
Singleton vs utility class
 at first glance, the singleton pattern does not seem to

offer any advantages to using a utility class

 i.e., a utility class with non-final static fields looks a lot like
a single object with non-static fields

 there is a fundamental difference between a singleton
and a utility class:

 a singleton represents an object whereas a utility is a class

1

Singleton vs utility class
 suppose that you want your singleton/utility class to

implement an interface

 up to and including Java 7, a utility class could not
implement an interface

 a singleton can freely implement interfaces

 Java 8 now allows static methods in interfaces

 a utility class can now implement an interface that has all
static methods

 but a utility class still cannot implement an interface having non-
static methods (such as Iterable)

2

Singleton vs utility class
 suppose that you decide later on that you need

multiple instances rather than a singleton/utility class

 a utility class cannot be used to create objects of the utility
class type

 a singleton can be converted to a non-singleton

3

Singleton vs utility class
 can you create a method that has a parameter whose

type is a utility class?

 no, a parameter is a variable that stores a reference to an
object and there are no utility class objects

 can you create a method that has a parameter whose
type is a singleton?

 yes, a parameter is a variable that stores a reference to an
object and there is one singleton object

4

Immutable classes

5

Immutable Classes

6

 String is an example of an immutable class

 a class defines an immutable type if an instance of the
class cannot be modified after it is created

 each instance has its own constant state

 other Java examples: Integer (and all of the other primitive
wrapper classes)

 advantages of immutability versus mutability

 easier to design, implement, and use

 can never be put into an inconsistent state after creation

North American Phone Numbers
 North American Numbering Plan is the standard used

in Canada and the USA for telephone numbers

 telephone numbers look like

416-736-2100

7

area
code

exchange
code

station
code

Designing a Simple Immutable Class

8

 PhoneNumber API

PhoneNumber

- areaCode : int

- exchangeCode : int

- stationCode : int

+ PhoneNumber(int, int, int)

+ equals(Object) : boolean

+ getAreaCode() : int

+ getExchangeCode() : int

+ getStationCode() : int

+ hashCode() : int

+ toString() : String

none of these
features are static;
there are no
mutator methods

Recipe for Immutability
 the recipe for immutability in Java is described by

Joshua Bloch in the book Effective Java*

1. Do not provide any methods that can alter the state
of the object

2. Prevent the class from being extended

3. Make all fields final

4. Make all fields private

5. Prevent clients from obtaining a reference to any
mutable fields

9 *highly recommended reading if you plan on becoming a Java programmer

revisit when we talk
about inheritance

revisit when we talk
about composition

10

public final class PhoneNumber {

 private final int areaCode;

 private final int exchangeCode;

 private final int stationCode;

 public PhoneNumber(int areaCode,

 int exchangeCode, int stationCode) {

 this.areaCode = areaCode;

 this.exchangeCode = exchangeCode;

 this.stationCode = stationCode;

 }

11

 public int getAreaCode() {

 return this.areaCode;

 }

 public int getExchangeCode() {

 return this.exchangeCode;

 }

 public int getStationCode() {

 return this.stationCode;

 }

12

 @Override

 public boolean equals(Object obj) {

 if (this == obj) {

 return true;

 }

 if (obj == null) {

 return false;

 }

 if (this.getClass() != obj.getClass()) {

 return false;

 }

 PhoneNumber other = (PhoneNumber) obj;

 if (this.areaCode != other.areaCode ||

 this.exchangeCode != other.exchangeCode ||

 this.stationCode != other.stationCode) {

 return false;

 }

 return true;

 }

Mixing Static and Non-static

Multiton

13

Goals for Today

14

 Multiton

 review maps

 static factory methods

Singleton UML Class Diagram

15

Singleton

- INSTANCE : Singleton

...

- Singleton()

+ getInstance() : Singleton

...

One Instance per State

16

 the Java language specification guarantees that
identical String literals are not duplicated

 prints: same object? true

 the compiler ensures that identical String literals all
refer to the same object

 a single instance per unique state

// client code somewhere

String s1 = "xyz";

String s2 = "xyz";

// how many String instances are there?

System.out.println("same object? " + (s1 == s2));

[notes 4.5]

Multiton

17

 a singleton class manages a single instance of the class

 a multiton class manages multiple instances of the
class

 what do you need to manage multiple instances?

 a collection of some sort

 how does the client request an instance with a
particular state?

 it needs to pass the desired state as arguments to a method

Singleton vs Multiton UML Diagram

18

Singleton

- INSTANCE : Singleton

...

- Singleton()

+ getInstance() : Singleton

...

Multiton

- instances : Map

...

- Multiton()

+ getInstance(Object) : Multiton

...

