1- Boolean Formulae

York University
Department of Computer Science and Engineering
Overview

• Boolean syntax
 – Boolean Alphabet
 – Strings
 – Formula Calculation; well-formed-formula (WFF)
 – Parsing (top-down and bottom-up)
 – Removing redundant brackets
 – Complexity of formulae
Boolean Alphabet

1. Symbols for Boolean or propositional variables
 \(p, q, r \) with or without primes or subscripts
 Examples: \(p, p', p_{123}, q''_{45} \)

2. Symbols for Boolean constants
 \(\top \) called top, verum, or symbol “true”
 \(\bot \) called bottom, falsum, or symbol “false”

3. Brackets, (and)

4. Boolean connectives
 \(\neg, \land, \lor, \rightarrow, \equiv \)
Strings or Expressions

• Definition:
 A **string** (or word, or expression) over a **given alphabet** is any **ordered** sequence of the alphabet’s symbols, written adjacent to each other without any visible separators (no commas or spaces, etc).

• Examples:
 – \((p \lor \bot)\) is a string given Boolean alphabet.
 – \((p\lnot q)\) is not a string given Boolean alphabet.
 – \((p \rightarrow q)\) and \(\rightarrow p)q(\) are two **different** strings given the Boolean alphabet. Note only the ordering is different.
Strings (cont.)

• String variables
 – Denoted by A, B, C, etc with or without primes or subscripts

• Concatenation
 – Example: if A is \textit{abc} and B is \textit{de} (given the English alphabet), then \textbf{AB} is \textit{abcde}

• Empty string
 – Denoted by \(\varepsilon \)
 – \(A\varepsilon = \varepsilon A = A \)

• Substring
 – “B is a substring of A” means that for some string C and D we have \(A = CBD \)
 – If B is a substring of A and \(B \neq A \), then B is a \textbf{proper substring} of A.
Formula calculation
Procedural definition

• Formula calculation is any finite (ordered) sequence of strings that we may write respecting the following requirements:

1. At any step, we may write a Boolean variable or a Boolean constant

2. At any step, we may write (¬ A), provided we have already written string A in a previous step.

3. At any step, we may write any of the strings (A ∧ B), (A ∨ B), (A → B), (A ≡ B) provided we have already written strings A and B in a previous step.
A string A over the Boolean alphabet is called a **Boolean Expression** or a **well-formed-formula** iff it is a string written at **some** step of some **formula-calculation**.

- Examples:
 \[(p \equiv q)\]
 \[((p \lor r) \rightarrow (\neg q))\]

- **WFF**: set of all well-formed-formulae (wffs)

- Bottom- up parsing of a wff is showing the procedural formula calculation steps.
Recursive definition of WFF

- The set of all well-formed-formulae is the smallest set of strings, WFF, that satisfies

 1. All Boolean variables (p, q, r, ...) , and constants (⊥, ⊤)
 2. If A and B are any strings in WFF, then so are the strings
 (¬ A), (A ∧ B), (A ∨ B), (A → B), (A ≡ B)

- Top-down parsing of a wff is showing the recursive formula calculation steps.

- How do we know recursion terminates?

- The two definitions for WFF are equivalent.
Immediate Predecessors (i.p.)

1. Boolean variables or constants don’t have any immediate predecessors

2. A is an immediate predecessor of (¬A)

3. A and B are immediate predecessors of (A ∧ B), (A ∨ B), (A → B), (A ≡ B)

• We will prove later that the i.p.s are unique for each formula.
Removing brackets

• Redundant brackets
 – Outermost brackets are redundant
 – Any pair of brackets is redundant if its presence can be understood from the priority of the connectives

• Priorities:
 – The order of priorities (decreasing) is agreed to be
 \(\neg, \land, \lor, \to, \equiv \)
 – For same connectives, the rightmost has the highest priority

• Least parenthesized notation (LPN): writing wff with all redundant brackets removed
 – Note writing wff in LPN is just a short notation and is not a correctly written formula (by formula calculation)
Complexity

• The **complexity** of a formula is the number of connectives occurring in the formula

• The complexity of Boolean variables and constants is zero (they are also called **atomic** formulae)

• Example
 - Complexity of \(((p \lor r) \rightarrow (\neg q))\) is 3