
Aggregation

Combine simple data into more complex data.

CSE 5910



Inheritance

Add some simple data to already existing complex data.

For the resulting data, add new operations (mainly to handle the
added simple data) and possibly redefine some of the operations of
the complex data.

CSE 5910



Inheritance

Inheritance was invented in 1967 for the object-oriented
programming language Simula.

“Inheritance is an object-oriented technique that allows you to
re-use code across related objects in your applications.”
Source: www.objectorientedcoldfusion.org/wiki/Inheritance

“Item 14: Favor composition (aggregation) over inheritance.”
Source: Joshua Bloch. Effective Java: Programming Language
Guide. Addison-Wesley. 2001.

CSE 5910



Inheritance

Definition

Inheritance is a binary relation on classes. The pair (C , P) of
classes is in the inheritance relation if the API of the class C
(child) contains

class C extends P

The API of the class P (parent) may (but does not have to)
contain

Direct Known Subclasses: C

The inheritance relation is also known as the is-a relation. Instead
of saying that (C , P) is in the inheritance relation, we often simply
say that C is-a P.

CSE 5910



Inheritance

Example

RewardCard is-a CreditCard

CEStudent is-a Student

ITStudent is-a Student

SEStudent is-a Student

CSE 5910



Inheritance

Definition

P is a superclass of C if C is-a P.

C is a subclass of P if C is-a P.

Example

Student is a superclass of CEStudent

RewardCard is a subclass of CreditCard

CSE 5910



UML Diagrams

CreditCard

RewardCard

CSE 5910



UML Diagrams

Object

CreditCard

RewardCard

CSE 5910



UML Diagrams

Object

Student

CEStudent ITStudent SEStudent

CSE 5910



Inheritance

Definition

A programming language supports single inheritance if each class
has at most one superclass.

A programming language supports multiple inheritance if each
class may have multiple superclasses.

Example

Java supports single inheritance.

Eiffel supports multiple inheritance.

CSE 5910



A Class Consists of

constructors,

attributes, and

methods.

CSE 5910



Constructors

Constructors are not inherited from the superclass.

CSE 5910



In a Well-Designed Class ...

... all non-final attributes are private (page 77).

We will restrict ourselves to such well-designed classes.

Hence, we assume that

all public attributes are final.

CSE 5910



Attributes

All public non-static final attributes are inherited from the
superclass.

For a well-designed class, these are the only non-static attributes of
which a client is aware.

Static attributes are not inherited. They can be accessed via the
superclass (name).

CSE 5910



Attributes

Question

Assume that the class P has a public non-static final attribute
named a. Can its subclass C also contain a public non-static final
attribute named a?

Answer

Yes. In that case, the attribute a of the subclass C is said to
shadow the attribute a of the superclass P.

However, why would one ever introduce two different constants
with the same name? In well-designed classes, such a situation
never arises.

CSE 5910



Attributes

Question

Assume that the class P has a public non-static final attribute
named a. Can its subclass C also contain a public non-static final
attribute named a?

Answer

Yes. In that case, the attribute a of the subclass C is said to
shadow the attribute a of the superclass P.

However, why would one ever introduce two different constants
with the same name? In well-designed classes, such a situation
never arises.

CSE 5910



Methods

All public non-static methods are inherited from the superclass.

Static methods are not inherited. They can be invoked via the
superclass (name).

For example, the public non-static method getBalance of the
class CreditCard is inherited by the class RewardCard.

CSE 5910



Methods

Question

Assume that the class P has a public non-static method with
signature (method name and parameter types) s. Can its
subclass C also contain a public non-static method with
signature s?

Answer

Yes. In that case, the method with signature s of the subclass C is
said to override the method with signature s of the superclass P.

CSE 5910



Methods

Question

Assume that the class P has a public non-static method with
signature (method name and parameter types) s. Can its
subclass C also contain a public non-static method with
signature s?

Answer

Yes. In that case, the method with signature s of the subclass C is
said to override the method with signature s of the superclass P.

CSE 5910



Methods

We can distinguish between

inherited methods

overridden methods

new methods

CSE 5910



The substitutability principle

final int NUMBER = 3576836;
final String NAME = "Franck";
CreditCard card = new RewardCard(NUMBER, NAME);
output.println(card);

The assignment CreditCard card = new RewardCard(NUMBER,
NAME) is valid, since a RewardCard is-a CreditCard.

Although the signature of the println method is
println(Object), the method call output.println(card) is
valid, since a CreditCard is-a Object.

CSE 5910



Early binding

When the compiler encounters the invocation

r.m(a1, . . . , an)

it performs early binding. It consists of the following three steps.

