
Utilities (Part 1)

Implementing static features

1

Goals for Today
 definition of a utility class

 initiate the design of a utility class

 learn about class attributes

 public

 static

 final

2

Review: Java Class

3

 a class is a model of a thing or concept

 in Java, a class is usually a blueprint for creating
objects

 fields (or attributes)

 the structure of an object; its components and the information
(data) contained by the object

 methods

 the behaviour of an object; what an object can do

Utility classes
 sometimes, it is useful to create a class called a utility

class that is not used to create objects

 such classes have no constructors for a client to use to
create objects

 in a utility class, all features are marked as being
static

 you use the class name to access these features

 examples of utility classes:
 java.lang.Math

 java.util.Arrays

 java.util.Collections

4

Utility classes
 the purpose of a utility class is to group together

related fields and methods where creating an object is
not necessary

 java.lang.Math

 groups mathematical constants and functions

 do not need a Math object to compute the cosine of a
number

 java.util.Collections

 groups methods that operate on Java collections

 do not need a Collections object to sort an existing
List

5

A simple utility class
 implement a utility class that helps you calculate

Einstein's famous mass-energy equivalence equation
E = mc2 where

 m is mass (in kilograms)

 c is the speed of light (in metres per second)

 E is energy (in joules)

6

7

public class Relativity {

 public static final double C = 299792458;

 public static double massEnergy(double mass) {

 return mass * Relativity.C * Relativity.C;

 }

}

Start by giving the class a name and creating the class body block.

8

public class Relativity {

 public static final double C = 299792458;

 public static double massEnergy(double mass) {

 return mass * Relativity.C * Relativity.C;

 }

}

Add a field that represents the speed of light.

9

public class Relativity {

 public static final double C = 299792458;

 public static double massEnergy(double mass) {

 return mass * Relativity.C * Relativity.C;

 }

}

Add a method to compute 𝐸 = 𝑚𝑐2.

Utility class for a game

10

 the game Yahtzee

 use the link above to see the rules of the game

 why?

 opportunity to solve small computational problems that are
related to much harder problems

http://barefootliam-stock.deviantart.com/art/five-ivory-dice-97476774

http://en.wikipedia.org/wiki/Yahtzee
http://barefootliam-stock.deviantart.com/art/five-ivory-dice-97476774
http://barefootliam-stock.deviantart.com/art/five-ivory-dice-97476774
http://barefootliam-stock.deviantart.com/art/five-ivory-dice-97476774
http://barefootliam-stock.deviantart.com/art/five-ivory-dice-97476774
http://barefootliam-stock.deviantart.com/art/five-ivory-dice-97476774
http://barefootliam-stock.deviantart.com/art/five-ivory-dice-97476774
http://barefootliam-stock.deviantart.com/art/five-ivory-dice-97476774
http://barefootliam-stock.deviantart.com/art/five-ivory-dice-97476774
http://barefootliam-stock.deviantart.com/art/five-ivory-dice-97476774

Yahtzee Roll Categories

11

 if I gave you a List<Die> containing 5 dice can you
write a Java program that determines if the roll
belongs to a particular category?
 http://www.eecs.yorku.ca/course_archive/2012-13/W/1030/Z/labs/01/doc/

Category Description Example

Three of a kind at least three dice having the same value 6-2-3-2-2

Four of a kind at least four dice having the same value 5-5-5-1-5

Full house three-of-a-kind and a pair 2-3-3-2-3

Small straight at least four sequential dice 3-1-3-4-2

Large straight five sequential dice 5-1-3-4-2

Yahtzee all five dice having the same value 4-4-4-4-4

http://www.eecs.yorku.ca/course_archive/2012-13/W/1030/Z/labs/01/doc/
http://www.eecs.yorku.ca/course_archive/2012-13/W/1030/Z/labs/01/doc/
http://www.eecs.yorku.ca/course_archive/2012-13/W/1030/Z/labs/01/doc/
http://www.eecs.yorku.ca/course_archive/2012-13/W/1030/Z/labs/01/doc/

Yahtzee Roll Categories

12

 there are several different approaches that you can use
to determine if a roll belongs to a particular category

 try to find a few different approaches for each category

 however, starting by sorting the list of dice simplifies
the problem

Sorting a List

13

 you can sort a List<Die> by using the sort method
in the utility class java.util.Collections

// dice is a List<Die> reference

Collections.sort(dice);

Why Does Sorting Help?
 sorting reduces the number of cases that you have to

check; consider the category three-of-a-kind

 after sorting the dice you only have to check if one of three
cases are true

14

X X X

X X X

X X X

case 1

case 2

case 3
don't care

about the

values of the

blank dice

Three-of-a-kind?

