
MATH/EECS 1019 Second test (version 2)
Fall 2014
Solutions

Instructor: S. Datta

1. (6 points) Sets

(a) (1+2 points) Construct Venn diagrams for each of these combinations of the sets A,B,C.
(i) A− (B ∩ C) (ii) A ∩B

Solution:

(b) (3 points) Prove that there is no positive integer n such that n2 + n4 = 200.

Solution: We know that n4 is an increasing function o n and that 54 = 625 > 200. Therefore the
only candidates for n that we need to consider are n = 1, 2, 3, 4. We can check that for each of these
values of n the given equation is not satisfied. Therefore the assertion in the question is true.

2. (6 points) Proofs

(a) (3 points) Suppose A,B,C are sets. Prove or disprove: (A−B)− C = A− (B − C).

Solution:

(b) (3 points) Recall that the power set of a set A is the set of all subsets of A. Show that if A is a subset
of B then the power set of A is a subset of the power set of B.

Solution: Consider the power set P(A) of set A. Take any element x ∈ P(A). By the definition of
P(A), x ⊆ A. Since A ⊆ B therefore it follows that x ⊆ B. However, every subset of B is an element
of the power set P(B) of B. So x ∈ P(B). Thus every element of P(A) is in P(B). This implies that
P(A) ⊆ P(B).

3. (6 points) Proofs

(a) (2 points) Prove that 3
√

3 is an irrational number.

Solution: We mimic the proof of the irrationality of
√

2. Suppose, for the sake of contradiction that
3
√

3 is rational. So 3
√

3 = p/q for some integers p, q, q 6= 0. Without loss of generality, we can assume
that p, q have no common factors. Then we have,

p/q =
3
√

3

p3/q3 = 3

p3 = 3q3

So p3 is a multiple of 3 since it is equal to three times an integer, and so p is a multiple of 3 (this needs proof but we can assume this; it is similar to the statement “if x3 is even, so is x” proved in class earlier)

p = 3k for some integer k

3q3 = 27k3

q3 = 9k3

So q3 is a multiple of 3, and therefore q is a multiple of 3 (we can again assume this)

If p, q are both multiples of 3, they have a common factor 3, which is a contradiction. Thus 3
√

3 is an
irrational number.

(b) (4 points) Let P (n) be the statement

1 +
1√
1

+
1√
2

+ . . . +
1√
n
> 2(
√
n + 1− 1)

where n is a positive integer. Prove that this statement is true for n ∈ N using mathematical induction.

Solution: We prove this by inducton on n.
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Base Case: For n = 1, 1 = 2(
√

2− 1) > 2 ∗ 0.42 = 0.84. So the statement holds.

Inductive Step: Assume that the hypothesis holds for n = k, i.e., 1 + 1√
1

+ 1√
2

+ . . . + 1√
k

>

2(
√
k + 1− 1). Then for n = k + 1, we have

1 +
1√
1

+
1√
2

+ . . . +
1√
k

+
1√
k + 1

=

[
1 +

1√
1

+
1√
2

+ . . . +
1√
k

]
+

1√
k + 1

> 2(
√
k + 1− 1) +

1√
k + 1

> 2(
√
k + 2− 1) because

√
k + 2−

√
k + 1 =

(
√
k + 2−

√
k + 1)(

√
k + 2 +

√
k + 1)√

k + 2 +
√
k + 1

=
(k + 2)− (k + 1)√
k + 2 +

√
k + 1

=
1√

k + 2 +
√
k + 1

<
1

2
√
k + 1

, so

2(
√
k + 2−

√
k + 1) <

1√
k + 1

, and so

2(
√
k + 2− 1) < 2(

√
k + 1− 1) +

1√
k + 1

Thus if the hypothesis holds for n = k it also holds for n = k + 1. Therefore, the statement given in
the question is true.

4. (6 points) Proofs

(a) (3 points) Let a1, a2, . . . , an be positive real numbers such that a1a2 . . . an = 1. Use induction or strong
induction to prove that

a1 + a2 + . . . + an ≥ n

Solution: This is a very difficult problem. The solution is as follows. We will use induction on n.

Base Case: For n = 1, we are given that a1 = 1 which satisfies a1 ≥ 1.

