
Mixing Static and Non-Static

1

static Fields

2

 a field that is static is a per-class member

 only one copy of the field, and the field is associated with
the class

 every object created from a class declaring a static field shares the
same copy of the field

 static fields are used when you really want only one
common instance of the field for the class

 less common than non-static fields

Example

3

 a textbook example of a static field is a counter that
counts the number of created instances of your class

// adapted from Oracle's Java Tutorial

public class Bicycle {

 // some other fields here...

 private static int numberOfBicycles = 0;

 public Bicycle() {

 // set some non-static fields here...

 Bicycle.numberOfBicycles++;

 }

 public static int getNumberOfBicyclesCreated() {

 return Bicycle.numberOfBicycles;

 }

}

note: not
this.numberOfBicycles++

[notes 4.3]

4

 another common example is to count the number of
times a method has been called

public class X {

 private static int numTimesXCalled = 0;

 private static int numTimesYCalled = 0;

 public void xMethod() {

 // do something... and then update counter

 ++X.numTimesXCalled;

 }

 public void yMethod() {

 // do something... and then update counter

 ++X.numTimesYCalled;

 }

}

Mixing Static and Non-static Fields

5

 a class can declare static (per class) and non-static (per
instance) fields

 a common textbook example is giving each instance a
unique serial number

 the serial number belongs to the instance

 therefore it must be a non-static field

public class Bicycle {

 // some attributes here...

 private static int numberOfBicycles = 0;

 private int serialNumber;

 // ...

[notes 4.3.2]

6

 how do you assign each instance a unique serial
number?

 the instance cannot give itself a unique serial number
because it would need to know all the currently used serial
numbers

 could require that the client provide a serial number
using the constructor

 instance has no guarantee that the client has provided a
valid (unique) serial number

7

 the class can provide unique serial numbers using
static fields

 e.g. using the number of instances created as a serial
number

public class Bicycle {

 // some attributes here...

 private static int numberOfBicycles = 0;

 private int serialNumber;

 public Bicycle() {

 // set some attributes here...

 this.serialNumber = Bicycle.numberOfBicycles;

 Bicycle.numberOfBicycles++;

 }

}

8

 a more sophisticated implementation might use an
object to generate serial numbers

public class Bicycle {

 // some attributes here...

 private static int numberOfBicycles = 0;

 private static final

 SerialGenerator serialSource = new SerialGenerator();

 private int serialNumber;

 public Bicycle() {

 // set some attributes here...

 this.serialNumber = Bicycle.serialSource.getNext();

 Bicycle.numberOfBicycles++;

 }

}

Static Methods

9

 recall that a static method is a per-class method

 client does not need an object to invoke the method

 client uses the class name to access the method

 a static method can only use static fields of the
class

 static methods have no this parameter because a static
method can be invoked without an object

 without a this parameter, there is no way to access non-
static fields

 non-static methods can use all of the fields of a class
(including static ones)

10

public class Bicycle {

 // some attributes, constructors, methods here...

 public static int getNumberCreated()

 {

 return Bicycle.numberOfBicycles;

 }

 public int getSerialNumber()

 {

 return this.serialNumber;

 }

 public void setNewSerialNumber()

 {

 this.serialNumber = Bicycle.serialSource.getNext();

 }

}

static method
can only use

static attributes

non-static method
can use

non-static attributes

and static attributes

Static factory methods
 a common use of static methods is to create a static

factory method

 a static factory method is a static method that returns an
instance of the class

 you can use a static factory method to create methods
that behave like constructors

 they create and return a new instance

 unlike a constructor, the method has a name

11

Static factory methods
 recall our complex number class

 suppose that you want to provide a constructor that
constructs a complex number given only the real part of the
number

 the imaginary part is zero

12

13

public class Complex {

 private double real;

 private double imag;

 public Complex(double real, double imag) {

 this.real = real;

 this.imag = imag;

 }

 public Complex(double real) {

 this(real, 0);

 }

Static factory methods
 suppose that you also want to provide a constructor

that constructs a complex number given only the
imaginary part of the number

 the real part is zero

 if you try to add such a constructor you encounter a
problem...