// dice is a List<Die> reference

Collections.sort(dice);

boolean isThreeOfAKind =

 dice.get(0).getValue() == dice.get(2).getValue() ||

 dice.get(1).getValue() == dice.get(3).getValue() ||

 dice.get(2).getValue() == dice.get(4).getValue();

15

Designing a Class

16

 to decide what fields and methods a class must
provide, you need to understand the problem you are
trying to solve

 the fields and methods you provide (the abstraction you
provide) depends entirely on the requirements of the
problem

Person

appearance
voice
…

draw()
talk()
…

Person

age
photograph

…

compatibleWith(Person)
contact ()

…

video game person dating service person

class name

fields

methods

A Class for Yahtzee

17

 design a class to encapsulate features of Yahtzee

 what fields are needed?

 number of dice

 note: the number of dice never changes; it is genuinely a constant
value for the game called Yahtzee

 fields that are constant have all uppercase names

Yahtzee

+ NUMBER_OF_DICE: int

field type

Version 1

18

public class Yahtzee {

 public static final int NUMBER_OF_DICE = 5;

}

Fields

19

 a field is a member that holds data

 a constant field is usually declared by specifying

1. modifiers

1. access modifier public

2. static modifier static

3. final modifier final

2. type int

3. name NUMBER_OF_DICE

4. value 5

public static final int NUMBER_OF_DICE = 5;

Fields

20

 field names must be unique in a class

 the scope of a field is the entire class

 [JBA] and [notes] use the term "field" only for public
fields

public Fields

21

 a public field is visible to all clients

public class NothingToHide {

 public int x; // always positive

}

// client of NothingToHide

NothingToHide h = new NothingToHide();

h.x = 100;

public Fields

22

 public fields break encapsulation

 a NothingToHide object has no control over the value of x

 a client can put a NothingToHide object into an invalid
state because the client has direct access to a public field

public class NothingToHide {

 public int x; // always positive

}

// client of NothingToHide

NothingToHide h = new NothingToHide();

h.x = 100;

h.x = -5; // not positive

public Fields

23

 a public field makes a class brittle in the face of
change

 public fields are hard to change

 they are part of the class API

 changing access or type will break exisiting client code

public class NothingToHide {

 private int x; // always positive

}

// existing client of NothingToHide

NothingToHide h = new NothingToHide();

h.x = 100; // no longer compiles

public Fields

24

 avoid public fields in production code

 except when you want to expose constant value types

static Fields

25

 a field that is static is a per-class member

 only one copy of the field, and the field is associated with
the class

 every object created from a class declaring a static field shares the
same copy of the field

 textbook uses the term static variable

 also commonly called class variable

static Fields

26

Yahtzee y = new Yahtzee();

Yahtzee z = new Yahtzee();

64 client invocation

y

see [JBA 4.3.3] for another example

500 Yahtzee class

NUMBER_OF_DICE 5

1000 Yahtzee object

???

1100 Yahtzee object

???

z

1000

1100

belongs to class

no copy of
NUMBER_OF_DICE

static Field Client Access

27

 a client should access a public static field
without using an object

 use the class name followed by a period followed by the
attribute name

// client of Yahtzee

List<Die> dice = new List<Die>();

for(int i = 0; i < Yahtzee.NUMBER_OF_DICE; i++) {

 dice.add(new Die(6));

}

static Attribute Client Access

28

 it is legal, but considered bad form, to access a public
static attribute using an object

// client of Yahtzee; avoid doing this

Yahtzee y = new Yahtzee();

List<Die> dice = new List<Die>();

for(int i = 0; i < y.NUMBER_OF_DICE; i++) {

 dice.add(new Die(6));

}

final Fields

29

 an field that is final can only be assigned to once

 public static final attributes are typically assigned
when they are declared

public static final int NUMBER_OF_DICE = 5;

 public static final attributes are intended to be
constant values that are a meaningful part of the
abstraction provided by the class

final Fields of Primitive Types

30

 final fields of primitive types are constant

public class AlsoNothingToHide {

 public static final int X = 100;

}

// client of AlsoNothingToHide

AlsoNothingToHide.X = 88; // will not compile;

 // field X is final and

 // previously assigned

final Fields of Immutable Types

31

 final fields of immutable types are constant

 String is immutable

 it has no methods to change its contents

public class StillNothingToHide {

 public static final String X = "peek-a-boo";

}

// client of StillNothingToHide

StillNothingToHide.X = "i-see-you";

 // will not compile;

 // field X is final and

 // previously assigned

final Fields of Mutable Types

32

 final fields of mutable types are not logically
constant; their state can be changed

public class ReallyNothingToHide {

 public static final Fraction HALF =

 new Fraction(1, 2);

}

// client of ReallyNothingToHide

Fraction third = new Fraction(1, 3);

ReallyNothingToHide.HALF = third; // will not compile;

 // HALF is final and

 // already assigned

ReallyNothingToHide.HALF.setDenominator(3); // works!!

 // HALF is now 1/3

final Fields of Mutable Types

33

ReallyNothingToHide class

final HALF 192 700

:

700 Fraction obj

:

not final! numerator 1

not final! denominator 2

ReallyNothingToHide.HALF.setDenominator(3);

3

final Fields of Mutable Types

34

 final fields of mutable types are not logically
constant; their state can be changed

public class LastNothingToHide {

 public static final ArrayList<Integer> X =

 new ArrayList<Integer>();

}

// client of LastNothingToHide

ArrayList<Integer> y = new ArrayList<Integer>();

LastNothingToHide.X = y; // will not compile;

 // attribute is final and

 // previously assigned

LastNothingToHide.X.add(10000);

 // works!

 // X is no longer empty

final Attributes

35

 avoid using mutable types as public constants

 they are not logically constant

Puzzle

36

 what does the following program print?

public class What

{

 public static void main(String[] args)

 {

 final long

 MICROS_PER_DAY = 24 * 60 * 60 * 1000 * 1000;

 final long

 MILLIS_PER_DAY = 24 * 60 * 60 * 1000;

 System.out.println(MICROS_PER_DAY / MILLIS_PER_DAY);

 }

}

