
Not overriding equals
 what happens if you do not override equals for a

value type class?

 all of the Java collections will fail in confusing ways

1

Not overriding equals
 Complex y = new Complex(1, -2);

 Complex z = new Complex(1, -2);

 List<Complex> list = new ArrayList<Complex>();

 list.add(y);

 System.out.println("contains (1 - 2i)? " + list.contains(z));

Output:

 contains (1 - 2i)? false

contains uses equals to search the elements of the list

2

Not overriding equals
 Complex y = new Complex(1, -2);

 Complex z = new Complex(1, -2);

 Set<Complex> set = new HashSet<Complex>();

 set.add(y);

 System.out.println("add (1 - 2i)? " + set.add(z));

Output:

 add (1 - 2i)? true

add uses equals to search the elements of the set

3

Not overriding equals
 Complex y = new Complex(1, -2);

 Complex z = new Complex(1, -2);

 Map<Complex, String> map = new TreeMap<Complex, String>();

 map.put(y, y.toString());

 System.out.println("contains (1 - 2i)? " + map.put(z, z.toString()));

Output:

 contains (1 - 2i)? null

put uses equals to search the elements of the map

4

hashCode

5

hashCode

6

 if you override equals you must override hashCode

 otherwise, the hashed containers won't work properly

 recall that we did not override hashCode for Complex

// client code somewhere

Complex y = new Complex(1, -2);

HashSet<Complex> h = new HashSet<Complex>();

h.add(y);

System.out.println(h.contains(y)); // true

Complex z = new Complex(1, -2);

System.out.println(h.contains(z)); // false

[notes 3.3.5]

Arrays as Containers

7

 suppose you have an array of unique Complex numbers

 how do you compute whether or not the array contains a
particular Complex number?

 write a loop to examine every element of the array

public static boolean

 hasNumber(Complex z, Complex[] numbers) {

 for(Complex num : numbers) {

 if (num.equals(z)) {

 return true;

 }

 }

 return false;

}

8

 called linear search or sequential search

 doubling the length of the array doubles the amount of
searching we need to do

 if there are n Complex numbers in the array:

 best case

 the first Complex number is the one we are searching for

 1 call to equals()

 worst case

 the Complex number is not in the array

 n calls to equals()

 average case

 the Complex number is somewhere in the middle of the array

 approximately (n/2) calls to equals()

Hash Tables

9

 you can think of a hash table as being an array of
buckets where each bucket holds the stored objects

0 1 2 3 ... N

Insertion into a Hash Table

10

 to insert an object a, the hash table calls
a.hashCode() method to compute which bucket to
put the object into

0 1 2 3 ... N

a.hashCode() 2 a

b.hashCode() 0 b

c.hashCode() N c
d.hashCode() N d

means the hash table takes the hash code and does something to
it to make it fit in the range 0—N

Insertion into a Hash Table

11

 to insert an object a, the hash table calls
a.hashCode() method to compute which bucket to
put the object into

b a c

d

0 1 2 3 ... N

Search on a Hash Table

12

 to see if a hash table contains an object a, the hash
table calls a.hashCode() method to compute which
bucket to look for a in

b

a

c

d

0 1 2 3 ... N

a.hashCode() 2
z.hashCode() N

a.equals()

true

z.equals()

false

z.equals()

false

Search on a Hash Table

13

 to see if a hash table contains an object a, the hash
table calls a.hashCode() method to compute which
bucket to look for a in

b

a

c

d

0 1 2 3 ... N

a.hashCode() 2
z.hashCode() N

a.equals()

true

z.equals()

false

z.equals()

false

14

 searching a hash table is usually much faster than
linear search
 doubling the number of elements in the hash table usually

does not noticably increase the amount of search needed

 if there are n Complex numbers in the hash table:
 best case

 the bucket is empty, or the first Complex in the bucket is the one
we are searching for
 0 or 1 call to equals()

 worst case
 all n of the Complex numbers are in the same bucket

 n calls to equals()

 average case
 the Complex number is in a bucket with a small number of other
Complex numbers
 a small number of calls to equals()

Object hashCode()

15

 if you don't override hashCode(), you get the
implementation from Object.hashCode()

 Object.hashCode() uses the memory address of the object
to compute the hash code

16

 note that y and z refer to distinct objects

 therefore, their memory locations must be different

 therefore, their hash codes are different (probably)

 therefore, the hash table looks in the wrong bucket (probably)
and does not find the phone number even though y.equals(z)

// client code somewhere

Complex y = new Complex(1, -2);

HashSet<Complex> h = new HashSet<Complex>();

h.add(y);

Complex z = new Complex(1, -2);

System.out.println(h.contains(z)); // false

A Bad (but legal) hashCode

17

public final class Complex {

 // attributes, constructors, methods ...

 @Override public int hashCode()

 {

 return 1; // or any other constant int

 }

}

 this will cause a hashed container to put all Complex
numbers into the same bucket

A Slightly Better hashCode

18

public final class Complex {

 // attributes, constructors, methods ...

 @Override public int hashCode()

 {

 return (int)(this.getReal() + this.getImag());

 }

}

eclipse hashCode
 eclipse will generate a hashCode method for you

 Source  Generate hashCode() and equals()...

 it uses an algorithm that

 “... yields reasonably good hash functions, [but] does not
yield state-of-the-art hash functions, nor do the Java
platform libraries provide such hash functions as of release
1.6. Writing such hash functions is a research topic, best left
to mathematicians and theoretical computer scientists.”

 Joshua Bloch, Effective Java 2nd Edition

19

20

 the basic idea is generate a hash code using the fields
of the object

 it would be nice if two distinct objects had two distinct
hash codes

 but this is not required; two different objects can have the
same hash code

 it is required that:

1. if x.equals(y) then x.hashCode() == y.hashCode()

2. x.hashCode() always returns the same value if x does not
change its state

Something to Think About

21

 what do you need to be careful of when putting a
mutable object into a HashSet?

 can you avoid the problem by using immutable objects?

