EECS2001

Test 1

This test lasts 80 minutes. No aids allowed.

You may use any result that was proved in class or in the textbook without reproving it.

Make sure your test has 5 pages, including this cover page.

Answer in the space provided. (If you need more space, use the reverse side of the page and indicate **clearly** which part of your work should be marked.) Write legibly.

Question 1	/4
Question 2	/4
Question 3	/3
Question 4	/3
Question 5	/3
Question 6	/3
Total	/20

1. [4 marks] Let $L_1 = \{x \in \{0,1\}^* : x \text{ contains a 1 and the length of } x \text{ is a multiple of 3} \}$. Draw the transition diagram of a deterministic finite automaton for L_1 . For each state of your machine, describe the set of strings that take the machine to that state. 2. [4 marks] Consider the DFA M shown at right. Recall that $\delta^*(A, x)$ denotes the state that M is in after processing the string x, starting from the initial state A. Give a careful proof of the following claim.

Claim: For any string $x \in \{0, 1\}^*$,

 $\delta^*(A,x) \in \{C,D\}$ if x contains an odd number of 1's, and

 $\delta^*(A, x) \in \{A, B\}$ if x contains an even number of 1's.

3. [3 marks] Let $L_3 = \{x \in \{0, 1\}^* : x \text{ starts with } 0 \text{ and has even length}\}.$ Write a regular expression for L_3 .

4. [3 marks] Let $L_4 = \{x \in \{0, 1\}^* : x \text{ contains exactly twice as many 0's as 1's}\}$. For example, 001010 in in L_4 but 11000 is not in L_4 . Prove that L_4 is not regular.

5. [3 marks] Give a high-level description of how a non-deterministic finite automaton N can be transformed into a deterministic finite automaton M that accepts the same language. Your answer must fit inside the box below. Anything written outside the box will be ignored.

6. [3 marks] If $L \subseteq \Sigma^*$ is a language, define PREFIX(L) to be the set of all strings that are prefixes of strings in L. More formally,

 $PREFIX(L) = \{ x \in \Sigma^* : \text{there exists } y \in \Sigma^* \text{ such that } xy \in L \}.$

Show that for every regular language L, the language PREFIX(L) is also regular.