Singleton vs Multiton

19

 Singleton

 one instance

private static final Santa INSTANCE = new Santa();

 zero-parameter accessor

public static Santa getInstance()

Singleton vs Multiton

20

 Multiton

 multiple instances (each with unique state)

private static final Map<String, PhoneNumber>

 instances = new TreeMap<String, PhoneNumber>();

 accessor needs to provide state information

public static PhoneNumber getInstance(int areaCode,

 int exchangeCode,

 int stationCode)

Map

21

 a map stores key-value pairs

Map<String, PhoneNumber>

 values are put into the map using the key

key type value type

// client code somewhere

Map<String, PhoneNumber> m =

 new TreeMap<String, PhoneNumber>;

PhoneNumber ago = new PhoneNumber(416, 979, 6648);

String key = "4169796648"

m.put(key, ago);

[AJ 16.2]

Mutable Keys

22

 from
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html

 Note: great care must be exercised if mutable objects are
used as map keys. The behavior of a map is not specified if
the value of an object is changed in a manner that affects
equals comparisons while the object is a key in the map.

http://docs.oracle.com/javase/7/docs/api/java/util/Map.html

23

public class MutableKey

{

 public static void main(String[] args)

 {

 Map<Date, String> m = new TreeMap<Date, String>();

 Date d1 = new Date(100, 0, 1);

 Date d2 = new Date(100, 0, 2);

 Date d3 = new Date(100, 0, 3);

 m.put(d1, "Jan 1, 2000");

 m.put(d2, "Jan 2, 2000");

 m.put(d3, "Jan 3, 2000");

 d2.setYear(101); // mutator

 System.out.println("d1 " + m.get(d1)); // d1 Jan 1, 2000

 System.out.println("d2 " + m.get(d2)); // d2 Jan 2, 2000

 System.out.println("d3 " + m.get(d3)); // d3 null

 }

}
change TreeMap to HashMap and see what happens

don't mutate keys;
bad things will happen

Making PhoneNumber a Multiton

24

1. multiple instances (each with unique state)

 private static final Map<String, PhoneNumber>

 instances = new TreeMap<String, PhoneNumber>();

2. accessor needs to provide state information

public static PhoneNumber getInstance(int areaCode,

 int exchangeCode,

 int stationCode)

 getInstance() will get an instance from instances if the
instance is in the map; otherwise, it will create the new
instance and put it in the map

Making PhoneNumber a Multiton

25

3. require private constructors

 to prevent clients from creating instances on their own

 clients should use getInstance()

4. require immutability of PhoneNumbers

 to prevent clients from modifying state, thus making the
keys inconsistent with the PhoneNumbers stored in the map

 recall the recipe for immutability...

26

public class PhoneNumber

{

 private static final Map<String, PhoneNumber> instances =

 new TreeMap<String, PhoneNumber>();

 private final short areaCode;

 private final short exchangeCode;

 private final short stationCode;

 private PhoneNumber(int areaCode,

 int exchangeCode,

 int stationCode)

 { // validate and set the

 // areaCode, exchangeCode, and stationCode

 }

27

 public static PhoneNumber getInstance(int areaCode,

 int exchangeCode,

 int stationCode)

 {

 String key = "" + areaCode + exchangeCode + stationCode;

 PhoneNumber n = PhoneNumber.instances.get(key);

 if (n == null)

 {

 n = new PhoneNumber(areaCode, exchangeCode, stationCode);

 PhoneNumber.instances.put(key, n);

 }

 return n;

 }

 // remainder of PhoneNumber class ...

why is validation not needed?

28

public class PhoneNumberClient {

 public static void main(String[] args)

 {

 PhoneNumber x = PhoneNumber.getInstance(416, 736, 2100);

 PhoneNumber y = PhoneNumber.getInstance(416, 736, 2100);

 PhoneNumber z = PhoneNumber.getInstance(905, 867, 5309);

 System.out.println("x equals y: " + x.equals(y) +

 " and x == y: " + (x == y));

 System.out.println("x equals z: " + x.equals(z) +

 " and x == z: " + (x == z));

 }

}

x equals y: true and x == y: true

x equals z: false and x == z: false

A Singleton Puzzle: What is Printed?

29

public class Elvis {

 public static final Elvis INSTANCE = new Elvis();

 private final int beltSize;

 private static final int CURRENT_YEAR =

 Calendar.getInstance().get(Calendar.YEAR);

 private Elvis() { this.beltSize = CURRENT_YEAR – 1930; }

 public int getBeltSize() { return this.beltSize; }

 public static void main(String[] args) {

 System.out.println("Elvis has a belt size of " +

 INSTANCE.getBeltSize());

 }

}

from Java Puzzlers by Joshua Bloch and Neal Gafter

