
Non-static classes

1

Non-static classes
 a utility class has features (fields and methods) that

are all static

 all features belong to the class

 therefore, you do not need objects to use those features

 a well implemented utility class should have a single, empty private
constructor to prevent the creation of objects

 most Java classes are not utility classes

 they are intended to be used to create to objects

 each object has its own copy of all non-static fields

 it is useful to imagine that each object has its own copy of
all non-static methods

2

Why objects?
 each object has its own copy of all non-static fields

 this allows objects to have their own state

 in Java the state of an object is the set of current values of all of its
non-static fields

 e.g., we can create multiple Fraction objects that all represent
different fraction values

3

4

Fraction x = new Fraction(1, 2);

Fraction y = new Fraction(-3, 8);

Fraction z = new Fraction(5, 13);

64 client

x 600

y 700

z 800

100 Fraction class

numer

denom

600 Fraction object

numer 1

denom 2

700 Fraction object

numer -3

denom 8

800 Fraction object

numer 5

denom 13

Value Type Classes

5

 a value type is a class that represents a value

 examples of values: name, date, colour, mathematical
vector

 Java examples: String, Date, Integer

 the objects created from a value type class can be:

 mutable: the state of the object can change
 Date

 immutable: the state of the object is constant once it is
created

 String, Integer (and all of the other primitive wrapper
classes)

Imaginary numbers
 imaginary numbers occur when you try to take the

square root of a negative value

 for example, −1 has no value in the set of real numbers

 mathematicians have found that it is very useful to say
that there exists some number (not real) that when
squared is equal to −1

 this value is usually given the symbol 𝑖 or 𝑗 and is called the
imaginary unit

𝑖2 = −1

6

Imaginary numbers
 an imaginary number is any real valued number

multiplied by 𝑖

7

3𝑖 3𝑖 2 = −9

−3𝑖 −3𝑖 2 = −9

2.5𝑖 2.5𝑖 2 = −6.25

0.01𝑖 0.01𝑖 2 = −0.0001

Complex numbers
 a complex number occurs when you add a real number

and an imaginary number

 e.g., 7 + 2𝑖 is a complex number

 the imaginary part of a complex number is the
imaginary number

 e.g, the imaginary part of 7 + 2𝑖 is 2𝑖

 the real part of a complex number is the real number
(that was added to the imaginary part)

 e.g, the imaginary part of 7 + 2𝑖 is 7

8

Complex numbers
 more generally, we say that a complex number is a

number that can be written as

𝑎 + 𝑏𝑖

 where 𝑎 and 𝑏 are real numbers and 𝑖 is the imaginary
 unit

9

Why study complex numbers?
 applications

 any scientific or engineering application that involves
vibrations, waves, or signals probably

 complex analysis in mathematics

 quantum mechanics in physics and chemistry

 differential equations

 many others

 from an EECS1030 perspective

 easily implemented value type

 also, you can make pretty pictures

10

Mandelbrot set

11

Class Complex
 when creating a class you should first analyze the

requirements of the class

 what fields does each object need?

 how do you construct an object?

 what methods should each object provide?

 this information can be summarized in a UML class
diagram

12

Complex

fields

constructors
 and methods

class name

Class Complex
 what fields does each Complex object need?

 a field to represent the real part

 a field to represent the complex part

13

Complex

real

imag

Class Complex
 what are appropriate types for the fields?

 the real part

 double

 the complex part

 double

14

Complex

real : double

imag : double

Class Complex
 how do you create a Complex object?

 by specifying the values of the real and imaginary parts

15

Complex

real : double

imag : double

Complex(double, double)

What operations?
 there are many possible operations involving complex

numbers

 implementing them all is impractical for our current
purposes

 we will consider the following

 complex conjugate

 absolute value

 addition

 multiplication

16

Complex conjugate
 to compute the complex conjugate of a complex

number, simply change the sign of the imaginary part

 the complex conjugate of

𝑎 + 𝑏𝑖

 is

 𝑎 + −𝑏 𝑖

 note that the result is a complex number

17

Absolute value
 the absolute value or magnitude of

 𝑎 + 𝑏𝑖

 is

 𝑎2 + 𝑏2

 note that the result is a real number

18

Addition
 addition of two complex number is defined as

 𝑎 + 𝑏𝑖 + 𝑐 + 𝑑𝑖 = 𝑎 + 𝑐 + 𝑏 + 𝑑 𝑖

 that is, you sum the real parts and sum the imaginary
parts separately

 note that the result is a complex number

19

Multiplication
 multiplication of two complex number is defined as

 𝑎 + 𝑏𝑖 × 𝑐 + 𝑑𝑖 = 𝑎𝑐 − 𝑏𝑑 + 𝑏𝑐 + 𝑎𝑑 𝑖

 you can easily derive this

 note that the result is a complex number

20

Class Complex
 what methods should Complex provide?

21

Complex

real : double

imag : double

Complex(double, double)

conj() : Complex

abs() : double

add(Complex) : Complex

multiply(Complex) : Complex

Class Complex
 what other methods might a client find useful?

 get the value of the real part

 get the value of the imaginary part

 set the value of the real part

 set the value of the imaginary part

 methods that get information about the state of an
object are called accessor methods

 methods that change the state of an object are called
mutator methods

22

Class Complex

23

Complex

real : double

imag : double

Complex(double, double)

conj() : Complex

abs() : double

add(Complex) : Complex

mult(Complex) : Complex

getReal() : double

getImag() : double

setReal(double) : void

setImag(double) : void

Class Complex
 there are three more important methods, but we will

look at these later

24

Class and fields
 start by creating the class and adding the fields

 if you decide to organize your classes into packages,
then you should first create the appropriate package

25

26

public class Complex {

 private double real;

 private double imag;

}

Class and fields
 notice that the class is marked public

 this means that the class is visible to all clients

 notice that the fields are marked private

 this means that the fields are visible only inside of the class

27

Constructor
 we can now implement the constructor

 a constructor:

 must have the same name as the class

 never returns a value (not even void)

 constructors are not methods

 can have zero or more parameters

 the purpose of a constructor is to initialize the state of
an object

 it should set the values of the non-static fields to
appropriate values

 we should set the fields named real and imag

28

29

public class Complex {

 private double real;

 private double imag;

 public Complex(double real, double imag) {

 this.real = real;

 this.imag = imag;

 }

}

this

 every constructor and non-static method has a
parameter that does not explicitly appear in the
parameter list

 the parameter is called an implicit parameter and its
name in Java is always this

 in a constructor, this is a reference to the object
currently being constructed

30

this

 in our constructor

 public Complex(double real, double imag) {

 this.real = real;

 this.imag = imag;

 }

 this.real refers to the field named real

 this.imag refers to the field named imag

 real refers to the parameter named real

 imag refers to the parameter name imag

31

32

Complex z = new Complex(-1.5, 2.25);

64 client

z

600 Complex object

real

imag

700 Complex

constructor

this 600

real -1.5

imag 2.25

1. new allocates memory for a
Complex object

2. the Complex constructor is
invoked by passing the memory
address of the object and the
arguments -1.5 and 2.25 to the
constructor

3. the constructor runs, setting the
values of the fields this.real
and this.imag

4. the value of z is set to the
memory address of the
constructed object

-1.5

-2.25

600

fields

parameters

this

 in our constructor

 public Complex(double real, double imag) {

 this.real = real;

 this.imag = imag;

 }

 there are parameters with the same names as fields

 when this occurs, the parameter has precedence over the
field

 we say that the parameter shadows the field

 when shadowing occurs you must use this to refer to the field

33

