Not overriding equals

» what happens if you do not override equals fora
value type class?
» all of the Java collections will fail in confusing ways

Not overriding equals

new Complex(1l, -2);

Complex y
Complex z

new Complex(1l, -2);

List<Complex> list = new ArrayList<Complex>();
list.add(y);
System.out.println("contains (1 - 2i)? " + list.contains(z));

Output:

contains (1 - 2i)? false

contains uses equals to search the elements of the list

Not overriding equals

Complex y = new Complex(1l, -2);

Complex z = new Complex(1l, -2);

Set<Complex> set = new HashSet<Complex>();
set.add(y);
System.out.println("add (1 - 2i)? " + set.add(z));

Output:
add (1 - 2i)? true

add uses equals to search the elements of the set

Not overriding equals

Complex y = new Complex(1l, -2);

Complex z

new Complex(1l, -2);

Map<Complex, String> map = new TreeMap<Complex, String>();

map.put(y, y.toString());
System.out.println("contains (1 - 2i)? " + map.put(z, z.toString()));

Output:

contains (1 - 2i)? null

put uses equals to search the elements of the map

hashCode

hashCode

» if you override equals you must override hashCode

» otherwise, the hashed containers won't work properly
» recall that we did not override hashCode for Complex

// client code somewhere
Complex y = new Complex(1l, -2);

HashSet<Complex> h = new HashSet<Complex> () ;

h.add(y) ;
System.out.println(h.contains(y)); // true

Complex z = new Complex(l, -2);
System.out.println(h.contains(z)); // false

6 [notes 3.3.5]

Arrays as Containers

» suppose you have an array of unique Complex numbers

» how do you compute whether or not the array contains a
particular Complex number?

» write a loop to examine every element of the array

public static boolean
hasNumber (Complex z, Complex[] numbers) ({

for(Complex num : numbers) ({
if (num.equals(z)) {
return true;
}
}

return false;

}

called linear search or sequential search

doubling the length of the array doubles the amount of
searching we need to do

if there are n Complex numbers in the array:

best case
the first Complex number is the one we are searching for
1 call to equals ()
worst case
the Complex number is not in the array
n calls to equals ()
average case

the Complex number is somewhere in the middle of the array
approximately (n/2) calls to equals ()

Hash Tables

» you can think of a hash table as being an array of
buckets where each bucket holds the stored objects

Insertion into a Hash Table

» to insert an object a, the hash table calls
a.hashCode () method to compute which bucket to
put the object into b.hashCode () B 0

c.hashCode () B) N a.hashCode () B) 2
d.hashCode () N

0 1 2 3 N

means the hash table takes the hash code and does something to
it to make it fit in the range 0—N

10

Insertion into a Hash Table

» to insert an object a, the hash table calls
a.hashCode () method to compute which bucket to
put the object into

(O TN p]

11

Search on a Hash Table

» to see if a hash table contains an object a, the hash
table calls a.hashCode () method to compute which

bucket to look for a in

a.hashCode () 2
z .hashCode () » N »

b a.equals(a) z.equdls(c)
true z.equdls(d)
false

12

Search on a Hash Table

» to see if a hash table contains an object a, the hash
table calls a.hashCode () method to compute which

bucket to look for a in

a.hashCode () 2
z .hashCode () » N »

b a.equals(a) z.equdls(c)
true z.equdls(d)
false

13

searching a hash table is usually much faster than
linear search

doubling the number of elements in the hash table usually
does not noticably increase the amount of search needed

if there are n Complex numbers in the hash table:

best case

the bucket is empty, or the first Complex in the bucket is the one
we are searching for

o or1call to equals ()
worst case
all n of the Complex numbers are in the same bucket
n calls to equals ()
average case

the Complex number is in a bucket with a small number of other
Complex numbers

a small number of calls to equals ()

14

Object hashCode ()

» if you don't override hashCode (), you get the
implementation from Object.hashCode ()

» Object.hashCode () uses the memory address of the object
to compute the hash code

15

// client code somewhere
Complex y = new Complex(1l, -2);

HashSet<Complex> h = new HashSet<Complex> () ;
h.add(y) ;

Complex z = new Complex(l, -2);
System.out.println(h.contains(z)); // false

note that y and z refer to distinct objects

therefore, their memory locations must be different
therefore, their hash codes are different (probably)

therefore, the hash table looks in the wrong bucket (probably)
and does not find the phone number even though y.equals(z)

16

A Bad (but legal) hashCode

public final class Complex ({

// attributes, constructors, methods ...

@Override public int hashCode ()
{

return 1; // or any other constant int

}

» this will cause a hashed container to put all Complex
numbers into the same bucket

17

A Slightly Better hashCode

public final class Complex ({

// attributes, constructors, methods ...
@Override public int hashCode ()

{
return (int) (this.getReal() + this.getImag())

18

eclipse hashCode

» eclipse will generate a hashCode method for you
» Source — Generate hashCode() and equals()...

» it uses an algorithm that

» “..yields reasonably good hash functions, [but] does not
yield state-of-the-art hash functions, nor do the Java
platform libraries provide such hash functions as of release
1.6. Writing such hash functions is a research topic, best left
to mathematicians and theoretical computer scientists.”

» Joshua Bloch, Effective Java 2" Edition

19

» the basic idea is generate a hash code using the fields
of the object

» it would be nice if two distinct objects had two distinct

hash codes

» but this is not required; two different objects can have the
same hash code

» it is required that:

.. if x.equals (y) then x.hashCode () == y.hashCode ()

2. x.hashCode () always returns the same value if x does not
change its state

20

Something to Think About

» what do you need to be careful of when putting a
mutable object into a HashSet?

» canyou avoid the problem by using immutable objects?

21

