
Utilities (Part 3)

Implementing static features

1

Goals for Today

2

 learn about preconditions versus validation

 introduction to documentation

 introduction to testing

Yahtzee class so far
 recall our implementation of the Yahtzee class so far

 private constructor to prevent instantiation

 public constant field that represents the number of dice

 public method that determines if a list of dice represents a
roll of three-of-a-kind

3

4

import java.util.Collections;

import java.util.ArrayList;

import java.util.List;

public class Yahtzee {

 private Yahtzee() {

 // private and empty by design

 }

 public static final int NUMBER_OF_DICE = 5;

 public static boolean isThreeOfAKind(List<Die> dice) {

 List<Die> copy = new ArrayList<Die>(dice);

 Collections.sort(copy);

 boolean result = copy.get(0).getValue() == copy.get(2).getValue() ||

 copy.get(1).getValue() == copy.get(3).getValue() ||

 copy.get(2).getValue() == copy.get(4).getValue();

 return result;

 }

}

Yahtzee client: Not enough dice
 consider the following client program that tries to use

our utility class using fewer than 5 dice

5

6

import java.util.ArrayList;

import java.util.List;

public class YahtzeeClient {

 public static void main(String[] args) {

 final int N_DICE = 3; // NOT ENOUGH DICE

 List<Die> dice = new ArrayList<Die>();

 for (int i = 0; i < N_DICE; i++) {

 dice.add(new Die());

 }

 System.out.print("Dice: " + dice.get(0).getValue());

 for (int i = 1; i < N_DICE; i++) {

 System.out.print(", " + dice.get(i).getValue());

 }

 System.out.println();

 boolean isThree = Yahtzee.isThreeOfAKind(dice);

 System.out.println("three of a kind?: " + isThree);

 }

}

Yahtzee client: Not enough dice
 the output of the program is:

Dice: 5, 4, 4

Exception in thread "main"
java.lang.IndexOutOfBoundsException: Index: 3, Size: 3

at java.util.ArrayList.RangeCheck(Unknown Source)

at java.util.ArrayList.get(Unknown Source)

at Yahtzee.isThreeOfAKind(Yahtzee.java:38)

at YahtzeeClient.main(YahtzeeClient.java:19)

7

Yahtzee client: Too many dice
 consider the following client program that tries to use

our utility class using more than 5 dice

8

9

import java.util.ArrayList;

import java.util.List;

public class YahtzeeClient {

 public static void main(String[] args) {

 final int N_DICE = 7; // TOO MANY DICE

 List<Die> dice = new ArrayList<Die>();

 for (int i = 0; i < N_DICE; i++) {

 dice.add(new Die());

 }

 System.out.print("Dice: " + dice.get(0).getValue());

 for (int i = 1; i < N_DICE; i++) {

 System.out.print(", " + dice.get(i).getValue());

 }

 System.out.println();

 boolean isThree = Yahtzee.isThreeOfAKind(dice);

 System.out.println("three of a kind?: " + isThree);

 }

}

Yahtzee client: Too many dice
 the program seems to work sometimes:

Dice: 3, 2, 2, 5, 2, 4, 1

three of a kind?: true

 but fails sometimes:

Dice: 6, 3, 3, 6, 6, 5, 5

three of a kind?: false

10

Preconditions and postconditions
 recall the meaning of method pre- and postconditions

 precondition

 a condition that the client must ensure is true immediately
before a method is invoked

 postcondtion

 a condition that the method must ensure is true
immediately after the method is invoked

11

Who is responsible?
 our method isThreeOfAKind clearly fails if the

client uses the wrong number of dice

 we say that the method cannot satisfy its postcondition if
the client uses the wrong number of dice

 as the implementer, we should advertise this fact as
part of the method API

 as the implementer, we also need to decide who is
responsible if a client uses the wrong number of dice

12

Client is responsible: Preconditions
 as the implementer, we can choose to make the client

responsible for errors caused by using the wrong
number of dice

 we do this by stating in the API that the method has a
precondition

 we'll see exactly how to do this in Java shortly

13

Client is responsible: Preconditions
 recall that a method precondition is a condition that

the client must ensure is true immediately before
invoking a method

 if the precondition is not true, then the client has no
guarantees of what the method will do

 for utility class methods, preconditions are conditions
on the values of the arguments passed to the method
 e.g., in our current implementation of isThreeOfAKind

the number of dice must be 5

14

Implementer is responsible: Validation
 as the implementer, we can choose to specify precisely

what happens if the method cannot satisfy its
postcondition given the arguments provided by the
client

 this often requires that the method implementation
validate its parameters
 e.g., isThreeOfAKind would have to check that the client

has used a list argument containing 5 dice

15

16

 public static boolean isThreeOfAKind(List<Die> dice) {

 if (dice.size() != Yahtzee.NUMBER_OF_DICE) {

 throw new IllegalArgumentException("wrong number of dice: " +
 dice.size());

 }

 List<Die> copy = new ArrayList<Die>(dice);

 Collections.sort(copy);

 boolean result = copy.get(0).getValue() == copy.get(2).getValue() ||

 copy.get(1).getValue() == copy.get(3).getValue() ||

 copy.get(2).getValue() == copy.get(4).getValue();

 return result;

 }

Documenting
 documenting code was not a new idea when Java was

invented

 however, Java was the first major language to embed
documentation in the code and extract the documentation
into readable electronic APIs

 the tool that generates API documents from comments
embedded in the code is called Javadoc

17

Documenting
 Javadoc processes doc comments that immediately

precede a class, attribute, constructor or method
declaration

 doc comments delimited by /** and */

 doc comment written in HTML and made up of two parts

1. a description

 first sentence of description gets copied to the summary section

 only one description block; can use <p> to create separate
paragraphs

2. block tags

 begin with @ (@param, @return, @throws and many others)

 @pre. is a non-standard (custom tag used in EECS1030) for
documenting preconditions

 18

Method documentation example

/**

 *

 * @param dice

 * @return

 */

public static boolean isThreeOfAKind(List<Die> dice) {

 // implementation not shown

}

19

Eclipse will generate an empty Javadoc comment for you if you right-click on
the method header and choose SourceGenerate Element Comment

Method documentation example

/**

 * Returns true if the list dice contains a three-of-a-kind.

