More constructors

Constructors

» recall that a public constructor is what a client uses to
create an object

» the purpose of a constructor is to initialize the state of
an object

» it should set the values of the non-static fields to
appropriate values
» we should set the fields named real and imag

» our complex number class has a single constructor so
far

public class Complex {

private double real;
private double imag;

public Complex(double real, double imag) {
this.real = real;
this.imag = imag;

Constructors

» our class is missing two constructors commonly found
in a value type class

4 no—argument constructor
» a constructor defined as having no parameters

» copy constructor

» a constructor with a single parameter whose type is the
same as the type of the class

No-argument constructor

» a no-argument constructor requires no information
from the client

» i.e., the client does not specify anything regarding the state
of the constructed object
» the purpose of a no-argument constructor is to create
an object with a well specified standard state

» for example, we might provide a no-argument constructor
that constructs the complex number (0 + 0i)

public class Complex {

private double real;
private double imag;

public Complex(double real, double imag) {
this.real = real;
this.imag = imag;

public Complex() {
this.real = 0;
this.imag = 0;

Copy constructor

» a copy constructor copies the state of another object of
the same type as the class

» it has a single parameter that is the same type as the class
» a copy constructor for our complex number class

would copy the real and imaginary parts of another
complex number

public
this.
this.

public
this.
this.

public
this.
this.

Complex(double real, double imag) ({

real
imag

real;
imag;

Complex() {
real = 0;

imag = 0;

Complex(Complex other) {

real
imag

other.getReal();
other.getImag();

Avoiding Code Duplication

4

notice that the constructor bodies are almost identical
to each other

» all three constructors have 2 lines of code
» all three constructors set the real and imaginary parts

whenever you see duplicated code you should consider
moving the duplicated code into a method

in this case, one of the constructors already does
everything we need to implement the other
constructors...

Constructor chaining

» a constructor is allowed to invoke another constructor

» when a constructor invokes another constructor it is
called constructor chaining

» to invoke a constructor in the same class you use the
this keyword

» if you do this then it must occur on the first line of the
constructor body

» but you cannot use this in a method to invoke a constructor

» we can re-write two of our constructors to use
constructor chaining...

10

11

public Complex(double real, double imag) {
this.real = real;
this.imag = imag;

public Complex() {
this(0.0, 0.0); invokes

public Complex(Complex other) {
this(other.getReal(), other.getImag()); invokes

12

comparelo

Comparable Objects

» many value types have a natural ordering
» that is, for two objects x and y, x is less than y is
meaningful
» Short, Integer, Float, Double, etc
» Strings can be compared in dictionary order
» Dates can be compared in chronological order
» you might compare Complex numbers by their absolute value

» if your class has a natural ordering, consider
implementing the Comparable interface

» doing so allows clients to sort arrays or Collections of your
object

13

Interfaces

» an interface is (usually) a group of related methods
with empty bodies
» the Comparable interface has just one method

public interface Comparable<T>
{

int compareTo(T t);

}

» a class that implements an interfaces promises to
provide an implementation for every method in the

interface

14

compareTo ()

» Compares this object with the specified object for
order. Returns a negative integer, zero, or a positive
integer as this object is less than, equal to, or greater
than the specified object.

» Throws a ClassCastException if the specified object
type cannot be compared to this object.

15

Complex compareTo

public class Complex|implements Comparable<Complex> {
// fields, constructors, methods...

@Override
public int compareTo(Complex other) {
double thisAbs = this.abs();
double otherAbs = other.abs();
if (thisAbs > otherAbs) {
return 1;
}
else if (thisAbs < otherAbs) {
return -1;

}

return 0;

16

Complex compareTo

» don't forget what you learned in EECS1020

» you should delegate work to well-tested components where
possible

» for complex numbers, we need to compare two
double values

» java.lang.Double has methods that do exactly this

17

Complex compareTo

public class Complex implements Comparable<Complex> {
// fields, constructors, methods...

@Override

public int compareTo(Complex other) {
return Double.compare(this.abs(), other.abs());

18

Comparable Contract

1. the sign of the returned int must flip if the order of
the two compared objects flip
» if x.compareTo(y) > 0theny.compareTo(x) < 0

» if x.compareTo(y) < Otheny.compareTo(x) > 0

» if x.compareTo(y) == 0theny.compareTo (x) ==

19

Comparable Contract

>. compareTo () must be transitive

» if x.compareTo(y) > 0 && y.compareTo(z) > 0 then
x.compareTo(z) > 0

» ifx.compareTo(y) < 0 && y.compareTo(z) < O then
x.compareTo(z) < O

» ifx.compareTo(y) == 0 && y.compareTo(z) == 0 then
x.compareTo (z) ==

20

Comparable Contract

3. if x.compareTo (y) == 0 then the signs of
x .compareTo (z) and y.compareTo (z) must be
the same

21

Consistency with equals

» an implementation of compareTo () is said to be
consistent with equals () when

if x.compareTo(y) == 0 then
x.equals (y) == true
» and
if x.equals(y) == true then

x.compareTo (y) ==

22

Not in the Comparable Contract

» it is not required that compareTo () be consistent with
equals ()
» thatis
if x.compareTo(y) == 0 then
x.equals(y) == false isacceptable
» similarly
if x.equals(y) == true then
x.compareTo (y) '= 0 isacceptable

» try to come up with examples for both cases above
» is Complex compareTo consistent with equals?

23

Implementing compareTo

» if you are comparing fields of type £1loat or double
you should use Float.compare or
Double.compare instead of <, >, or ==

» if your compareTo implementation is broken, then
any classes or methods that rely on compareTo will
behave erratically

» TreeSet, TreeMap

» many methods in the utility classes Collections and
Arrays

24

