
More constructors

1

Constructors
 recall that a public constructor is what a client uses to

create an object

 the purpose of a constructor is to initialize the state of
an object

 it should set the values of the non-static fields to
appropriate values

 we should set the fields named real and imag

 our complex number class has a single constructor so
far

2

3

public class Complex {

 private double real;

 private double imag;

 public Complex(double real, double imag) {

 this.real = real;

 this.imag = imag;

 }

Constructors
 our class is missing two constructors commonly found

in a value type class

 no-argument constructor

 a constructor defined as having no parameters

 copy constructor

 a constructor with a single parameter whose type is the
same as the type of the class

4

No-argument constructor
 a no-argument constructor requires no information

from the client

 i.e., the client does not specify anything regarding the state
of the constructed object

 the purpose of a no-argument constructor is to create
an object with a well specified standard state

 for example, we might provide a no-argument constructor
that constructs the complex number (0 + 0𝑖)

5

6

public class Complex {

 private double real;

 private double imag;

 public Complex(double real, double imag) {

 this.real = real;

 this.imag = imag;

 }

 public Complex() {

 this.real = 0;

 this.imag = 0;

 }

Copy constructor
 a copy constructor copies the state of another object of

the same type as the class

 it has a single parameter that is the same type as the class

 a copy constructor for our complex number class
would copy the real and imaginary parts of another
complex number

7

8

 public Complex(double real, double imag) {

 this.real = real;

 this.imag = imag;

 }

 public Complex() {

 this.real = 0;

 this.imag = 0;

 }

 public Complex(Complex other) {

 this.real = other.getReal();

 this.imag = other.getImag();

 }

Avoiding Code Duplication
 notice that the constructor bodies are almost identical

to each other

 all three constructors have 2 lines of code

 all three constructors set the real and imaginary parts

 whenever you see duplicated code you should consider
moving the duplicated code into a method

 in this case, one of the constructors already does
everything we need to implement the other
constructors…

9

Constructor chaining
 a constructor is allowed to invoke another constructor

 when a constructor invokes another constructor it is
called constructor chaining

 to invoke a constructor in the same class you use the
this keyword

 if you do this then it must occur on the first line of the
constructor body

 but you cannot use this in a method to invoke a constructor

 we can re-write two of our constructors to use
constructor chaining...

10

11

 public Complex(double real, double imag) {

 this.real = real;

 this.imag = imag;

 }

 public Complex() {

 this(0.0, 0.0);

 }

 public Complex(Complex other) {

 this(other.getReal(), other.getImag());

 }

invokes

invokes

compareTo

12

Comparable Objects

13

 many value types have a natural ordering

 that is, for two objects x and y, x is less than y is
meaningful

 Short, Integer, Float, Double, etc

 Strings can be compared in dictionary order

 Dates can be compared in chronological order

 you might compare Complex numbers by their absolute value

 if your class has a natural ordering, consider
implementing the Comparable interface

 doing so allows clients to sort arrays or Collections of your
object

Interfaces

14

 an interface is (usually) a group of related methods
with empty bodies

 the Comparable interface has just one method

public interface Comparable<T>

{

 int compareTo(T t);

}

 a class that implements an interfaces promises to
provide an implementation for every method in the
interface

compareTo()

15

 Compares this object with the specified object for
order. Returns a negative integer, zero, or a positive
integer as this object is less than, equal to, or greater
than the specified object.

 Throws a ClassCastException if the specified object
type cannot be compared to this object.

Complex compareTo

16

public class Complex implements Comparable<Complex> {

 // fields, constructors, methods...

 @Override

 public int compareTo(Complex other) {

 double thisAbs = this.abs();

 double otherAbs = other.abs();

 if (thisAbs > otherAbs) {

 return 1;

 }

 else if (thisAbs < otherAbs) {

 return -1;

 }

 return 0;

 }

Complex compareTo
 don't forget what you learned in EECS1020

 you should delegate work to well-tested components where
possible

 for complex numbers, we need to compare two
double values

 java.lang.Double has methods that do exactly this

17

Complex compareTo

18

public class Complex implements Comparable<Complex> {

 // fields, constructors, methods...

 @Override

 public int compareTo(Complex other) {

 return Double.compare(this.abs(), other.abs());

 }

Comparable Contract

19

1. the sign of the returned int must flip if the order of
the two compared objects flip

 if x.compareTo(y) > 0 then y.compareTo(x) < 0

 if x.compareTo(y) < 0 then y.compareTo(x) > 0

 if x.compareTo(y) == 0 then y.compareTo(x) == 0

Comparable Contract

20

2. compareTo() must be transitive

 if x.compareTo(y) > 0 && y.compareTo(z) > 0 then
x.compareTo(z) > 0

 if x.compareTo(y) < 0 && y.compareTo(z) < 0 then
x.compareTo(z) < 0

 if x.compareTo(y) == 0 && y.compareTo(z) == 0 then
x.compareTo(z) == 0

Comparable Contract

21

3. if x.compareTo(y) == 0 then the signs of
x.compareTo(z) and y.compareTo(z) must be
the same

Consistency with equals

22

 an implementation of compareTo() is said to be
consistent with equals() when

 if x.compareTo(y) == 0 then

 x.equals(y) == true

 and

 if x.equals(y) == true then

 x.compareTo(y) == 0

Not in the Comparable Contract

23

 it is not required that compareTo() be consistent with
equals()

 that is

 if x.compareTo(y) == 0 then

 x.equals(y) == false is acceptable

 similarly

 if x.equals(y) == true then

 x.compareTo(y) != 0 is acceptable

 try to come up with examples for both cases above

 is Complex compareTo consistent with equals?

Implementing compareTo
 if you are comparing fields of type float or double

you should use Float.compare or
Double.compare instead of <, >, or ==

 if your compareTo implementation is broken, then
any classes or methods that rely on compareTo will
behave erratically
 TreeSet, TreeMap

 many methods in the utility classes Collections and
Arrays

24

