
Utilities (Part 1)

Implementing static features

1

Goals for Today
 definition of a utility class

 initiate the design of a utility class

 learn about class attributes

 public

 static

 final

2

Review: Java Class

3

 a class is a model of a thing or concept

 in Java, a class is usually a blueprint for creating
objects

 fields (or attributes)

 the structure of an object; its components and the information
(data) contained by the object

 methods

 the behaviour of an object; what an object can do

Utility classes
 sometimes, it is useful to create a class called a utility

class that is not used to create objects

 such classes have no constructors for a client to use to
create objects

 in a utility class, all features are marked as being
static

 you use the class name to access these features

 examples of utility classes:
 java.lang.Math

 java.util.Arrays

 java.util.Collections

4

Utility classes
 the purpose of a utility class is to group together

related fields and methods where creating an object is
not necessary

 java.lang.Math

 groups mathematical constants and functions

 do not need a Math object to compute the cosine of a
number

 java.util.Collections

 groups methods that operate on Java collections

 do not need a Collections object to sort an existing
List

5

A simple utility class
 implement a utility class that helps you calculate

Einstein's famous mass-energy equivalence equation
E = mc2 where

 m is mass (in kilograms)

 c is the speed of light (in metres per second)

 E is energy (in joules)

6

7

public class Relativity {

 public static final double C = 299792458;

 public static double massEnergy(double mass) {

 return mass * Relativity.C * Relativity.C;

 }

}

Start by giving the class a name and creating the class body block.

8

public class Relativity {

 public static final double C = 299792458;

 public static double massEnergy(double mass) {

 return mass * Relativity.C * Relativity.C;

 }

}

Add a field that represents the speed of light.

9

public class Relativity {

 public static final double C = 299792458;

 public static double massEnergy(double mass) {

 return mass * Relativity.C * Relativity.C;

 }

}

Add a method to compute 𝐸 = 𝑚𝑐2.

Utility class for a game

10

 the game Yahtzee

 use the link above to see the rules of the game

 why?

 opportunity to solve small computational problems that are
related to much harder problems

http://barefootliam-stock.deviantart.com/art/five-ivory-dice-97476774

http://en.wikipedia.org/wiki/Yahtzee
http://barefootliam-stock.deviantart.com/art/five-ivory-dice-97476774
http://barefootliam-stock.deviantart.com/art/five-ivory-dice-97476774
http://barefootliam-stock.deviantart.com/art/five-ivory-dice-97476774
http://barefootliam-stock.deviantart.com/art/five-ivory-dice-97476774
http://barefootliam-stock.deviantart.com/art/five-ivory-dice-97476774
http://barefootliam-stock.deviantart.com/art/five-ivory-dice-97476774
http://barefootliam-stock.deviantart.com/art/five-ivory-dice-97476774
http://barefootliam-stock.deviantart.com/art/five-ivory-dice-97476774
http://barefootliam-stock.deviantart.com/art/five-ivory-dice-97476774

Yahtzee Roll Categories

11

 if I gave you a List<Die> containing 5 dice can you
write a Java program that determines if the roll
belongs to a particular category?
 http://www.eecs.yorku.ca/course_archive/2012-13/W/1030/Z/labs/01/doc/

Category Description Example

Three of a kind at least three dice having the same value 6-2-3-2-2

Four of a kind at least four dice having the same value 5-5-5-1-5

Full house three-of-a-kind and a pair 2-3-3-2-3

Small straight at least four sequential dice 3-1-3-4-2

Large straight five sequential dice 5-1-3-4-2

Yahtzee all five dice having the same value 4-4-4-4-4

http://www.eecs.yorku.ca/course_archive/2012-13/W/1030/Z/labs/01/doc/
http://www.eecs.yorku.ca/course_archive/2012-13/W/1030/Z/labs/01/doc/
http://www.eecs.yorku.ca/course_archive/2012-13/W/1030/Z/labs/01/doc/
http://www.eecs.yorku.ca/course_archive/2012-13/W/1030/Z/labs/01/doc/

Yahtzee Roll Categories

12

 there are several different approaches that you can use
to determine if a roll belongs to a particular category

 try to find a few different approaches for each category

 however, starting by sorting the list of dice simplifies
the problem

Sorting a List

13

 you can sort a List<Die> by using the sort method
in the utility class java.util.Collections

// dice is a List<Die> reference

Collections.sort(dice);

Why Does Sorting Help?
 sorting reduces the number of cases that you have to

check; consider the category three-of-a-kind

 after sorting the dice you only have to check if one of three
cases are true

14

X X X

X X X

X X X

case 1

case 2

case 3
don't care

about the

values of the

blank dice

Three-of-a-kind?

