
Utilities (Part 3)

Implementing static features

1

Goals for Today

2

 learn about preconditions versus validation

 introduction to documentation

 introduction to testing

Yahtzee class so far
 recall our implementation of the Yahtzee class so far

 private constructor to prevent instantiation

 public constant field that represents the number of dice

 public method that determines if a list of dice represents a
roll of three-of-a-kind

3

4

import java.util.Collections;

import java.util.ArrayList;

import java.util.List;

public class Yahtzee {

 private Yahtzee() {

 // private and empty by design

 }

 public static final int NUMBER_OF_DICE = 5;

 public static boolean isThreeOfAKind(List<Die> dice) {

 List<Die> copy = new ArrayList<Die>(dice);

 Collections.sort(copy);

 boolean result = copy.get(0).getValue() == copy.get(2).getValue() ||

 copy.get(1).getValue() == copy.get(3).getValue() ||

 copy.get(2).getValue() == copy.get(4).getValue();

 return result;

 }

}

Yahtzee client: Not enough dice
 consider the following client program that tries to use

our utility class using fewer than 5 dice

5

6

import java.util.ArrayList;

import java.util.List;

public class YahtzeeClient {

 public static void main(String[] args) {

 final int N_DICE = 3; // NOT ENOUGH DICE

 List<Die> dice = new ArrayList<Die>();

 for (int i = 0; i < N_DICE; i++) {

 dice.add(new Die());

 }

 System.out.print("Dice: " + dice.get(0).getValue());

 for (int i = 1; i < N_DICE; i++) {

 System.out.print(", " + dice.get(i).getValue());

 }

 System.out.println();

 boolean isThree = Yahtzee.isThreeOfAKind(dice);

 System.out.println("three of a kind?: " + isThree);

 }

}

Yahtzee client: Not enough dice
 the output of the program is:

Dice: 5, 4, 4

Exception in thread "main"
java.lang.IndexOutOfBoundsException: Index: 3, Size: 3

at java.util.ArrayList.RangeCheck(Unknown Source)

at java.util.ArrayList.get(Unknown Source)

at Yahtzee.isThreeOfAKind(Yahtzee.java:38)

at YahtzeeClient.main(YahtzeeClient.java:19)

7

Yahtzee client: Too many dice
 consider the following client program that tries to use

our utility class using more than 5 dice

8

9

import java.util.ArrayList;

import java.util.List;

public class YahtzeeClient {

 public static void main(String[] args) {

 final int N_DICE = 7; // TOO MANY DICE

 List<Die> dice = new ArrayList<Die>();

 for (int i = 0; i < N_DICE; i++) {

 dice.add(new Die());

 }

 System.out.print("Dice: " + dice.get(0).getValue());

 for (int i = 1; i < N_DICE; i++) {

 System.out.print(", " + dice.get(i).getValue());

 }

 System.out.println();

 boolean isThree = Yahtzee.isThreeOfAKind(dice);

 System.out.println("three of a kind?: " + isThree);

 }

}

Yahtzee client: Too many dice
 the program seems to work sometimes:

Dice: 3, 2, 2, 5, 2, 4, 1

three of a kind?: true

 but fails sometimes:

Dice: 6, 3, 3, 6, 6, 5, 5

three of a kind?: false

10

Preconditions and postconditions
 recall the meaning of method pre- and postconditions

 precondition

 a condition that the client must ensure is true immediately
before a method is invoked

 postcondtion

 a condition that the method must ensure is true
immediately after the method is invoked

11

Who is responsible?
 our method isThreeOfAKind clearly fails if the

client uses the wrong number of dice

 we say that the method cannot satisfy its postcondition if
the client uses the wrong number of dice

 as the implementer, we should advertise this fact as
part of the method API

 as the implementer, we also need to decide who is
responsible if a client uses the wrong number of dice

12

Client is responsible: Preconditions
 as the implementer, we can choose to make the client

responsible for errors caused by using the wrong
number of dice

 we do this by stating in the API that the method has a
precondition

 we'll see exactly how to do this in Java shortly

13

Client is responsible: Preconditions
 recall that a method precondition is a condition that

the client must ensure is true immediately before
invoking a method

 if the precondition is not true, then the client has no
guarantees of what the method will do

 for utility class methods, preconditions are conditions
on the values of the arguments passed to the method
 e.g., in our current implementation of isThreeOfAKind

the number of dice must be 5

14

Implementer is responsible: Validation
 as the implementer, we can choose to specify precisely

what happens if the method cannot satisfy its
postcondition given the arguments provided by the
client

 this often requires that the method implementation
validate its parameters
 e.g., isThreeOfAKind would have to check that the client

has used a list argument containing 5 dice

15

16

 public static boolean isThreeOfAKind(List<Die> dice) {

 if (dice.size() != Yahtzee.NUMBER_OF_DICE) {

 throw new IllegalArgumentException("wrong number of dice: " +
 dice.size());

 }

 List<Die> copy = new ArrayList<Die>(dice);

 Collections.sort(copy);

 boolean result = copy.get(0).getValue() == copy.get(2).getValue() ||

 copy.get(1).getValue() == copy.get(3).getValue() ||

 copy.get(2).getValue() == copy.get(4).getValue();

 return result;

 }

Documenting
 documenting code was not a new idea when Java was

invented

 however, Java was the first major language to embed
documentation in the code and extract the documentation
into readable electronic APIs

 the tool that generates API documents from comments
embedded in the code is called Javadoc

17

Documenting
 Javadoc processes doc comments that immediately

precede a class, attribute, constructor or method
declaration

 doc comments delimited by /** and */

 doc comment written in HTML and made up of two parts

1. a description

 first sentence of description gets copied to the summary section

 only one description block; can use <p> to create separate
paragraphs

2. block tags

 begin with @ (@param, @return, @throws and many others)

 @pre. is a non-standard (custom tag used in EECS1030) for
documenting preconditions

 18

Method documentation example

/**

 *

 * @param dice

 * @return

 */

public static boolean isThreeOfAKind(List<Die> dice) {

 // implementation not shown

}

19

Eclipse will generate an empty Javadoc comment for you if you right-click on
the method header and choose SourceGenerate Element Comment

Method documentation example

/**

 * Returns true if the list dice contains a three-of-a-kind.

