
Non-static classes

Part 2

1

Methods
 like constructors, all non-static methods have an

implicit parameter named this

 for methods, this refers to the object that was used to
call the method

2

Accessors
 an accessor method enables the client to gain access to

an otherwise private field of the class

 the name of an accessor method often begins with get

 for fields of primitive type or immutable type, the
accessor method implementation simply returns the
value of the field

 for fields that are object references the implementer must
think more carefully about the implementation

 this will be discussed later on in the course

3

4

public class Complex {

 private double real;

 private double imag;

 public Complex(double re, double im) {

 this.real = re;

 this.imag = im;

 }

 public double getReal() {

 return this.real;

 }

 public double getImag() {

 return this.imag;

 }

Mutators
 a mutator method enables the client to modify (or

mutate) an otherwise private field of the class

 the name of an accessor method often begins with set

 for fields of primitive type or immutable type, the
mutator method implementation simply modifies the
value of the field

 for fields that are object references the implementer must
think more carefully about the implementation

 this will be discussed later on in the course

5

6

 public void setReal(double newReal) {

 this.real = newReal;

 }

 public void setImag(double newImag) {

 this.imag = newImag;

 }

conj
 to compute the complex conjugate of

𝑎 + 𝑏𝑖

we return a new complex number equal to

 𝑎 + −𝑏 𝑖

7

8

 public Complex conj() {

 return new Complex(this.getReal(), -this.getImag());

 }

abs
 to compute the absolute value of

𝑎 + 𝑏𝑖

we return a new real number equal to

 𝑎2 + 𝑏2

9

10

 public double abs() {

 // "obvious" implementation

 double a = this.getReal();

 double b = this.getImag();

 return Math.sqrt(a * a + b * b);

 }

abs
 the problem with the obvious implementation is that

it fails in cases where the value of

 z.abs()

 can be represented using double but the value of

 a * a + b * b

 cannot be represented using double

11

abs
 examples of underflow and overflow

 java.lang.Math provides a way to avoid

intermediate under- and overflow for 𝑎2 + 𝑏2

12

𝒂 𝒃 Computed
value 𝐨𝐟
 𝒂𝟐+𝒃𝟐

Computed
value of

𝒂𝟐 + 𝒃𝟐

Actual value of

𝒂𝟐 + 𝒃𝟐

1e-200 0 0 0 1e-200

1e-170 1e-169 0 0 1.004987562112089E-169

0 1e200 Infinity* Infinity* 1e200

1e170 1e169 Infinity* Infinity* 1.004987562112089E170

* Double.POSITIVE_INFINITY

13

 public double abs() {

 // avoids intermediate under- and overflow

 return Math.hypot(this.getReal(), this.getImag());

 }

abs
 the field that studies solving mathematical problems

using computational techniques is called numerical
analysis

 of interest in computer science, mathematics, engineering,
and science

 how does Math.hypot work?

 for a pure Java implementation the ideas described in the
following link work
 http://blogs.mathworks.com/cleve/2012/07/30/pythagorean-addition/

14

http://blogs.mathworks.com/cleve/2012/07/30/pythagorean-addition/
http://blogs.mathworks.com/cleve/2012/07/30/pythagorean-addition/
http://blogs.mathworks.com/cleve/2012/07/30/pythagorean-addition/
http://blogs.mathworks.com/cleve/2012/07/30/pythagorean-addition/

add
 to add two complex numbers

 𝑎 + 𝑏𝑖 + 𝑐 + 𝑑𝑖

 we return a new complex number equal to

𝑎 + 𝑐 + 𝑏 + 𝑑 𝑖

15

this other

16

 public Complex add(Complex other) {

 double a = this.getReal();

 double b = this.getImag();

 double c = other.getReal();

 double d = other.getImag();

 return new Complex(a + c, b + d);

