
In this video, we are going to continue the 
implementation of the view class by adding the buttons 
to our simple calculator example. 

 

0:00-0:06 



Recall that in the first video, we created an empty JFrame 
to serve as the top level window for the calculator 
application. 

 

0:06-0:13 



We now want to add the number and operator buttons 
to the calculator. 

 

To do this, we will first create a component to act as a 
container for the buttons. The reason for creating a 
container for the buttons is to make it easier to arrange 
the buttons in a grid-like fashion separated from the 
other controls of the calculator. We will use a JPanel 
instance to act as the button container. 

 

The individual buttons are all instances of the JButton 
class. A JButton is a representation of a push button. 

0:13-0:51 



This UML diagram shows the relationship between the 
View and its JPanel, and the JPanel and its JButtons. The 
View has one JPanel to contain the buttons, and the 
JPanel has 16 JButtons that represent the various buttons 
on the calculator. 

 

0:51-1:15 



This UML diagram shows the inheritance relationship 
between the various classes that we are using. 

 

The JPanel is a child class of JComponent, and a 
JComponent is a child class of Container. 

 

A Container is a Component that can contain zero or 
more other Components. It provides public mutator and 
accessor methods to add and get the Components that 
are in the Container. The add method is the method that 
we will be using to add the JPanel to the View, and add 
the JButtons to the JPanel. 

1:15-2:05 



We can create the JPanel by using the default 
constructor. There are other JPanel constructors that we 
could use, which you can look up in the JPanel API, but 
the default constructor is good enough for our purposes. 

 

2:05-2:22 



ECLIPSE 
In the View constructor, we can create the JPanel. Once 
we have a JPanel, we can add the panel to the View by 
using the Container method add. Remember that the 
keyword "this" is a reference to the View that is being 
constructed, so to add the panel to this view we write 
this.add(buttons) 

 

2:22-2:57 



To create a JButton, we can use the JButton constructor 
that has a string as its parameter. The string is the label 
that will appear on the button. It is possible to use 
images for the button labels, but for now we will use only 
a text label. 

2:57-3:15 



ECLIPSE 
Our calculator has 16 buttons. We could create the 16 
buttons individually, but it would be better style to use a 
loop. To use a loop, we need to put the button labels into 
a list or array. Let’s create an array of button labels with 
the order of the labels matching the order that we want 
the buttons to appear on the calculator. Next, let’s write a 
loop that makes each button and adds it to the panel. 
When we run the main app, everything looks good. But 
if we resize the calculator, the buttons don’t remain 
arranged in a grid, and they don't all have the same size. 
To maintain the grid-like layout of the buttons, we need 
to use a layout manager. 

 

3:15-5:31 



A layout manager is an object that is responsible for 
determining the size and position of components in a 
container. There are many different types of layout 
managers each designed for a particular purpose. You 
can find a visual guide to the Swing layout managers by 
following the link shown here. GridLayout is an 
appropriate layout manager for the calculator buttons. 

 

5:31-6:00 



To create a GridLayout, we need to specify the number of 
rows and columns in the grid. We can also specify the 
gap between the columns and the gap between the rows. 
HGAP and VGAP are the horizontal gap and vertical gap, 
respectively. In our calculator, we have 4 rows and 4 
columns of buttons. 

 

6:00-6:30 



ECLIPSE 
Let’s create a GridLayout for the panel using the code we 
just saw. Once we have the GridLayout, we can set the 
layout manager of the panel. Now when we run the Main 
application we can resize the calculator and the buttons 
remain arranged in a grid. 

 

That brings us to the end of this video. In the next video, 
we’ll see how to create the text display for the calculator. 

 


