

 gl.glBegin(GL2.GL_TRIANGLES);

 gl.glColor3f(0.0f, 1.0f, 1.0f); // set the color

 gl.glVertex3d(tri.getA().getX(),

 tri.getA().getY(),

 tri.getA().getZ());

 gl.glVertex3d(tri.getB().getX(),

 tri.getB().getY(),

 tri.getB().getZ());

 gl.glVertex3d(tri.getC().getX(),

 tri.getC().getY(),

 tri.getC().getZ());

 gl.glEnd();

 // the client moves a point without help from the triangle

 delta += 0.05f;

 pointB.setY(1.0 + Math.sin(delta));

client and triangle
share a reference to
pointB

draw the triangle
by asking tri for
the coordinates
of each of its points

client uses pointB
to change the point
coordinates

