
More constructors

1

Constructors
 recall that a public constructor is what a client uses to

create an object

 the purpose of a constructor is to initialize the state of
an object

 it should set the values of the non-static fields to
appropriate values

 we should set the fields named real and imag

 our complex number class has a single constructor so
far

2

3

public class Complex {

 private double real;

 private double imag;

 public Complex(double real, double imag) {

 this.real = real;

 this.imag = imag;

 }

Constructors
 our class is missing two constructors commonly found

in a value type class

 no-argument constructor

 a constructor defined as having no parameters

 copy constructor

 a constructor with a single parameter whose type is the
same as the type of the class

4

No-argument constructor
 a no-argument constructor requires no information

from the client

 i.e., the client does not specify anything regarding the state
of the constructed object

 the purpose of a no-argument constructor is to create
an object with a well specified standard state

 for example, we might provide a no-argument constructor
that constructs the complex number (0 + 0𝑖)

5

6

public class Complex {

 private double real;

 private double imag;

 public Complex(double real, double imag) {

 this.real = real;

 this.imag = imag;

 }

 public Complex() {

 this.real = 0;

 this.imag = 0;

 }

Copy constructor
 a copy constructor copies the state of another object of

the same type as the class

 it has a single parameter that is the same type as the class

 a copy constructor for our complex number class
would copy the real and imaginary parts of another
complex number

7

8

 public Complex(double real, double imag) {

 this.real = real;

 this.imag = imag;

 }

 public Complex() {

 this.real = 0;

 this.imag = 0;

 }

 public Complex(Complex other) {

 this.real = other.getReal();

 this.imag = other.getImag();

 }

Avoiding Code Duplication
 notice that the constructor bodies are almost identical

to each other

 all three constructors have 2 lines of code

 all three constructors set the real and imaginary parts

 whenever you see duplicated code you should consider
moving the duplicated code into a method

 in this case, one of the constructors already does
everything we need to implement the other
constructors…

9

Constructor chaining
 a constructor is allowed to invoke another constructor

 when a constructor invokes another constructor it is
called constructor chaining

 to invoke a constructor in the same class you use the
this keyword

 if you do this then it must occur on the first line of the
constructor body

 but you cannot use this in a method to invoke a constructor

 we can re-write two of our constructors to use
constructor chaining...

10

11

 public Complex(double real, double imag) {

 this.real = real;

 this.imag = imag;

 }

 public Complex() {

 this(0.0, 0.0);

 }

 public Complex(Complex other) {

 this(other.getReal(), other.getImag());

 }

invokes

invokes

compareTo

12

Comparable Objects

13

 many value types have a natural ordering

 that is, for two objects x and y, x is less than y is
meaningful

 Short, Integer, Float, Double, etc

 Strings can be compared in dictionary order

 Dates can be compared in chronological order

 you might compare Complex numbers by their absolute value

 if your class has a natural ordering, consider
implementing the Comparable interface

 doing so allows clients to sort arrays or Collections of your
object

Interfaces

14

 an interface is (usually) a group of related methods
with empty bodies

 the Comparable interface has just one method

public interface Comparable<T>

{

 int compareTo(T t);

}

 a class that implements an interfaces promises to
provide an implementation for every method in the
interface

compareTo()

15

 Compares this object with the specified object for
order. Returns a negative integer, zero, or a positive
integer as this object is less than, equal to, or greater
than the specified object.

 Throws a ClassCastException if the specified object
type cannot be compared to this object.

Complex compareTo

16

public class Complex implements Comparable<Complex> {

 // fields, constructors, methods...

 @Override

 public int compareTo(Complex other) {

 double thisAbs = this.abs();

 double otherAbs = other.abs();

 if (thisAbs > otherAbs) {

 return 1;

 }

 else if (thisAbs < otherAbs) {

 return -1;

 }

 return 0;

 }

Complex compareTo
 don't forget what you learned in EECS1020

 you should delegate work to well-tested components where
possible

 for complex numbers, we need to compare two
double values

 java.lang.Double has methods that do exactly this

17

Complex compareTo

18

public class Complex implements Comparable<Complex> {

 // fields, constructors, methods...

 @Override

 public int compareTo(Complex other) {

 return Double.compare(this.abs(), other.abs());

 }

Comparable Contract

19

1. the sign of the returned int must flip if the order of
the two compared objects flip

 if x.compareTo(y) > 0 then y.compareTo(x) < 0

 if x.compareTo(y) < 0 then y.compareTo(x) > 0

 if x.compareTo(y) == 0 then y.compareTo(x) == 0

Comparable Contract

20

2. compareTo() must be transitive

 if x.compareTo(y) > 0 && y.compareTo(z) > 0 then
x.compareTo(z) > 0

 if x.compareTo(y) < 0 && y.compareTo(z) < 0 then
x.compareTo(z) < 0

 if x.compareTo(y) == 0 && y.compareTo(z) == 0 then
x.compareTo(z) == 0

Comparable Contract

21

3. if x.compareTo(y) == 0 then the signs of
x.compareTo(z) and y.compareTo(z) must be
the same

Consistency with equals

22

 an implementation of compareTo() is said to be
consistent with equals() when

 if x.compareTo(y) == 0 then

 x.equals(y) == true

 and

 if x.equals(y) == true then

 x.compareTo(y) == 0

Not in the Comparable Contract

23

 it is not required that compareTo() be consistent with
equals()

 that is

 if x.compareTo(y) == 0 then

 x.equals(y) == false is acceptable

 similarly

 if x.equals(y) == true then

 x.compareTo(y) != 0 is acceptable

 try to come up with examples for both cases above

 is Complex compareTo consistent with equals?

Implementing compareTo
 if you are comparing fields of type float or double

you should use Float.compare or
Double.compare instead of <, >, or ==

 if your compareTo implementation is broken, then
any classes or methods that rely on compareTo will
behave erratically
 TreeSet, TreeMap

 many methods in the utility classes Collections and
Arrays

24