 *

 * @param dice

 * @return

 */

public static boolean isThreeOfAKind(List<Die> dice) {

 // implementation not shown

}

20

The first sentence of the documentation should be short summary of the
method; this sentence appears in the method summary section.

Method documentation example

/**

 * Returns true if the list dice contains a three-of-a-kind.

 *

 * <p>A three of a kind is defined as at least three dice having

 * the same value.

 *

 * @param dice

 * @return

 */

public static boolean isThreeOfAKind(List<Die> dice) {

 // implementation not shown

}

21

If you want separate paragraphs in your documentation, you need to use
the html paragraph tag <p> to start a new paragraph.

Method documentation example

/**

 * Returns true if the list dice contains a three-of-a-kind.

 *

 * <p>A three of a kind is defined as at least three dice having

 * the same value.

 *

 * @param dice list of dice representing the roll

 * @return

 */

public static boolean isThreeOfAKind(List<Die> dice) {

 // implementation not shown

}

22

You should provide a brief description of each parameter.

Method documentation example

/**

 * Returns true if the list dice contains a three-of-a-kind.

 *

 * <p>A three of a kind is defined as at least three dice having

 * the same value.

 *

 * @param dice list of dice representing the roll

 * @return true if dice contains three-of-a-kind, false otherwise

 */

public static boolean isThreeOfAKind(List<Die> dice) {

 // implementation not shown

}

23

Provide a brief description of the return value if the return type is not
void. This description often describes a postcondition of the method.

Method documentation example
 if a method has one or more preconditions, you should

use the EECS1011 specific @pre. tag to document them

 e.g., if we were documenting our original version of
isThreeOfAKind we would use an @pre. tag to document
the precondition
dice.size() == Yahtzee.NUMBER_OF_DICE

24

Method documentation example

/**

 * Returns true if the list dice contains a three-of-a-kind.

 *

 * <p>A three of a kind is defined as at least three dice having

 * the same value.

 *

 * @param dice list of dice representing the roll

 * @pre. dice.size() == Yahtzee.NUMBER_OF_DICE

 * @return true if dice contains three-of-a-kind, false otherwise

 */

public static boolean isThreeOfAKind(List<Die> dice) {

 // implementation not shown

}

25

Describe any preconditions using the EECS1011 specific @pre. tag.

Method documentation example
 if a method throws an exception (perhaps as a result of

failing to validate a parameter) then you should use
the @throws tag to document the exception

 e.g., if we were documenting our second version of
isThreeOfAKind we would use the @throws tag to
document the exception that is thrown if
dice.size() != Yahtzee.NUMBER_OF_DICE

26

Method documentation example

/**

 * Returns true if the list dice contains a three-of-a-kind.

 *

 * <p>A three of a kind is defined as at least three dice having

 * the same value.

 *

 * @param dice list of dice representing the roll

 * @return true if dice contains three-of-a-kind, false otherwise

 * @throws IllegalArgumentException if dice.size() !=
 Yahtzee.NUMBER_OF_DICE

 */

public static boolean isThreeOfAKind(List<Die> dice) {

 // implementation not shown

}

 27

Use a @throws tag to document each exception that might be thrown by
your method.

Documenting fields
 all public fields should have a Javadoc comment

describing the field

 Eclipse will generate an empty Javadoc comment for you if
you right-click on the field declaration and choose
SourceGenerate Element Comment

28

Field documentation example
public class Yahtzee {

 /**

 * The number of six-sided dice used in a standard game
 * of Yahtzee.

 */

 public static final int NUMBER_OF_DICE = 5;

29

Documenting classes
 all classes should contain a description of the class

 Eclipse will generate an empty Javadoc comment for you if
you right-click on the field declaration and choose
SourceGenerate Element Comment

 the description of a class can be quite detailed for
sophisticated classes

 e.g., java.lang.String

 you should describe the purpose of the class and any
other information that might be important to clients

 but normally you do not describe the implementation
details of the class

30

Class documentation example
/**

 * A utility class that encodes a subset of the rules for

 * the game Yahtzee.

 *

 * <p>A description of the scoring categories can be

 * found on the

 * Yahtzee Wikipedia web page.

 *

 * @author EECS1011E_W15

 *

 */

public class Yahtzee {

 // implementation not shown

}

31

javadoc Documentation
 Oracle's how-to page

 http://www.oracle.com/technetwork/articles/java/index-
137868.html

 also see the examples in the course notes

32

http://www.oracle.com/technetwork/articles/java/index-137868.html
http://www.oracle.com/technetwork/articles/java/index-137868.html
http://www.oracle.com/technetwork/articles/java/index-137868.html
http://www.oracle.com/technetwork/articles/java/index-137868.html

