
Java By Abstraction Appendix-C 335

APPENDIX C
CODING STYLE

Although compilers ignore style, experience has shown that code that adheres to a simple
and consistent style will actually contain fewer errors. Furthermore, such code is easier to
read, and this makes modifying or debugging it much faster.

C.1 Naming Convention

1. Constants

Use uppercase characters as in LIMIT. If the name is made up of more than one
word, separate the words by an underscore as in UPPER_LIMIT.

2. Variables, methods, and packages

Use lowercase characters as in length. If the name is made up of more than one
word, capitalize the first letter of each subsequent word as in indexOf.

3. Classes

Capitalize the first letter as in String. If the name is made up of more than one
word, capitalize the first letter of each subsequent word as in StringBuffer.

The name of a constant or a variable must be indicative of content. Avoid using abbrevia-
tions (like prc for price) unless they are standard; and avoid using generic names (like x
or i) unless the context itself is generic.

C.2 Statement Layout

1. Editor

Use a non-proportional font like Courier with a point size of 10. Set the tab size to 3;
i.e. a tab should skip two positions.

2. One statement per line

Write only one statement per line. If a statement is longer than 80 characters then
break it (ideally after a comma) and continue it indented on the next line.

3. Between tokens

Leave exactly one space between tokens (e.g. around all infix operators like * and =)
except in the following four situations (in which do not leave a space):
• After an opening parenthesis
• Before a closing parenthesis, comma, or semicolon
• Around the dot separator
• Between the name of a method and the opening parenthesis of its parameter list.

4. Indentation

Indent each block by exactly two spaces relative to its braces.

Appendix C: Coding Style

Java By Abstraction Appendix-C 336

C.3 Braces

1. Usage

Use braces in control structures always, even if the block contains only one statement.

2. Placement

Corresponding opening and closing braces must be vertically aligned.

C.4 Magic Numbers
Aside from zero, ±1, and ±2, no hard-coded literal (also known as magic numbers) may
appear in code except in a final statement.

C.5 Examples

• Declaration

int counter;
final int PORT = 80;
final char CODE = '\u0041';
final char TAB = '\t';
double costPrice;
final double ELECTRON_CHARGE = 1.60219E-19;

• Expression

double z = Math.sqrt(x * x + y * y);
boolean isValid = (address > 0) && (address % size == 0);

• Selection

if (x % y == 0)
{ z = x + y;
} else if (x / 2 * 2 == x)
{ z = y;
} else
{ z = x;
}

• Iteration

int sum = 0;
for (int i = 0; i < name.length(); i++)
{ sum = sum + name.charAt(i);
}

• Exception Handling

try
{ int colon = entry.indexOf(":");
 IO.println(entry.substring(0, colon);
}

 catch (IndexOutOfBoundsException e)
 { IO.println("No colon in input!");
 }