Inductive Step: Assume that the hypothesis holds for n = k > 2. So for any positive real numbers
a1, a2, . . . , ak satisfying a1a2 . . . ak = 1, it must be the case that a1 + a2 + . . . + ak ≥ k. Now consider
any positive real numbers a1, a2, . . . , ak, ak+1 satisfying a1a2 . . . akak+1 = 1. Let us assume that no
ai = 1, because we can leave out such ai and be left to prove the same statement for smaller n. So all
the ai’s are either less than 1 or greater than 1. Since the product is 1, there must be at least one ai
that is less than 1, and at least one ai that is less than 1. Without loss of generality, call these two
ak, ak+1. Let b = akak+1. Then the set of k numbers a1, a2, . . . , ak−1, b satisfies the conditions of the
inductive hypothesis (a1a2 . . . ak−1b = 1) and thus we conclude that

a1 + a2 + . . . + ak−1 + b ≥ k,

or
a1 + a2 + . . . + ak−1 ≥ k − b.

From here we see that if we can show ak + ak+1 ≥ 1 + b, we are done because then we would add
ak + ak+1 to both sides of the last inequality and get

a1 + a2 + . . . + ak−1 + ak + ak+1 ≥ k − b + 1 + b

= k + 1
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and that would give us what we want to prove. Now note that (1− ak)(1− ak+1) ≤ 0 because one of
the terms in the product is positive and the other is negative.

(1− ak)(1− ak+1) ≤ 0

1− ak − ak+1 + akak+1 ≤ 0

1− ak − ak+1 + b ≤ 0

1 + b ≤ ak + ak+1

(b) (3 points) Prove that 133 divides 11n+1 + 122n−1 whenever n is a positive integer.

Solution: We prove this by inducton on n.

Base Case: For n = 1, 11n+1 + 122n−1 = 112 + 121 = 133 which is divisible by 133.

Inductive Step: Assume that the hypothesis holds for n = k, i.e., 11k+1 + 122k−1 = 133A for some
integer A. Then for n = k + 1,

11n+1 + 122n−1 = 11k+1+1 + 122(k+1)−1

= 11k+2 + 122k+1

= 11 ∗ 11k+1 + 144 ∗ 122k−1

= 11 ∗ 11k+1 + 11 ∗ 122k−1 + 133 ∗ 122k−1

= 11[11k+1 + 122k−1] + 133 ∗ 122k−1

= 11 ∗ 133A + 133 ∗ 122k−1

= 133[11A + 122k−1]

Thus if the hypothesis holds for n = k it also holds for n = k + 1. Therefore, the statement given in
the question is true.

5. (6 points) Proofs

(a) (3 points) Prove that if n is a nonnegative integer then n5 − n is divisible by 5.

Solution: We can prove this by induction on n.

Base Case: For n = 0, 05 − 0 = 0 which is divisible by 5.

Inductive Step: Assume that the hypothesis holds for n = k, i.e., k5 − k = 5A for some integer A.
Then for n = k + 1,

(k + 1)5 − (k + 1) = (k5 + 5k4 + 10k3 + 10k2 + 5k + 1)− (k + 1)

= (k5 − k) + 5k4 + 10k3 + 10k2 + 5k

= 5A + 5(k4 + 2k3 + 2k2 + k)

= 5(A + k4 + 2k3 + 2k2 + k)

which is a multiple of 5.

Thus if the hypothesis holds for n = k it also holds for n = k + 1. Therefore, the statement given in
the question is true.
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(b) (3 points) Prove that at any party with at least two people, there must be two people who know the
same number of other people there.

Solution: We can make a simplifying assumption here – that every person knows at least one other
person at the party. If this is the case then each of n people know at least 1 and at most n− 1 other
people. By the Pigeonhole Principle, there must be two people who know the same number of people
at the party.

Note:

1. This is not correct, but I gave you full marks if you made this argument.

2. You do not need to assume that knowing is mutual (or symmetric).

The correct solution considers the case where one or more persons may know zero other people at the
party. If there are two or more people who know no other people at the party we are done. If there is
exactly one person who knows no other people, we leave him/her out and then we get a problem where
our simplifying assumption above holds, and thus the proof above is now correct.
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