$$
\begin{gathered}
\text { MATH/EECS } 1019 \text { Third test (version 1) - Fall } 2014 \\
\text { Solutions }
\end{gathered}
$$

1. (3 points) Find the sum $1^{*} 2+2^{*} 3+3^{*} 4+\ldots+99^{*} 100$.

Solution: The given sum is

$$
\begin{aligned}
S & =\sum_{i=1}^{99} i(i+1) \\
& =\sum_{i=1}^{99}\left(i^{2}+i\right) \\
& =\sum_{i=1}^{99} i^{2}+\sum_{i=1}^{99} i \\
& =\frac{99 * 100 * 199}{6}+\frac{99 * 100}{2} \\
& =33 * 50 * 199+99 * 50 \\
& =333300
\end{aligned}
$$

2. (3 points) A fly starts at the origin and goes 1 unit up, $1 / 2$ unit right, $1 / 4$ unit down, $1 / 8$ unit left, $1 / 16$ unit up, etc., ad infinitum. In what coordinates does it end up?
Solution: Let us compute the x, y coordinates separately. The final x coordinate is given by the infinite sum

$$
x=\frac{1}{2}-\frac{1}{8}+\frac{1}{32}-\frac{1}{128}+\ldots
$$

This is a geometric series with $a=\frac{1}{2}$ and $r=-\frac{1}{4}$. So using the formula for the infinite geometric series we get $x=\frac{a}{1-r}=\frac{1 / 2}{1+1 / 4}=\frac{2}{5}$.
Similarly, the final y coordinate is given by the infinite sum

$$
y=\frac{1}{1}-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}+\ldots
$$

This is a geometric series with $a=1$ and $r=-\frac{1}{4}$. So using the formula for the infinite geometric series we get $y=\frac{a}{1-r}=\frac{1}{1+1 / 4}=\frac{4}{5}$.
3. (3 points) If x is an integer and 7 divides $3 x+2$, prove that 7 also divides $15 x^{2}-11 x-14$.

Solution:

This is a direct proof. One can factorize the given expression, $15 x^{2}-11 x-14=5 x(3 x+$ 2) $-7(3 x+2)=(3 x+2)(5 x-7)$, which shows that the given expression has $3 x+2$ as a factor and thus must be divisible by 7 .
4. (3 points) Let $p<q$ be two consecutive odd primes. Prove that $p+q$ is a composite number, having at least three, not necessarily distinct, prime factors.

Solution:

This is another direct proof. Since p, q are odd primes, so fracp $+q 2$ is an integer. Since p, q are consecutive primes and $p<\frac{p+q}{2}<q$, so $\frac{p+q}{2}$ is composite and must have at least two factors m, n. These facts imply that $2, m, n$ are factors of $p+q$.
5. (3 points) Prove, by induction on n, that

$$
1 * 2+2 * 2^{2}+3 * 2^{3}+\ldots+n * 2^{n}=2+(n-1) * 2^{n+1} .
$$

Solution:

We prove this by using induction on n.
Base Case: $n=1$. True, since $1 * 2=2+(1-1) * 2^{0+1}=2$.
Inductive step: Assume the statement is true for $n=k$. So

$$
1 * 2+2 * 2^{2}+3 * 2^{3}+\ldots+m * 2^{m}=2+(m-1) * 2^{m+1} .
$$

Then for $k=m+1$,

$$
\begin{aligned}
& 1 * 2+2 * 2^{2}+3 * 2^{3}+\ldots+m * 2^{m}+(m+1) * 2^{m+1} \\
= & 2+(m-1) * 2^{m+1}+(m+1) * 2^{m+1} \\
= & 2+[(m-1)+(m+1)] * 2^{m+1} \\
= & 2+2 m * 2^{m+1} \\
= & 2+m * 2^{m+2}
\end{aligned}
$$

Hence by the principle of mathematical induction, the given statement is true.
6. (3 points) Prove using mathematical induction that if n non-parallel straight lines on the plane intersect at a common point, they divide the plane into $2 n$ regions.