// dice is a List<Die> reference

Collections.sort(dice);

boolean isThreeOfAKind =

 dice.get(0).getValue() == dice.get(2).getValue() ||

 dice.get(1).getValue() == dice.get(3).getValue() ||

 dice.get(2).getValue() == dice.get(4).getValue();

15

Designing a Class

16

 to decide what fields and methods a class must
provide, you need to understand the problem you are
trying to solve

 the fields and methods you provide (the abstraction you
provide) depends entirely on the requirements of the
problem

Person

appearance
voice
…

draw()
talk()
…

Person

age
photograph

…

compatibleWith(Person)
contact ()

…

video game person dating service person

class name

fields

methods

A Class for Yahtzee

17

 design a class to encapsulate features of Yahtzee

 what fields are needed?

 number of dice

 note: the number of dice never changes; it is genuinely a constant
value for the game called Yahtzee

 fields that are constant have all uppercase names

Yahtzee

+ NUMBER_OF_DICE: int

field type

Version 1

18

public class Yahtzee {

 public static final int NUMBER_OF_DICE = 5;

}

Fields

19

 a field is a member that holds data

 a constant field is usually declared by specifying

1. modifiers

1. access modifier public

2. static modifier static

3. final modifier final

2. type int

3. name NUMBER_OF_DICE

4. value 5

public static final int NUMBER_OF_DICE = 5;

Fields

20

 field names must be unique in a class

 the scope of a field is the entire class

 [JBA] and [notes] use the term "field" only for public
fields

public Fields

21

 a public field is visible to all clients

public class NothingToHide {

 public int x; // always positive

}

// client of NothingToHide

NothingToHide h = new NothingToHide();

h.x = 100;

public Fields

22

 public fields break encapsulation

 a NothingToHide object has no control over the value of x

 a client can put a NothingToHide object into an invalid
state because the client has direct access to a public field

public class NothingToHide {

 public int x; // always positive

}

// client of NothingToHide

NothingToHide h = new NothingToHide();

h.x = 100;

h.x = -5; // not positive

public Fields

23

 a public field makes a class brittle in the face of
change

 public fields are hard to change

 they are part of the class API

 changing access or type will break exisiting client code

public class NothingToHide {

 private int x; // always positive

}

// existing client of NothingToHide

NothingToHide h = new NothingToHide();

h.x = 100; // no longer compiles

public Fields

24

 avoid public fields in production code

 except when you want to expose constant value types

static Fields

25

 a field that is static is a per-class member

 only one copy of the field, and the field is associated with
the class

 every object created from a class declaring a static field shares the
same copy of the field

 textbook uses the term static variable

 also commonly called class variable

static Fields

26

Yahtzee y = new Yahtzee();

Yahtzee z = new Yahtzee();

64 client invocation

y

see [JBA 4.3.3] for another example

500 Yahtzee class

NUMBER_OF_DICE 5

1000 Yahtzee object

???

1100 Yahtzee object

???

z

1000

1100

belongs to class

no copy of
NUMBER_OF_DICE

static Field Client Access

27

 a client should access a public static field
without using an object

 use the class name followed by a period followed by the
attribute name

// client of Yahtzee

List<Die> dice = new List<Die>();

for(int i = 0; i < Yahtzee.NUMBER_OF_DICE; i++) {

 dice.add(new Die(6));

}

static Attribute Client Access

28

 it is legal, but considered bad form, to access a public
static attribute using an object

// client of Yahtzee; avoid doing this

Yahtzee y = new Yahtzee();

List<Die> dice = new List<Die>();

for(int i = 0; i < y.NUMBER_OF_DICE; i++) {

 dice.add(new Die(6));

}

final Fields

29

 an field that is final can only be assigned to once

 public static final attributes are typically assigned
when they are declared

public static final int NUMBER_OF_DICE = 5;

 public static final attributes are intended to be
constant values that are a meaningful part of the
abstraction provided by the class

final Fields of Primitive Types

30

 final fields of primitive types are constant

public class AlsoNothingToHide {

 public static final int X = 100;

}

// client of AlsoNothingToHide

AlsoNothingToHide.X = 88; // will not compile;

 // field X is final and

 // previously assigned

final Fields of Immutable Types

31

 final fields of immutable types are constant

 String is immutable

 it has no methods to change its contents

public class StillNothingToHide {

 public static final String X = "peek-a-boo";

}

// client of StillNothingToHide

StillNothingToHide.X = "i-see-you";

 // will not compile;

 // field X is final and

 // previously assigned

final Fields of Mutable Types

32

 final fields of mutable types are not logically
constant; their state can be changed

public class ReallyNothingToHide {

 public static final Fraction HALF =

 new Fraction(1, 2);

}

// client of ReallyNothingToHide

Fraction third = new Fraction(1, 3);

ReallyNothingToHide.HALF = third; // will not compile;

 // HALF is final and

 // already assigned

ReallyNothingToHide.HALF.setDenominator(3); // works!!

 // HALF is now 1/3

final Fields of Mutable Types

33

ReallyNothingToHide class

final HALF 192 700

:

700 Fraction obj

:

not final! numerator 1

not final! denominator 2

ReallyNothingToHide.HALF.setDenominator(3);

3

final Fields of Mutable Types

34

 final fields of mutable types are not logically
constant; their state can be changed

public class LastNothingToHide {

 public static final ArrayList<Integer> X =

 new ArrayList<Integer>();

}

// client of LastNothingToHide

ArrayList<Integer> y = new ArrayList<Integer>();

LastNothingToHide.X = y; // will not compile;

 // attribute is final and

 // previously assigned

LastNothingToHide.X.add(10000);

 // works!

 // X is no longer empty

final Attributes

35

 avoid using mutable types as public constants

 they are not logically constant

Puzzle

36

 what does the following program print?

public class What

{

 public static void main(String[] args)

 {

 final long

 MICROS_PER_DAY = 24 * 60 * 60 * 1000 * 1000;

 final long

 MILLIS_PER_DAY = 24 * 60 * 60 * 1000;

 System.out.println(MICROS_PER_DAY / MILLIS_PER_DAY);

 }

}