14

15

public class Complex {

 private double real;

 private double imag;

 public Complex(double real, double imag) {

 this.real = real;

 this.imag = imag;

 }

 public Complex(double real) {

 this(real, 0);

 }

 public Complex(double imag) {

 this(0, imag);

 }

Illegal overload; both
constructors have the same
signature.

Static factory methods
 we can eliminate the problem by replacing both

constructors with named static factory methods

16

17

public class Complex {

 private double real;

 private double imag;

 public Complex(double real, double imag) {

 this.real = real;

 this.imag = imag;

 }

 public static Complex pureReal(double real) {

 return new Complex(real, 0);

 }

 public static Complex pureImag(double imag) {

 return new Complex(0, imag);

 }

Singleton pattern

18

Singleton Pattern

19

 “There can be only one.”
 Connor MacLeod, Highlander

Singleton Pattern

20

 a singleton is a class that is instantiated exactly once

 singleton is a well-known design pattern that can be
used when you need to:

1. ensure that there is one, and only one*, instance of a class,
and

2. provide a global point of access to the instance

 any client that imports the package containing the singleton
class can access the instance

[notes 4.4] *or possibly zero

One and Only One

21

 how do you enforce this?

 need to prevent clients from creating instances of the
singleton class

 private constructors

 the singleton class should create the one instance of itself

 note that the singleton class is allowed to call its own private
constructors

 need a static attribute to hold the instance

A Silly Example: Version 1

22

package xmas;

public class Santa

{

 // whatever fields you want for santa...

 public static final Santa INSTANCE = new Santa();

 private Santa()

 { // initialize non-static fields here... }

}

uses a public field that
all clients can access

UML Class Diagram (Version 1)

23

Singleton

+ INSTANCE : Singleton

...

- Singleton()

...

public instance

24

import xmas;

// client code in a method somewhere ...

public void gimme()

{

 Santa.INSTANCE.givePresent();

}

A Silly Example: Version 2

25

package xmas;

public class Santa

{

 // whatever fields you want for santa...

 private static final Santa INSTANCE = new Santa();

 private Santa()

 { // initialize attributes here... }

}

uses a private field; how
do clients access the field?

UML Class Diagram (Version 2)

26

Singleton

- INSTANCE : Singleton

...

- Singleton()

+ getInstance() : Singleton

...

private instance

public method to get the instance

Global Access

27

 how do clients access the singleton instance?

 by using a static method

 note that clients only need to import the package
containing the singleton class to get access to the
singleton instance

 any client method can use the singleton instance without
mentioning the singleton in the parameter list

A Silly Example (cont)

28

package xmas;

public class Santa {

 private int numPresents;

 private static final Santa INSTANCE = new Santa();

 private Santa()

 { // initialize fields here... }

 public static Santa getInstance()

 { return Santa.INSTANCE; }

 public Present givePresent() {

 Present p = new Present();

 this.numPresents--;

 return p;

 }

}

uses a private field; how
do clients access the field?

clients use a public
static factory method

29

import xmas;

// client code in a method somewhere ...

public void gimme()

{

 Santa.getInstance().givePresent();

}

Applications
 singletons should be uncommon

 typically used to represent a system component that is
intrinsically unique

 window manager

 file system

 logging system

30

Logging

31

 when developing a software program it is often useful
to log information about the runtime state of your
program
 similar to flight data recorder in an airplane

 a good log can help you find out what went wrong in your
program

 problem: your program may have many classes, each of
which needs to know where the single logging object is
 global point of access to a single object == singleton

 Java logging API is more sophisticated than this
 but it still uses a singleton to manage logging

 java.util.logging.LogManager

http://docs.oracle.com/javase/7/docs/api/java/util/logging/LogManager.html

Lazy Instantiation

32

 notice that the previous singleton implementation
always creates the singleton instance whenever the
class is loaded

 if no client uses the instance then it was created needlessly

 it is possible to delay creation of the singleton instance
until it is needed by using lazy instantiation

 only works for version 2

Lazy Instantiation as per Notes

33

public class Santa {

 private static Santa INSTANCE = null;

 private Santa()

 { // ... }

 public static Santa getInstance()

 {

 if (Santa.INSTANCE == null) {

 Santa.INSTANCE = new Santa();

 }

 return Santa.INSTANCE;

 }

}

