MATH/EECS 1019 Third test (version 1) – Fall 2014 Solutions

(3 points) Find the sum 1*2+2*3+3*4+...+99*100.
 Solution: The given sum is

$$S = \sum_{i=1}^{99} i(i+1)$$

=
$$\sum_{i=1}^{99} (i^2 + i)$$

=
$$\sum_{i=1}^{99} i^2 + \sum_{i=1}^{99} i$$

=
$$\frac{99 * 100 * 199}{6} + \frac{99 * 100}{2}$$

=
$$33 * 50 * 199 + 99 * 50$$

=
$$333300$$

2. (3 points) A fly starts at the origin and goes 1 unit up, 1/2 unit right, 1/4 unit down, 1/8 unit left, 1/16 unit up, etc., ad infinitum. In what coordinates does it end up?

Solution: Let us compute the x, y coordinates separately. The final x coordinate is given by the infinite sum

$$x = \frac{1}{2} - \frac{1}{8} + \frac{1}{32} - \frac{1}{128} + \dots$$

This is a geometric series with $a = \frac{1}{2}$ and $r = -\frac{1}{4}$. So using the formula for the infinite geometric series we get $x = \frac{a}{1-r} = \frac{1/2}{1+1/4} = \frac{2}{5}$.

Similarly, the final y coordinate is given by the infinite sum

$$y = \frac{1}{1} - \frac{1}{4} + \frac{1}{16} - \frac{1}{64} + \dots$$

This is a geometric series with a = 1 and $r = -\frac{1}{4}$. So using the formula for the infinite geometric series we get $y = \frac{a}{1-r} = \frac{1}{1+1/4} = \frac{4}{5}$.

3. (3 points) If x is an integer and 7 divides 3x + 2, prove that 7 also divides $15x^2 - 11x - 14$. Solution:

This is a direct proof. One can factorize the given expression, $15x^2 - 11x - 14 = 5x(3x + 2) - 7(3x + 2) = (3x + 2)(5x - 7)$, which shows that the given expression has 3x + 2 as a factor and thus must be divisible by 7.

4. (3 points) Let p < q be two consecutive odd primes. Prove that p + q is a composite number, having at least three, not necessarily distinct, prime factors.

Solution:

This is another direct proof. Since p, q are *odd* primes, so fracp + q2 is an integer. Since p, q are *consecutive* primes and $p < \frac{p+q}{2} < q$, so $\frac{p+q}{2}$ is composite and must have at least two factors m, n. These facts imply that 2, m, n are factors of p + q.

5. (3 points) Prove, by induction on n, that

$$1 * 2 + 2 * 2^{2} + 3 * 2^{3} + \ldots + n * 2^{n} = 2 + (n - 1) * 2^{n+1}.$$

Solution:

We prove this by using induction on n.

Base Case: n = 1. True, since $1 * 2 = 2 + (1 - 1) * 2^{0+1} = 2$.

Inductive step: Assume the statement is true for n = k. So

$$1 * 2 + 2 * 2^{2} + 3 * 2^{3} + \ldots + m * 2^{m} = 2 + (m - 1) * 2^{m+1}.$$

Then for k = m + 1,

$$1 * 2 + 2 * 2^{2} + 3 * 2^{3} + \ldots + m * 2^{m} + (m+1) * 2^{m+1}$$

= 2 + (m - 1) * 2^{m+1} + (m + 1) * 2^{m+1}
= 2 + [(m - 1) + (m + 1)] * 2^{m+1}
= 2 + 2m * 2^{m+1}
= 2 + m * 2^{m+2}

Hence by the principle of mathematical induction, the given statement is true.

6. (3 points) Prove using mathematical induction that if n non-parallel straight lines on the plane intersect at a common point, they divide the plane into 2n regions.

Solution:

We prove this by using induction on n.

Base Case: n = 1. True, since one straight line divides the plane into 2 regions.