 *

 * @param dice

 * @return

 */

public static boolean isThreeOfAKind(List<Die> dice) {

 // implementation not shown

}

20

The first sentence of the documentation should be short summary of the
method; this sentence appears in the method summary section.

Method documentation example

/**

 * Returns true if the list dice contains a three-of-a-kind.

 *

 * <p>A three of a kind is defined as at least three dice having

 * the same value.

 *

 * @param dice

 * @return

 */

public static boolean isThreeOfAKind(List<Die> dice) {

 // implementation not shown

}

21

If you want separate paragraphs in your documentation, you need to use
the html paragraph tag <p> to start a new paragraph.

Method documentation example

/**

 * Returns true if the list dice contains a three-of-a-kind.

 *

 * <p>A three of a kind is defined as at least three dice having

 * the same value.

 *

 * @param dice list of dice representing the roll

 * @return

 */

public static boolean isThreeOfAKind(List<Die> dice) {

 // implementation not shown

}

22

You should provide a brief description of each parameter.

Method documentation example

/**

 * Returns true if the list dice contains a three-of-a-kind.

 *

 * <p>A three of a kind is defined as at least three dice having

 * the same value.

 *

 * @param dice list of dice representing the roll

 * @return true if dice contains three-of-a-kind, false otherwise

 */

public static boolean isThreeOfAKind(List<Die> dice) {

 // implementation not shown

}

23

Provide a brief description of the return value if the return type is not
void. This description often describes a postcondition of the method.

Method documentation example
 if a method has one or more preconditions, you should

use the EECS1011 specific @pre. tag to document them

 e.g., if we were documenting our original version of
isThreeOfAKind we would use an @pre. tag to document
the precondition
dice.size() == Yahtzee.NUMBER_OF_DICE

24

Method documentation example

/**

 * Returns true if the list dice contains a three-of-a-kind.

 *

 * <p>A three of a kind is defined as at least three dice having

 * the same value.

 *

 * @param dice list of dice representing the roll

 * @pre. dice.size() == Yahtzee.NUMBER_OF_DICE

 * @return true if dice contains three-of-a-kind, false otherwise

 */

public static boolean isThreeOfAKind(List<Die> dice) {

 // implementation not shown

}

25

Describe any preconditions using the EECS1011 specific @pre. tag.

Method documentation example
 if a method throws an exception (perhaps as a result of

failing to validate a parameter) then you should use
the @throws tag to document the exception

 e.g., if we were documenting our second version of
isThreeOfAKind we would use the @throws tag to
document the exception that is thrown if
dice.size() != Yahtzee.NUMBER_OF_DICE

26

Method documentation example

/**

 * Returns true if the list dice contains a three-of-a-kind.

 *

 * <p>A three of a kind is defined as at least three dice having

 * the same value.

 *

 * @param dice list of dice representing the roll

 * @return true if dice contains three-of-a-kind, false otherwise

 * @throws IllegalArgumentException if dice.size() !=
 Yahtzee.NUMBER_OF_DICE

 */

public static boolean isThreeOfAKind(List<Die> dice) {

 // implementation not shown

}

 27

Use a @throws tag to document each exception that might be thrown by
your method.

Documenting fields
 all public fields should have a Javadoc comment

describing the field

 Eclipse will generate an empty Javadoc comment for you if
you right-click on the field declaration and choose
SourceGenerate Element Comment

28

Field documentation example
public class Yahtzee {

 /**

 * The number of six-sided dice used in a standard game
 * of Yahtzee.

 */

 public static final int NUMBER_OF_DICE = 5;

29

Documenting classes
 all classes should contain a description of the class

 Eclipse will generate an empty Javadoc comment for you if
you right-click on the field declaration and choose
SourceGenerate Element Comment

 the description of a class can be quite detailed for
sophisticated classes

 e.g., java.lang.String

 you should describe the purpose of the class and any
other information that might be important to clients

 but normally you do not describe the implementation
details of the class

30

Class documentation example
/**

 * A utility class that encodes a subset of the rules for

 * the game Yahtzee.

 *

 * <p>A description of the scoring categories can be

 * found on the

 * Yahtzee Wikipedia web page.

 *

 * @author EECS1011E_W15

 *

 */

public class Yahtzee {

 // implementation not shown

}

31

javadoc Documentation
 Oracle's how-to page

 http://www.oracle.com/technetwork/articles/java/index-
137868.html

 also see the examples in the course notes

32

http://www.oracle.com/technetwork/articles/java/index-137868.html
http://www.oracle.com/technetwork/articles/java/index-137868.html
http://www.oracle.com/technetwork/articles/java/index-137868.html
http://www.oracle.com/technetwork/articles/java/index-137868.html

