SC/MATH 1090

4- Theorem Calculation

York University
Department of Computer Science and Engineering
Overview

• Logical axioms
• Rules of inference
• Theorem Calculations, or Proofs
• Hilbert-style Proofs
Logical axioms of Boolean Logic

Properties of \equiv

Associativity of \equiv \[(A \equiv B) \equiv C \equiv (A \equiv (B \equiv C))\] \hspace{1cm} (1)

Symmetry of \equiv \[(A \equiv B) \equiv (B \equiv A)\] \hspace{1cm} (2)

Properties of \bot, \top

\top vs. \bot \[\top \equiv \bot \equiv \bot\] \hspace{1cm} (3)

Properties of \neg

Introduction of \neg \[\neg A \equiv A \equiv \bot\] \hspace{1cm} (4)

Properties of \lor

Associativity of \lor \[(A \lor B) \lor C \equiv A \lor (B \lor C)\] \hspace{1cm} (5)

Symmetry of \lor \[A \lor B \equiv B \lor A\] \hspace{1cm} (6)

Idempotency of \lor \[A \lor A \equiv A\] \hspace{1cm} (7)

Distributivity of \lor over \equiv \[A \lor (B \equiv C) \equiv A \lor B \equiv A \lor C\] \hspace{1cm} (8)

Excluded Middle \[A \lor \neg A\] \hspace{1cm} (9)

Properties of \land

Golden Rule \[A \land B \equiv A \equiv B \equiv A \lor B\] \hspace{1cm} (10)

Properties of \rightarrow

Implication \[A \rightarrow B \equiv A \lor B \equiv B\] \hspace{1cm} (11)
Axioms

• We will use the capital Greek letter "lambda", \(\Lambda \), to denote the set of all logical axioms.

• Note that since the logical axioms (shown in previous slide) are schemata, \(\Lambda \) is infinite.

• All assumptions or hypotheses for a specific problem, are called special axioms or nonlogical axioms and are denoted by "gamma", \(\Gamma \).

• Note that \(\Gamma \) is not fixed.
Primary Rules of Inference

\[
\frac{A, A \equiv B}{B} \quad (Eqn)
\]

\[
\frac{A \equiv B}{C[p := A] \equiv C[p := B]} \quad (Leib)
\]

- The numerator shows the **premises, hypotheses, or assumptions**.
- The denominator shows the **conclusion or result** of the rule.
- The first rule is the rule of **Equanimity** or Eqn.
- The second rule is the **Leibniz** rule or Leib.
Theorem Calculations, or Γ-Proofs

- Let Γ be a given set of formulae (our assumptions)

- A theorem-calculation (or proof) from Γ is any finite (ordered) sequence of formulae that can be written following these rules:
 1. We may write a formula from Λ or Γ at any step
 2. We may write the denominator of an instance of an inference rule, provided all formulae in the numerator (of the same instance) have been written in a previous step.
Theorem

- **Definition. (Theorems)** Any formula A that appears in a Γ-proof is called a Γ-**theorem**. This is denoted by $\Gamma \vdash A$.

 - The above proof is said to **prove** A from Γ.

 - If $\Gamma = \emptyset$ (empty set), we write $\vdash A$, and call A just a theorem or an **absolute theorem**, or **logical theorem**.
Hilbert-Style Proof - framework

• To Prove $\Gamma \vdash A$:
 (1) <annotation>
 (2) <annotation>
 (n) A <annotation>

Steps in a theorem calculation

• Annotations explain the step written in a proof.
• In a Hilbert style proof, conclusion appears at the last step (although by definition, it is not wrong to have more (unnecessary!) steps).
Some simple theorems

a) \(\vdash A \lor \neg A \)

b) \(A \vdash A \)

c) \(A, A \equiv B \vdash B \)

d) \(A \equiv B \vdash C[p:=A] \equiv C[p:=B] \)

e) \(A \equiv B, B \equiv C \vdash A \equiv C \) \hspace{1cm} \text{Transitivity}

f) \(\vdash A \equiv A \)
Strengthening metatheorems!

• **Metatheorem. (Hypothesis Strengthening)** If $\Gamma \vdash A$ and $\Gamma \subseteq \Delta$, then also $\Delta \vdash A$.

 – If $\vdash A$, then also $\Gamma \vdash A$ for any set of formulae Γ.

• **Metatheorem. (Transitivity of \vdash)** Assume we have

 $\Gamma \vdash B_1$, $\Gamma \vdash B_2$, ..., $\Gamma \vdash B_n$

 and $B_1, B_2, ..., B_n \vdash A$

 Then $\Gamma \vdash A$.

• **Corollary.** If $\Gamma \cup \{A\} \vdash B$ and also $\Gamma \vdash A$, then $\Gamma \vdash B$.

• **Corollary.** If $\Gamma \cup \{A\} \vdash B$ and also $\vdash A$, then $\Gamma \vdash B$.
More tools for our toolbox

a) \(B, A \equiv B \vdash A \)

b) \(\vdash \bot \equiv \bot \)

c) \(\vdash T \)

d) \(C[p:=A], A \equiv B \vdash C[p:=B] \)
 Eqn + Leib merged

e) \(\vdash (A \equiv (B \equiv C)) \equiv ((A \equiv B) \equiv C) \)

f) \(\vdash A \equiv A \equiv B \equiv B \)
 - \(\vdash \bot \equiv \bot \equiv B \equiv B \)
 - \(\vdash A \equiv A \equiv \bot \equiv \bot \)
Redundant True

- **Redundant True Theorem:**

 \[\vdash T \equiv A \equiv A \text{ and } \vdash A \equiv A \equiv T \]

- **(Redundant True) Metatheorem.**
 For any \(\Gamma \) and \(A \), \(\Gamma \vdash A \iff \Gamma \vdash A \equiv T \).

 – Special case: \(A \vdash A \equiv T \)

- **Metatheorem.** For any \(\Gamma \), \(A \), and \(B \), if \(\Gamma \vdash A \) and \(\Gamma \vdash B \), then \(\Gamma \vdash A \equiv B \).