 }

multiply
 to multiply two complex numbers

 𝑎 + 𝑏𝑖 × 𝑐 + 𝑑𝑖

 we return a new complex number equal to

𝑎𝑐 − 𝑏𝑑 + 𝑏𝑐 + 𝑎𝑑 𝑖

17

this other

18

 public Complex multiply(Complex other) {

 double a = this.getReal();

 double b = this.getImag();

 double c = other.getReal();

 double d = other.getImag();

 return new Complex(a * c - b * d,

 b * c + a * d);

 }

Obligatory methods
 recall that all classes in Java inherit from
java.lang.Object
 http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html

 any class you create inherits all of the public and
protected fields and methods of
java.lang.Object

 the course notes refers to the methods inherited from
java.lang.Object as obligatory methods

 there are 11 such methods in total, but we are only
interested in 3 of them

 toString, equals, hashCode

19

http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html

toString

20

 toString() returns a String representation of the
calling object

 we can call toString() with our current Complex class
even though we have not implemented it

 this prints something like Complex@fff003c1 on my
computer

// client of Complex

Complex z = new Complex(1, 2);

System.out.println(z.toString());

toString

21

 toString() should return a concise but informative
representation that is easy for a person to read

 it is recommended that all subclasses override this
method

 this means that any non-utility class you write should
redefine the toString method

 for our complex number class we might decide that
toString should return strings that look like complex
numbers

 e.g., 𝟐. 𝟐 + 𝟑. 𝟕𝒊 or −𝟏. 𝟎𝟎𝟎𝟎𝟏 − 𝟗𝟐𝟖𝟓𝟏. 𝟑𝟓𝒊

22

 @Override

 public String toString() {

 StringBuilder b = new StringBuilder();

 b.append(this.getReal());

 double imag = this.getImag();

 if (imag < 0) {

 b.append(" - ");

 }

 else {

 b.append(" + ");

 }

 b.append(Math.abs(imag));

 b.append('i');

 return b.toString();

 }

Overriding methods
 our class is a subclass or child class of
java.lang.Object

 when a subclass redefines a public or protected
method inherited from its superclass, we say that the
subclass overrides the inherited method

 to override a method, you create a method that has the
exact same signature and return type of the method
that you want to override

 the return type may also be a subtype of the return type of
the overridden method (but this is not important for now)

23

Overriding methods
 when you override a method you may use the

annotation @Override immediately before the
method header

 if you do so, the compiler will generate an error message if
your method does not have the identical signature and
return type of a method in a superclass

24

equals()

25

 suppose you write a value class that extends Object
but you do not override equals()

 what happens when a client tries to use equals()?

 Object.equals() is called

// Complex client

Complex z = new Complex(1, 2);

System.out.println(z.equals(z)); // true

Complex z2 = z;

System.out.println(z2.equals(z)); // true

Complex z3 = new Complex(1, 2);

System.out.println(z3.equals(z)); // false!

 [notes 3.2.4]

26

64 client

z

z2

z3

600 Complex

object

real 1

imag 2

700 Complex

object

real 1

imag 2

600

600

700

z and z2 refer to the object at
address 600

z3 refers to the object at
address 700

equal
states
but

different
objects

Complex z = new Complex(1, 2);

Complex z2 = z;

Complex z3 = new Complex(1, 2);

Object.equals

27

 Object.equals checks if two references refer to the
same object

 x.equals(y) is true if and only if x and y are references to
the same object

Complex.equals

28

 most value classes should support logical equality

 an instance is equal to another instance if their states are
equal

 e.g. two complex numbers are equal if their real and imaginary
parts both have the same values

29

 implementing equals() is surprisingly hard
 "One would expect that overriding equals(), since it is a

fairly common task, should be a piece of cake. The reality is far
from that. There is an amazing amount of disagreement in the
Java community regarding correct implementation of
equals(). Look into the best Java source code or open an
arbitrary Java textbook and take a look at what you find.
Chances are good that you will find several different
approaches and a variety of recommendations."

