
Mixing Static and Non-Static

1

static Fields

2

 a field that is static is a per-class member

 only one copy of the field, and the field is associated with
the class

 every object created from a class declaring a static field shares the
same copy of the field

 static fields are used when you really want only one
common instance of the field for the class

 less common than non-static fields

Example

3

 a textbook example of a static field is a counter that
counts the number of created instances of your class

// adapted from Oracle's Java Tutorial

public class Bicycle {

 // some other fields here...

 private static int numberOfBicycles = 0;

 public Bicycle() {

 // set some non-static fields here...

 Bicycle.numberOfBicycles++;

 }

 public static int getNumberOfBicyclesCreated() {

 return Bicycle.numberOfBicycles;

 }

}

note: not
this.numberOfBicycles++

[notes 4.3]

4

 another common example is to count the number of
times a method has been called

public class X {

 private static int numTimesXCalled = 0;

 private static int numTimesYCalled = 0;

 public void xMethod() {

 // do something... and then update counter

 ++X.numTimesXCalled;

 }

 public void yMethod() {

 // do something... and then update counter

 ++X.numTimesYCalled;

 }

}

Mixing Static and Non-static Fields

5

 a class can declare static (per class) and non-static (per
instance) fields

 a common textbook example is giving each instance a
unique serial number

 the serial number belongs to the instance

 therefore it must be a non-static field

public class Bicycle {

 // some attributes here...

 private static int numberOfBicycles = 0;

 private int serialNumber;

 // ...

[notes 4.3.2]

6

 how do you assign each instance a unique serial
number?

 the instance cannot give itself a unique serial number
because it would need to know all the currently used serial
numbers

 could require that the client provide a serial number
using the constructor

 instance has no guarantee that the client has provided a
valid (unique) serial number

7

 the class can provide unique serial numbers using
static fields

 e.g. using the number of instances created as a serial
number

public class Bicycle {

 // some attributes here...

 private static int numberOfBicycles = 0;

 private int serialNumber;

 public Bicycle() {

 // set some attributes here...

 this.serialNumber = Bicycle.numberOfBicycles;

 Bicycle.numberOfBicycles++;

 }

}

8

 a more sophisticated implementation might use an
object to generate serial numbers

public class Bicycle {

 // some attributes here...

 private static int numberOfBicycles = 0;

 private static final

 SerialGenerator serialSource = new SerialGenerator();

 private int serialNumber;

 public Bicycle() {

 // set some attributes here...

 this.serialNumber = Bicycle.serialSource.getNext();

 Bicycle.numberOfBicycles++;

 }

}

Static Methods

9

 recall that a static method is a per-class method

 client does not need an object to invoke the method

 client uses the class name to access the method

 a static method can only use static fields of the
class

 static methods have no this parameter because a static
method can be invoked without an object

 without a this parameter, there is no way to access non-
static fields

 non-static methods can use all of the fields of a class
(including static ones)

10

public class Bicycle {

 // some attributes, constructors, methods here...

 public static int getNumberCreated()

 {

 return Bicycle.numberOfBicycles;

 }

 public int getSerialNumber()

 {

 return this.serialNumber;

 }

 public void setNewSerialNumber()

 {

 this.serialNumber = Bicycle.serialSource.getNext();

 }

}

static method
can only use

static attributes

non-static method
can use

non-static attributes

and static attributes

Static factory methods
 a common use of static methods is to create a static

factory method

 a static factory method is a static method that returns an
instance of the class

 you can use a static factory method to create methods
that behave like constructors

 they create and return a new instance

 unlike a constructor, the method has a name

11

Static factory methods
 recall our complex number class

 suppose that you want to provide a constructor that
constructs a complex number given only the real part of the
number

 the imaginary part is zero

12

13

public class Complex {

 private double real;

 private double imag;

 public Complex(double real, double imag) {

 this.real = real;

 this.imag = imag;

 }

 public Complex(double real) {

 this(real, 0);

 }

Static factory methods
 suppose that you also want to provide a constructor

that constructs a complex number given only the
imaginary part of the number

 the real part is zero

 if you try to add such a constructor you encounter a
problem...