Inductive step: Suppose that the hypothesis is true for n = m, so that any m non-parallel straight lines on the plane intersecting at a common point divide the plane into 2m regions. Then for n = m + 1, we have to show that any m + 1 non-parallel straight lines on the plane intersecting at a common point divide the plane into 2m + 2 regions.

Choose any set of m lines from a given set of m+1 non-parallel straight lines on the plane intersecting at a common point. By the inductive hypothesis, these lines divide the plane into 2m regions. Since the m + 1th line also passes through the common intersection, it passes through exactly two of the 2m regions. Since it cuts each of these two regions in two parts, it creates a total of 2m + 2 regions.

Hence by the principle of mathematical induction, the given statement is true.

7. (3 points) A function f(x) is said to be strictly increasing if f(b) > f(a) for all b > a. Prove that a strictly increasing function from \mathbb{R} to itself is one-to-one.

Solution: This is a very simple proof by contradiction. If f is not one-to-one, there exists x_1, x_2 such that $f(x_1) = f(x_2)$. Without loss of generality, assume $x_1 < x_2$. Then $f(x_1) < f(x_2)$, which contradicts the assumption $f(x_1) = f(x_2)$.

8. (2 points) Suppose that $\log_4 x = y$ where x is a positive real number. What is $\log_{16} x$ in terms of y?

Solution: Since $\log_4 x = y$, we have

$$\log_{4} x = y$$

$$x = 4^{y}$$

$$= 2^{2y}$$

$$= 2^{4\frac{2y}{4}}$$

$$= (2^{4})^{\frac{y}{2}}$$

$$= 16^{\frac{y}{2}}$$

$$\log_{16} x = \frac{y}{2}$$

9. (2+2 points) Define the factorial function of positive integers m as m! = 1 * 2 * ... * m. Consider the question: "Prove that if n > 4 is composite, then n divides (n-1)!." and the following "proof". What is the biggest flaw in the argument given in the proof? Fix the problem so that you get a correct proof.

"Proof:" Since n is composite, it has two factors n_1, n_2 that are each smaller than n. Since (n-1)! is the product of all positive integers strictly smaller than n, this product must contain the numbers n_1, n_2 , and therefore (n-1)! is divisible by n.

Solution: The proof breaks down when $n = k^2$ for some prime number k, so the only factorization it has gives two equal factors.

The way to fix it is to handle this case separately. Since n > 4, k > 2. So $2k < k^2 = n$. and therefore (n - 1)! has factors k, 2k that together is a multiple of n. Thus (n - 1)! is divisible by n in this case as well.

10. (3 points) Consider the set of all fractions of the form $\frac{n}{n+\sqrt{2}}$, where $n \in \mathbb{Z}$. Is the set countable? Prove your answer.

Solution: Consider first the set of all fractions of the form $\frac{n}{n+\sqrt{2}}$, where $n \in \mathbb{N}$. This set is countable because we can define a mapping $f : \mathbb{N} \to \mathbb{R}$, $f(n) = \frac{n}{n+\sqrt{2}}$.

Note that $f(n) = \frac{1}{1+\sqrt{2}/n}$. This mapping is one-to-one because if $f(n_1) = f(n_2)$ for some n_1, n_2 then $\frac{1}{1+\sqrt{2}/n_1} = \frac{1}{1+\sqrt{2}/n_2}$ which implies $n_1 = n_2$. It is onto because every number in the given set is indexed by a natual number n. Any set that has a bijection from \mathbb{N} is countable.

Now we have to modify the mapping to work for the set given in the question. We can do that the usual way, as follows. Define a mapping g: as follows.

 $g:\mathbb{N}\to\mathbb{R}$ as follows,

$$g(n) = 0 \text{ if } n = 0$$

= $f(m) \text{ if } n = 2m + 1$
= $f(-m) \text{ if } n = 2m$

g is one-to-one because f is one-to-one and thus provides a one-to-one mapping from \mathbb{N} to the set given. g is onto because every number in the set given is indexed with an integer and g provides a bijection from the integers to the natural numbers. Therefore the given set is countable.