
Non-static classes 
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Non-static classes 
 a utility class has features (fields and methods) that 

are all static  

 all features belong to the class 

 therefore, you do not need objects to use those features 

 a well implemented utility class should have a single, empty private 
constructor to prevent the creation of objects 

 most Java classes are not utility classes 

 they are intended to be used to create to objects 

 each object has its own copy of all non-static fields 

 it is useful to imagine that each object has its own copy of 
all non-static methods 
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Why objects? 
 each object has its own copy of all non-static fields 

 this allows objects to have their own state   

 in Java the state of an object is the set of current values of all of its 
non-static fields 

 e.g., we can create multiple Fraction objects that all represent 
different fraction values 
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Fraction x = new Fraction(1, 2); 

Fraction y = new Fraction(-3, 8); 

Fraction z = new Fraction(5, 13); 
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Value Type Classes 
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 a value type is a class that represents a value 

 examples of values: name, date, colour, mathematical 
vector 

 Java examples: String, Date, Integer  

 

 the objects created from a value type class can be: 

 mutable: the state of the object can change 
 Date 

 immutable: the state of the object is constant once it is 
created 

 String, Integer (and all of the other primitive wrapper 
classes) 



Imaginary numbers 
 imaginary numbers occur when you try to take the 

square root of a negative value 

 for example, −1 has no value in the set of real numbers 

 mathematicians have found that it is very useful to say 
that there exists some number (not real) that when 
squared is equal to −1 

 this value is usually given the symbol 𝑖 or 𝑗 and is called the 
imaginary unit  

 

𝑖2 = −1 
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Imaginary numbers 
 an imaginary number is any real valued number 

multiplied by 𝑖 
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3𝑖 3𝑖 2 = −9 

−3𝑖 −3𝑖 2 = −9 

2.5𝑖 2.5𝑖 2 = −6.25 

0.01𝑖 0.01𝑖 2 = −0.0001 



Complex numbers 
 a complex number occurs when you add a real number 

and an imaginary number 

 e.g., 7 + 2𝑖  is a complex number 

 

 the imaginary part of a complex number is the 
imaginary number 

 e.g, the imaginary part of 7 + 2𝑖  is 2𝑖 

 

 the real part of a complex number is the real number 
(that was added to the imaginary part) 

 e.g, the imaginary part of 7 + 2𝑖  is 7 
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Complex numbers 
 more generally, we say that a complex number is a 

number that can be written as 

 
𝑎 + 𝑏𝑖 

 

   where 𝑎 and 𝑏 are real numbers and 𝑖 is the imaginary 
   unit 
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Why study complex numbers? 
 applications 

 any scientific or engineering application that involves 
vibrations, waves, or signals probably 

 complex analysis in mathematics 

 quantum mechanics in physics and chemistry 

 differential equations 

 many others 

 from an EECS1030 perspective 

 easily implemented value type 

 

 also, you can make pretty pictures 
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Mandelbrot set 
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Class Complex  
 when creating a class you should first analyze the 

requirements of the class 

 what fields does each object need? 

 how do you construct an object? 

 what methods should each object provide? 

 

 this information can be summarized in a UML class 
diagram 
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Class Complex  
 what fields does each Complex object need? 

 a field to represent the real part 

 a field to represent the complex part 
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Class Complex  
 what are appropriate types for the fields? 

 the real part 

 double  

 the complex part 

 double  
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Complex 

real : double 

imag : double 



Class Complex  
 how do you create a Complex object? 

 by specifying the values of the real and imaginary parts 
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Complex 

real : double 

imag : double 

Complex(double, double) 



What operations? 
 there are many possible operations involving complex 

numbers 

 implementing them all is impractical for our current 
purposes 

 we will consider the following 

 complex conjugate 

 absolute value 

 addition 

 multiplication 
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Complex conjugate 
 to compute the complex conjugate of a complex 

number, simply change the sign of the imaginary part 

 the complex conjugate of 

 

𝑎 + 𝑏𝑖  

 

    is 

 

 𝑎 + −𝑏 𝑖  

 

 note that the result is a complex number 
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Absolute value 
 the absolute value or magnitude of  

 

 𝑎 + 𝑏𝑖 

 

   is 

 

 𝑎2 + 𝑏2 

 

 note that the result is a real number 
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Addition 
 addition of two complex number is defined as 

 

 𝑎 + 𝑏𝑖 + 𝑐 + 𝑑𝑖 = 𝑎 + 𝑐 + 𝑏 + 𝑑 𝑖 

 

 that is, you sum the real parts and sum the imaginary 
parts separately 

 

 note that the result is a complex number 
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Multiplication 
 multiplication of two complex number is defined as 

 

 𝑎 + 𝑏𝑖 × 𝑐 + 𝑑𝑖 = 𝑎𝑐 − 𝑏𝑑 + 𝑏𝑐 + 𝑎𝑑 𝑖 

 

 you can easily derive this 

 

 note that the result is a complex number 
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Class Complex  
 what methods should Complex provide? 
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Complex 

real : double 

imag : double 

Complex(double, double) 

conj() : Complex 

abs() : double 

add(Complex) : Complex 

multiply(Complex) : Complex 



Class Complex  
 what other methods might a client find useful? 

 get the value of the real part 

 get the value of the imaginary part 

 set the value of the real part 

 set the value of the imaginary part 

 

 methods that get information about the state of an 
object are called accessor methods  

 methods that change the state of an object are called 
mutator methods  
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Class Complex  
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Complex 

real : double 

imag : double 

Complex(double, double) 

conj() : Complex 

abs() : double 

add(Complex) : Complex 

mult(Complex) : Complex 

getReal() : double 

getImag() : double 

setReal(double) : void 

setImag(double) : void 



Class Complex  
 there are three more important methods, but we will 

look at these later 
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Class and fields 
 start by creating the class and adding the fields 

 

 if you decide to organize your classes into packages, 
then you should first create the appropriate package 
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public class Complex { 

 

  private double real; 

  private double imag; 

 

} 



Class and fields 
 notice that the class is marked public  

 this means that the class is visible to all clients 

 notice that the fields are marked private  

 this means that the fields are visible only inside of the class 
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Constructor 
 we can now implement the constructor 

 a constructor: 

 must have the same name as the class 

 never returns a value (not even void) 

 constructors are not methods 

 can have zero or more parameters 

 the purpose of a constructor is to initialize the state of 
an object 

 it should set the values of the non-static fields to 
appropriate values 

 we should set the fields named real and imag  
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public class Complex { 

 

  private double real; 

  private double imag; 

 

  public Complex(double real, double imag) { 

    this.real = real; 

    this.imag = imag; 

  } 

} 



this 

 every constructor and non-static method has a 
parameter that does not explicitly appear in the 
parameter list 

 the parameter is called an implicit parameter and its 
name in Java is always this  

 in a constructor, this is a reference to the object 
currently being constructed 
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this 

 in our constructor 

 
 public Complex(double real, double imag) { 

    this.real = real; 

    this.imag = imag; 

  } 

 

  this.real refers to the field named real  

  this.imag refers to the field named imag  

  real refers to the parameter named real  

  imag refers to the parameter name imag  
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Complex z = new Complex(-1.5, 2.25); 
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this 

 in our constructor 

 
 public Complex(double real, double imag) { 

    this.real = real; 

    this.imag = imag; 

  } 

 

   there are parameters with the same names as fields 

 when this occurs, the parameter has precedence over the 
field 

 we say that the parameter shadows the field  

 when shadowing occurs you must use this to refer to the field 

33 