14

15

public class Complex {

 private double real;

 private double imag;

 public Complex(double real, double imag) {

 this.real = real;

 this.imag = imag;

 }

 public Complex(double real) {

 this(real, 0);

 }

 public Complex(double imag) {

 this(0, imag);

 }

Illegal overload; both
constructors have the same
signature.

Static factory methods
 we can eliminate the problem by replacing both

constructors with named static factory methods

16

17

public class Complex {

 private double real;

 private double imag;

 public Complex(double real, double imag) {

 this.real = real;

 this.imag = imag;

 }

 public static Complex pureReal(double real) {

 return new Complex(real, 0);

 }

 public static Complex pureImag(double imag) {

 return new Complex(0, imag);

 }

Singleton pattern

18

Singleton Pattern

19

 “There can be only one.”
 Connor MacLeod, Highlander

Singleton Pattern

20

 a singleton is a class that is instantiated exactly once

 singleton is a well-known design pattern that can be
used when you need to:

1. ensure that there is one, and only one*, instance of a class,
and

2. provide a global point of access to the instance

 any client that imports the package containing the singleton
class can access the instance

[notes 4.4] *or possibly zero

One and Only One

21

 how do you enforce this?

 need to prevent clients from creating instances of the
singleton class

 private constructors

 the singleton class should create the one instance of itself

 note that the singleton class is allowed to call its own private
constructors

 need a static attribute to hold the instance

A Silly Example: Version 1

22

package xmas;

public class Santa

{

 // whatever fields you want for santa...

 public static final Santa INSTANCE = new Santa();

 private Santa()

 { // initialize non-static fields here... }

}

uses a public field that
all clients can access

UML Class Diagram (Version 1)

23

Singleton

+ INSTANCE : Singleton

...

- Singleton()

...

public instance

24

import xmas;

// client code in a method somewhere ...

public void gimme()

{

 Santa.INSTANCE.givePresent();

}

A Silly Example: Version 2

25

package xmas;

public class Santa

{

 // whatever fields you want for santa...

 private static final Santa INSTANCE = new Santa();

 private Santa()

 { // initialize attributes here... }

}

uses a private field; how
do clients access the field?

UML Class Diagram (Version 2)

26

Singleton

- INSTANCE : Singleton

...

- Singleton()

+ getInstance() : Singleton

...

private instance

public method to get the instance

Global Access

27

 how do clients access the singleton instance?

 by using a static method

 note that clients only need to import the package
containing the singleton class to get access to the
singleton instance

 any client method can use the singleton instance without
mentioning the singleton in the parameter list

A Silly Example (cont)

28

package xmas;

public class Santa {

 private int numPresents;

 private static final Santa INSTANCE = new Santa();

 private Santa()

 { // initialize fields here... }

 public static Santa getInstance()

 { return Santa.INSTANCE; }

 public Present givePresent() {

 Present p = new Present();

 this.numPresents--;

 return p;

 }

}

uses a private field; how
do clients access the field?

clients use a public
static factory method

29

import xmas;

// client code in a method somewhere ...

public void gimme()

{

 Santa.getInstance().givePresent();

}

Applications
 singletons should be uncommon

 typically used to represent a system component that is
intrinsically unique

 window manager

 file system

 logging system

30

Logging

31

 when developing a software program it is often useful
to log information about the runtime state of your
program
 similar to flight data recorder in an airplane

 a good log can help you find out what went wrong in your
program

 problem: your program may have many classes, each of
which needs to know where the single logging object is
 global point of access to a single object == singleton

 Java logging API is more sophisticated than this
 but it still uses a singleton to manage logging

 java.util.logging.LogManager

http://docs.oracle.com/javase/7/docs/api/java/util/logging/LogManager.html

Lazy Instantiation

32

 notice that the previous singleton implementation
always creates the singleton instance whenever the
class is loaded

 if no client uses the instance then it was created needlessly

 it is possible to delay creation of the singleton instance
until it is needed by using lazy instantiation

 only works for version 2

Lazy Instantiation as per Notes

33

public class Santa {

 private static Santa INSTANCE = null;

 private Santa()

 { // ... }

 public static Santa getInstance()

 {

 if (Santa.INSTANCE == null) {

 Santa.INSTANCE = new Santa();

 }

 return Santa.INSTANCE;

 }

}