 Angelika Langer, Secrets of equals() – Part 1
 http://www.angelikalanger.com/Articles/JavaSolutions/SecretsOfEquals/Equals.html

30

 what we are about to do does not always produce the
result you might be looking for

 but it is always satisfies the equals() contract

 and it's what the notes and textbook do

EECS1030 Requirements for equals
1. an instance is equal to itself

2. an instance is never equal to null

3. only instances of the exact same type can be equal

4. instances with the same state are equal

31

1. An Instance is Equal to Itself

32

 x.equals(x) should always be true

 also, x.equals(y) should always be true if x and y
are references to the same object

 you can check if two references are equal using ==

33

 @Override

 public boolean equals(Object obj) {

 if (this == obj) {

 return true;

 }

 }

2. An Instance is Never Equal to null

34

 Java requires that x.equals(null) returns false

 and you must not throw an exception if the argument
is null

 so it looks like we have to check for a null argument...

35

 @Override

 public boolean equals(Object obj) {

 if (this == obj) {

 return true;

 }

 if (obj == null) {

 return false;

 }

 }

3. Instances of the Same Type can be Equal

36

 the implementation of equals() used in the notes
and the textbook is based on the rule that an instance
can only be equal to another instance of the same type

 you can find the class of an object using
Object.getClass()

public final Class<? extends Object> getClass()

 Returns the runtime class of an object.

37

 @Override

 public boolean equals(Object obj) {

 if (this == obj) {

 return true;

 }

 if (obj == null) {

 return false;

 }

 if (this.getClass() != obj.getClass()) {

 return false;

 }

 }

Instances with Same State are Equal

38

 recall that the value of the attributes of an object
define the state of the object

 two instances are equal if all of their attributes are equal

 unfortunately, we cannot yet retrieve the attributes of
the parameter obj because it is declared to be an
Object in the method signature

 we need a cast

39

 @Override

 public boolean equals(Object obj) {

 if (this == obj) {

 return true;

 }

 if (obj == null) {

 return false;

 }

 if (this.getClass() != obj.getClass()) {

 return false;

 }

 Complex other = (Complex) obj;

 }

Instances with Same State are Equal

40

 there is a recipe for checking equality of fields

1. if the field is a primitive type other than float or

double use ==

2. if the attribute type is float use Float.compare()

3. if the attribute type is double use Double.compare()

4. if the attribute is an array consider Arrays.equals()

5. if the attribute is a reference type use equals(), but
beware of attributes that might be null

41

 @Override

 public boolean equals(Object obj) {

 if (this == obj) {

 return true;

 }

 if (obj == null) {

 return false;

 }

 if (this.getClass() != obj.getClass()) {

 return false;

 }

 Complex other = (Complex) obj;

 if (Double.compare(this.getReal(), other.getReal()) != 0) {

 return false;

 }

 if (Double.compare(this.getImag(), other.getImag()) != 0) {

 return false;

 }

 return true;

 }

The equals() Contract

42

 for reference values equals() is

1. reflexive

2. symmetric

3. transitive

4. consistent

5. must not throw an exception when passed null

The equals() contract: Reflexivity

43

1. reflexive :

 an object is equal to itself

 x.equals(x) is true

The equals() contract: Symmetry

44

2. symmetric :

 two objects must agree on whether they are equal

 x.equals(y) is true if and only if y.equals(x) is
true

The equals() contract: Transitivity

45

3. transitive :

 if a first object is equal to a second, and the second object
is equal to a third, then the first object must be equal to
the third

 if
x.equals(y) is true
and
y.equals(z) is true
then
x.equals(z) must be true

The equals() contract: Consistency

46

4. consistent :

 repeatedly comparing two objects yields the same result
(assuming the state of the objects does not change)

The equals() contract: Non-nullity

47

5. x.equals(null) is always false and never does
not throw an exception

The equals() contract and getClass()

 using getClass() makes it relatively easy to ensure
that the equals() contract is obeyed

 e.g., symmetry and transitivity are easy to ensure

 however, using getClass() means that your
equals() method won't work as expected in
inheritance hierarchies

 more on this when we talk about inheritance

48

One more thing regarding equals()
 if you override equals() you must override
hashCode()

 otherwise, the hashed containers won't work properly

 we will see how to implement hashCode()in the

next lecture or so

49