Solution:

We prove this by using induction on n.
Base Case: $n=1$. True, since one straight line divides the plane into 2 regions.
Inductive step: Suppose that the hypothesis is true for $n=m$, so that any m non-parallel straight lines on the plane intersecting at a common point divide the plane into $2 m$ regions. Then for $n=m+1$, we have to show that any $m+1$ non-parallel straight lines on the plane intersecting at a common point divide the plane into $2 m+2$ regions.
Choose any set of m lines from a given set of $m+1$ non-parallel straight lines on the plane intersecting at a common point. By the inductive hypothesis, these lines divide the plane into $2 m$ regions. Since the $m+1^{\text {th }}$ line also passes through the common intersection, it
passes through exactly two of the $2 m$ regions. Since it cuts each of these two regions in two parts, it creates a total of $2 m+2$ regions.
Hence by the principle of mathematical induction, the given statement is true.
7. (3 points) A function $f(x)$ is said to be strictly increasing if $f(b)>f(a)$ for all $b>a$. Prove that a strictly increasing function from \mathbb{R} to itself is one-to-one.
Solution: This is a very simple proof by contradiction. If f is not one-to-one, there exists x_{1}, x_{2} such that $f\left(x_{1}\right)=f\left(x_{2}\right)$. Without loss of generality, assume $x_{1}<x_{2}$. Then $f\left(x_{1}\right)<f\left(x_{2}\right)$, which contradicts the assumption $f\left(x_{1}\right)=f\left(x_{2}\right)$.
8. (2 points) Suppose that $\log _{4} x=y$ where x is a positive real number. What is $\log _{16} x$ in terms of y ?
Solution: Since $\log _{4} x=y$, we have

$$
\begin{aligned}
\log _{4} x & =y \\
x & =4^{y} \\
& =2^{2 y} \\
& =2^{4 \frac{2 y}{4}} \\
& =\left(2^{4}\right)^{\frac{y}{2}} \\
& =16^{\frac{y}{2}} \\
\log _{16} x & =\frac{y}{2}
\end{aligned}
$$

9. ($2+2$ points) Define the factorial function of positive integers m as $m!=1 * 2 * \ldots * m$. Consider the question: "Prove that if $n>4$ is composite, then n divides $(n-1)!$!" and the following "proof". What is the biggest flaw in the argument given in the proof? Fix the problem so that you get a correct proof.
"Proof:" Since n is composite, it has two factors n_{1}, n_{2} that are each smaller than n. Since $(n-1)$! is the product of all positive integers strictly smaller than n, this product must contain the numbers n_{1}, n_{2}, and therefore $(n-1)$! is divisible by n.
Solution: The proof breaks down when $n=k^{2}$ for some prime number k, so the only factorization it has gives two equal factors.
The way to fix it is to handle this case separately. Since $n>4, k>2$. So $2 k<k^{2}=n$. and therefore $(n-1)$! has factors $k, 2 k$ that together is a multiple of n. Thus $(n-1)$! is divisible by n in this case as well.
10. (3 points) Consider the set of all fractions of the form $\frac{n}{n+\sqrt{2}}$, where $n \in \mathbb{Z}$. Is the set countable? Prove your answer.
Solution: Consider first the set of all fractions of the form $\frac{n}{n+\sqrt{2}}$, where $n \in \mathbb{N}$. This set is countable because we can define a mapping $f: \mathbb{N} \rightarrow \mathbb{R}, f(n)=\frac{n}{n+\sqrt{2}}$.

Note that $f(n)=\frac{1}{1+\sqrt{2} / n}$. This mapping is one-to-one because if $f\left(n_{1}\right)=f\left(n_{2}\right)$ for some n_{1}, n_{2} then $\frac{1}{1+\sqrt{2} / n_{1}}=\frac{1}{1+\sqrt{2} / n_{2}}$ which implies $n_{1}=n_{2}$. It is onto because every number in the given set is indexed by a natual number n. Any set that has a bijection from \mathbb{N} is countable.

Now we have to modify the mapping to work for the set given in the question. We can do that the usual way, as follows. Define a mapping g : as follows.
$g: \mathbb{N} \rightarrow \mathbb{R}$ as follows,

$$
\begin{aligned}
g(n) & =0 \text { if } n=0 \\
& =f(m) \text { if } n=2 m+1 \\
& =f(-m) \text { if } n=2 m
\end{aligned}
$$

g is one-to-one because f is one-to-one and thus provides a one-to-one mapping from \mathbb{N} to the set given. g is onto because every number in the set given is indexed with an integer and g provides a bijection from the integers to the natural numbers. Therefore the given set is countable.

