MATH/EECS 1019 Third test (version 1) — Fall 2014
Solutions

1. (3 points) Find the sum 1*2+2%*34-3%44-. .. 499*100.

Solution: The given sum is

99
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= 33 %50 %199 + 99 *x 50
= 333300

2. (3 points) A fly starts at the origin and goes 1 unit up, 1/2 unit right, 1/4 unit down, 1/8
unit left, 1/16 unit up, etc., ad infinitum. In what coordinates does it end up?

Solution: Let us compute the z,y coordinates separately. The final x coordinate is given

by the infinite sum
1 1

1 1 N n
r==—=-4+—=—-——+...
2 8 32 128
This is a geometric series with a = % and r = _411' So using the formula for the infinite
a _ 1/2 _ 2

geometric series we get v = 1= = i = 5

Similarly, the final y coordinate is given by the infinite sum

11 N 1 1 n
YT1T1T6 61
This is a geometric series with a = 1 and r = —%. So using the formula for the infinite
a 1 4

geometric series we get y = 14 = ESyZ

3. (3 points) If z is an integer and 7 divides 3z + 2, prove that 7 also divides 152* — 11z — 14.
Solution:

This is a direct proof. One can factorize the given expression, 15z% — 11x — 14 = 5z (3x +
2) — 73z + 2) = (3x + 2)(bz — 7), which shows that the given expression has 3z + 2 as a
factor and thus must be divisible by 7.
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4. (3 points) Let p < ¢ be two consecutive odd primes. Prove that p + ¢ is a composite
number, having at least three, not necessarily distinct, prime factors.

Solution:
This is another direct proof. Since p,q are odd primes, so fracp + ¢2 is an integer. Since

p,q are consecutive primes and p < p% < q, SO p% is composite and must have at least

two factors m,n. These facts imply that 2, m,n are factors of p + q.

5. (3 points) Prove, by induction on 7, that

124222 435254+ 4+ n*x2" =2+ (n—1) % 2"

Solution:
We prove this by using induction on n.
Base Case: n = 1. True, since 1 *2 =2+ (1 — 1) x 20F! = 2.

Inductive step: Assume the statement is true for n = k. So

1242522 4+3%2° + ... 4+ m*2" =2+ (m—1) % 2"

Then for k =m + 1,

1#2+2%x22 432+ ... +m=*2"+ (m+1) % 2™
= 24+ (m—1)* 2™ 4 (m + 1) % 2!
2+ [(m—1) + (m+1)] « 2™+
2 + 2m * 2"t

= 24+ mx*2mt?

Hence by the principle of mathematical induction, the given statement is true.

6. (3 points) Prove using mathematical induction that if n non-parallel straight lines on the
plane intersect at a common point, they divide the plane into 2n regions.

Solution:
We prove this by using induction on n.
Base Case: n = 1. True, since one straight line divides the plane into 2 regions.

Inductive step: Suppose that the hypothesis is true for n = m, so that any m non-parallel
straight lines on the plane intersecting at a common point divide the plane into 2m regions.
Then for n = m + 1, we have to show that any m + 1 non-parallel straight lines on the
plane intersecting at a common point divide the plane into 2m + 2 regions.

Choose any set of m lines from a given set of m + 1 non-parallel straight lines on the plane
intersecting at a common point. By the inductive hypothesis, these lines divide the plane
into 2m regions. Since the m + 1' line also passes through the common intersection, it
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10.

passes through exactly two of the 2m regions. Since it cuts each of these two regions in two
parts, it creates a total of 2m + 2 regions.

Hence by the principle of mathematical induction, the given statement is true.

(3 points) A function f(z) is said to be strictly increasing if f(b) > f(a) for all b > a.
Prove that a strictly increasing function from R to itself is one-to-one.

Solution: This is a very simple proof by contradiction. If f is not one-to-one, there
exists x1,zy such that f(x;) = f(x2). Without loss of generality, assume x; < z5. Then
f(z1) < f(xq), which contradicts the assumption f(z1) = f(z2).

(2 points) Suppose that log, * = y where z is a positive real number. What is log,s = in
terms of y?

Solution: Since log, x = y, we have

loggz =y
r = 4Y

= 2%

— o4

- (24)%

— 162
_ Yy
logigz = )

(242 points) Define the factorial function of positive integers m as m! = 1% 2 % ... % m.
Consider the question: “Prove that if n > 4 is composite, then n divides (n —1)l.” and the
following “proof”. What is the biggest flaw in the argument given in the proof? Fix the
problem so that you get a correct proof.

“Proof:” Since n is composite, it has two factors ny, ny that are each smaller than n. Since
(n — 1)! is the product of all positive integers strictly smaller than n, this product must
contain the numbers ny, ny, and therefore (n — 1)! is divisible by n.

Solution: The proof breaks down when n = k? for some prime number %, so the only
factorization it has gives two equal factors.

The way to fix it is to handle this case separately. Since n > 4, k > 2. So 2k < k? = n.
and therefore (n — 1)! has factors k, 2k that together is a multiple of n. Thus (n — 1)! is
divisible by n in this case as well.

(3 points) Consider the set of all fractions of the form #5, where n € Z. Is the set
countable? Prove your answer.

Solution: Consider first the set of all fractions of the form #5, where n € N. This set

is countable because we can define a mapping f: N — R, f(n) =

n

n+v2°

page 3 of 4



MATH/EECS 1019 Third test (ver 1) Nov 24, 2014

Note that f(n) = ﬁ This mapping is one-to-one because if f(ny) = f(ny) for some

1 . . . .
= which implies n; = ny. It is onto because every number
12 /n2 p 1 2 y

1
ni, N9 then 1+\/§/n1

in the given set is indexed by a natual number n. Any set that has a bijection from N is
countable.

Now we have to modify the mapping to work for the set given in the question. We can do
that the usual way, as follows. Define a mapping g : as follows.

g : N — R as follows,

gn) = 0ifn=0
= f(m)ifn=2m+1
f(=m) if n=2m

g is one-to-one because f is one-to-one and thus provides a one-to-one mapping from N to
the set given. ¢ is onto because every number in the set given is indexed with an integer
and g provides a bijection from the integers to the natural numbers. Therefore the given
set is countable.
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