SC/MATH 1090

7- Boolean Semantics

York University
Department of Computer Science and Engineering
Overview

• Two main theorems:
 – Soundness: Our Boolean Logic is sound and truthful. Everything we can prove using the Boolean Logic is actually true.
 – Completeness: Our Boolean Logic is complete. Everything that is true (and can be represented in Boolean logic), the Boolean Logic can prove.
Soundness

• The primary rules of inference are truthful, i.e.

\[A, A \equiv B \vdash_{taut} B \]

\[A \equiv B \vdash_{taut} C[p := A] \equiv C[p := B] \]

• All logical axioms are tautologies.

• **Metatheorem. (Soundness of Propositional Calculus)**
 If \(\Gamma \vdash A \) then \(\Gamma \vdash_{taut} A \).
 – Proof by induction on length of \(\vdash \)-proofs where \(A \) occurs.

• **Corollary.** If \(\vdash A \), then \(\vdash_{taut} A \).
Counter-example construction

• **Soundness Theorem:**
 – If $\Gamma \vdash A$, then $\Gamma \models_{taut} A$.

• **Contrapositive** of Soundness theorem:
 – If $\Gamma \not\models_{taut} A$, then $\Gamma \not\models A$

• Reminder: $\Gamma \vdash A$ is a theorem schema.

• In order to show that A is not provable, we can find a specific formula, and some state v for which $v(A) = f$.
Completeness

• **Metatheorem. (Post’s Tautology Theorem)**

\[\text{If } \Gamma \models_{\text{taut}} A, \text{ then } \Gamma \vdash A. \]

• **Contrapositive** of Post theorem:

\[\text{if } \Gamma \not\vdash A, \text{ then } \Gamma \not\models_{\text{taut}} A. \]