More constructors



Constructors

» recall that a public constructor is what a client uses to
create an object

» the purpose of a constructor is to initialize the state of
an object

» it should set the values of the non-static fields to
appropriate values
» we should set the fields named real and imag

» our complex number class has a single constructor so
far



public class Complex {

private double real;
private double imag;

public Complex(double real, double imag) {
this.real = real;
this.imag = imag;



Constructors

» our class is missing two constructors commonly found
in a value type class

4 no—argument constructor
» a constructor defined as having no parameters

» copy constructor

» a constructor with a single parameter whose type is the
same as the type of the class



No-argument constructor

» a no-argument constructor requires no information
from the client

» i.e., the client does not specify anything regarding the state
of the constructed object
» the purpose of a no-argument constructor is to create
an object with a well specified standard state

» for example, we might provide a no-argument constructor
that constructs the complex number (0 + 0i)



public class Complex {

private double real;
private double imag;

public Complex(double real, double imag) {
this.real = real;
this.imag = imag;

public Complex() {
this.real = 0;
this.imag = 0;



Copy constructor

» a copy constructor copies the state of another object of
the same type as the class

» it has a single parameter that is the same type as the class
» a copy constructor for our complex number class

would copy the real and imaginary parts of another
complex number
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Avoiding Code Duplication
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notice that the constructor bodies are almost identical
to each other

» all three constructors have 2 lines of code
» all three constructors set the real and imaginary parts

whenever you see duplicated code you should consider
moving the duplicated code into a method

in this case, one of the constructors already does
everything we need to implement the other
constructors...



Constructor chaining

» a constructor is allowed to invoke another constructor

» when a constructor invokes another constructor it is
called constructor chaining

» to invoke a constructor in the same class you use the
this keyword

» if you do this then it must occur on the first line of the
constructor body

» but you cannot use this in a method to invoke a constructor

» we can re-write two of our constructors to use
constructor chaining...
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public Complex(double real, double imag) {
this.real = real;
this.imag = imag;

public Complex() {
this(0.0, 0.0); invokes

public Complex(Complex other) {
this(other.getReal(), other.getImag()); invokes
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comparelo



Comparable Objects

» many value types have a natural ordering
» that is, for two objects x and y, x is less than y is
meaningful
» Short, Integer, Float, Double, etc
» Strings can be compared in dictionary order
» Dates can be compared in chronological order
» you might compare Complex numbers by their absolute value

» if your class has a natural ordering, consider
implementing the Comparable interface

» doing so allows clients to sort arrays or Collections of your
object
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Interfaces

» an interface is (usually) a group of related methods
with empty bodies
» the Comparable interface has just one method

public interface Comparable<T>
{

int compareTo(T t);

}

» a class that implements an interfaces promises to
provide an implementation for every method in the

interface
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compareTo ()

» Compares this object with the specified object for
order. Returns a negative integer, zero, or a positive
integer as this object is less than, equal to, or greater
than the specified object.

» Throws a ClassCastException if the specified object
type cannot be compared to this object.
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Complex compareTo

public class Complex|implements Comparable<Complex>  {
// fields, constructors, methods...

@Override
public int compareTo(Complex other) {
double thisAbs = this.abs();
double otherAbs = other.abs();
if (thisAbs > otherAbs) {
return 1;
}
else if (thisAbs < otherAbs) {
return -1;

}

return 0;
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Complex compareTo

» don't forget what you learned in EECS1020

» you should delegate work to well-tested components where
possible

» for complex numbers, we need to compare two
double values

» java.lang.Double has methods that do exactly this
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Complex compareTo

public class Complex implements Comparable<Complex> {
// fields, constructors, methods...

@Override

public int compareTo(Complex other) {
return Double.compare(this.abs(), other.abs());
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Comparable Contract

1. the sign of the returned int must flip if the order of
the two compared objects flip
» if x.compareTo(y) > 0theny.compareTo(x) < 0

» if x.compareTo(y) < Otheny.compareTo(x) > 0

» if x.compareTo(y) == 0theny.compareTo (x) ==
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Comparable Contract

>. compareTo () must be transitive

» if x.compareTo(y) > 0 && y.compareTo(z) > 0 then
x.compareTo(z) > 0

» ifx.compareTo(y) < 0 && y.compareTo(z) < O then
x.compareTo(z) < O

» ifx.compareTo(y) == 0 && y.compareTo(z) == 0 then
x.compareTo (z) ==
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Comparable Contract

3. if x.compareTo (y) == 0 then the signs of
x .compareTo (z) and y.compareTo (z) must be
the same

21



Consistency with equals

» an implementation of compareTo () is said to be
consistent with equals () when

if x.compareTo(y) == 0 then
x.equals (y) == true
» and
if x.equals(y) == true then

x.compareTo (y) ==
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Not in the Comparable Contract

» it is not required that compareTo () be consistent with
equals ()
» thatis
if x.compareTo(y) == 0 then
x.equals(y) == false isacceptable
» similarly
if x.equals(y) == true then
x.compareTo (y) '= 0 isacceptable

» try to come up with examples for both cases above
» is Complex compareTo consistent with equals?
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Implementing compareTo

» if you are comparing fields of type £1loat or double
you should use Float.compare or
Double.compare instead of <, >, or ==

» if your compareTo implementation is broken, then
any classes or methods that rely on compareTo will
behave erratically

» TreeSet, TreeMap

» many methods in the utility classes Collections and
Arrays
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