
Not overriding equals
 what happens if you do not override equals for a

value type class?

 all of the Java collections will fail in confusing ways

1

Not overriding equals
 Complex y = new Complex(1, -2);

 Complex z = new Complex(1, -2);

 List<Complex> list = new ArrayList<Complex>();

 list.add(y);

 System.out.println("contains (1 - 2i)? " + list.contains(z));

Output:

 contains (1 - 2i)? false

contains uses equals to search the elements of the list

2

Not overriding equals
 Complex y = new Complex(1, -2);

 Complex z = new Complex(1, -2);

 Set<Complex> set = new HashSet<Complex>();

 set.add(y);

 System.out.println("add (1 - 2i)? " + set.add(z));

Output:

 add (1 - 2i)? true

add uses equals to search the elements of the set

3

Not overriding equals
 Complex y = new Complex(1, -2);

 Complex z = new Complex(1, -2);

 Map<Complex, String> map = new TreeMap<Complex, String>();

 map.put(y, y.toString());

 System.out.println("contains (1 - 2i)? " + map.put(z, z.toString()));

Output:

 contains (1 - 2i)? null

put uses equals to search the elements of the map

4

hashCode

5

hashCode

6

 if you override equals you must override hashCode

 otherwise, the hashed containers won't work properly

 recall that we did not override hashCode for Complex

// client code somewhere

Complex y = new Complex(1, -2);

HashSet<Complex> h = new HashSet<Complex>();

h.add(y);

System.out.println(h.contains(y)); // true

Complex z = new Complex(1, -2);

System.out.println(h.contains(z)); // false

[notes 3.3.5]

Arrays as Containers

7

 suppose you have an array of unique Complex numbers

 how do you compute whether or not the array contains a
particular Complex number?

 write a loop to examine every element of the array

public static boolean

 hasNumber(Complex z, Complex[] numbers) {

 for(Complex num : numbers) {

 if (num.equals(z)) {

 return true;

 }

 }

 return false;

}

8

 called linear search or sequential search

 doubling the length of the array doubles the amount of
searching we need to do

 if there are n Complex numbers in the array:

 best case

 the first Complex number is the one we are searching for

 1 call to equals()

 worst case

 the Complex number is not in the array

 n calls to equals()

 average case

 the Complex number is somewhere in the middle of the array

 approximately (n/2) calls to equals()

Hash Tables

9

 you can think of a hash table as being an array of
buckets where each bucket holds the stored objects

0 1 2 3 ... N

Insertion into a Hash Table

10

 to insert an object a, the hash table calls
a.hashCode() method to compute which bucket to
put the object into

0 1 2 3 ... N

a.hashCode() 2 a

b.hashCode() 0 b

c.hashCode() N c
d.hashCode() N d

means the hash table takes the hash code and does something to
it to make it fit in the range 0—N

Insertion into a Hash Table

11

 to insert an object a, the hash table calls
a.hashCode() method to compute which bucket to
put the object into

b a c

d

0 1 2 3 ... N

Search on a Hash Table

12

 to see if a hash table contains an object a, the hash
table calls a.hashCode() method to compute which
bucket to look for a in

b

a

c

d

0 1 2 3 ... N

a.hashCode() 2
z.hashCode() N

a.equals()

true

z.equals()

false

z.equals()

false

Search on a Hash Table

13

 to see if a hash table contains an object a, the hash
table calls a.hashCode() method to compute which
bucket to look for a in

b

a

c

d

0 1 2 3 ... N

a.hashCode() 2
z.hashCode() N

a.equals()

true

z.equals()

false

z.equals()

false

14

 searching a hash table is usually much faster than
linear search
 doubling the number of elements in the hash table usually

does not noticably increase the amount of search needed

 if there are n Complex numbers in the hash table:
 best case

 the bucket is empty, or the first Complex in the bucket is the one
we are searching for
 0 or 1 call to equals()

 worst case
 all n of the Complex numbers are in the same bucket

 n calls to equals()

 average case
 the Complex number is in a bucket with a small number of other
Complex numbers
 a small number of calls to equals()

Object hashCode()

15

 if you don't override hashCode(), you get the
implementation from Object.hashCode()

 Object.hashCode() uses the memory address of the object
to compute the hash code

16

 note that y and z refer to distinct objects

 therefore, their memory locations must be different

 therefore, their hash codes are different (probably)

 therefore, the hash table looks in the wrong bucket (probably)
and does not find the phone number even though y.equals(z)

// client code somewhere

Complex y = new Complex(1, -2);

HashSet<Complex> h = new HashSet<Complex>();

h.add(y);

Complex z = new Complex(1, -2);

System.out.println(h.contains(z)); // false

A Bad (but legal) hashCode

17

public final class Complex {

 // attributes, constructors, methods ...

 @Override public int hashCode()

 {

 return 1; // or any other constant int

 }

}

 this will cause a hashed container to put all Complex
numbers into the same bucket

A Slightly Better hashCode

18

public final class Complex {

 // attributes, constructors, methods ...

 @Override public int hashCode()

 {

 return (int)(this.getReal() + this.getImag());

 }

}

eclipse hashCode
 eclipse will generate a hashCode method for you

 Source Generate hashCode() and equals()...

 it uses an algorithm that

 “... yields reasonably good hash functions, [but] does not
yield state-of-the-art hash functions, nor do the Java
platform libraries provide such hash functions as of release
1.6. Writing such hash functions is a research topic, best left
to mathematicians and theoretical computer scientists.”

 Joshua Bloch, Effective Java 2nd Edition

19

20

 the basic idea is generate a hash code using the fields
of the object

 it would be nice if two distinct objects had two distinct
hash codes

 but this is not required; two different objects can have the
same hash code

 it is required that:

1. if x.equals(y) then x.hashCode() == y.hashCode()

2. x.hashCode() always returns the same value if x does not
change its state

Something to Think About

21

 what do you need to be careful of when putting a
mutable object into a HashSet?

 can you avoid the problem by using immutable objects?