1 Determine the declared type of the object reference r: class C.

2 Find compatible methods m in class C.

3 Select the most specific compatible method m(t1, . . . , tn) in
class C.

The invocation r.m(a1, . . . , an) is bound to method m(t1, . . . , tn)
of class C.

CSE 5910



Early binding

Question

Consider the following snippet.

int i = 23;
double d = 3.0;
output.println(i);
output.println(d);
output.printf(i);

For each of the three method calls, determine the method to which
it is bound.

CSE 5910



Early binding and inheritance

Question

The class MyPrintStream extends the class PrintStream. The
former class overrides the method println(double). Consider
the following snippet.

PrintStream output = new MyPrintStream(...);
output.println(1.0);

To which method is the method call bound?

Answer

println(double) of PrintStream.

Question

Is this the method we want to invoke?

Answer

No, we want println(double) of MyPrintStream.

CSE 5910



Early binding and inheritance

Question

The class MyPrintStream extends the class PrintStream. The
former class overrides the method println(double). Consider
the following snippet.

PrintStream output = new MyPrintStream(...);
output.println(1.0);

To which method is the method call bound?

Answer

println(double) of PrintStream.

Question

Is this the method we want to invoke?

Answer

No, we want println(double) of MyPrintStream.

CSE 5910



Early binding and inheritance

Question

The class MyPrintStream extends the class PrintStream. The
former class overrides the method println(double). Consider
the following snippet.

PrintStream output = new MyPrintStream(...);
output.println(1.0);

To which method is the method call bound?

Answer

println(double) of PrintStream.

Question

Is this the method we want to invoke?

Answer

No, we want println(double) of MyPrintStream.

CSE 5910



Early binding and inheritance

Question

The class MyPrintStream extends the class PrintStream. The
former class overrides the method println(double). Consider
the following snippet.

PrintStream output = new MyPrintStream(...);
output.println(1.0);

To which method is the method call bound?

Answer

println(double) of PrintStream.

Question

Is this the method we want to invoke?

Answer

No, we want println(double) of MyPrintStream.
CSE 5910



Early and late binding

early binding compiler javac
late binding virtual machine java

CSE 5910



Late binding

Assume that the compiler binds the invocation

r.m(a1, . . . , an)

to method m(t1, . . . , tn) of class C.

When the virtual machine encounters the invocation

r.m(a1, . . . , an)

it performs late binding. It consists of the following step.

Determine the actual type of the object reference r: class C’.

The invocation r.m(a1, . . . , an) is bound to method m(t1, . . . , tn)
of class C’.

Note that the signature does not change.

CSE 5910



Late binding

Question

The class MyPrintStream extends the class PrintStream. The
former class overrides the method print(double). Consider the
following snippet.

PrintStream output = new MyPrintStream(...);
output.println(1.0);

To which method is the method call bound?

Answer

println(double) of MyPrintStream.

CSE 5910



Late binding

Question

The class MyPrintStream extends the class PrintStream. The
former class overrides the method print(double). Consider the
following snippet.

PrintStream output = new MyPrintStream(...);
output.println(1.0);

To which method is the method call bound?

Answer

println(double) of MyPrintStream.

CSE 5910



Late binding

Question

Consider the following snippet.

CreditCard c1 = new CreditCard(...);
CreditCard c2 = new RewardCard(...);
RewardCard c3 = new RewardCard(...);

Determine the early and late binding of

ci.isSimilar(cj)

CSE 5910



Credit card collection

Problem

Create a random collection of credit cards (use the GlobalCredit
class) and print each card on a separate line.

CSE 5910



Polymorphism

The toString method is said to be polymorphic, that is, it has
multiple forms.

CSE 5910



Credit card collection

Problem

Create a random collection of credit cards (use the GlobalCredit
class) and print the total balance of all cards combined.

CSE 5910



Credit card collection

Problem

Create a random collection of credit cards (use the GlobalCredit
class) and print the total point balance of all reward cards
combined.

CSE 5910



instanceof

The Boolean expression

r instanceof C

evaluates to true if r is not null and its type is C or any of its
descendants.

CSE 5910



Casting: at compile time

Assume that the declared type of the reference r is C.

Then (C’)r gives rise to a compile time error if C’ is neither
a descendant nor an ancestor of C.

If (C’)r does not give rise to a compile time error, then its
declared type is C’.

CSE 5910



Casting: at compile time

Question

Assume that the declared type of reference card is CreditCard.
Which of the following gives rise to a compile time error?

1 (RewardCard)card

2 (CreditCard)card

3 (Object)card

4 (Integer)card

Answer

4.

CSE 5910



Casting: at compile time

Question

Assume that the declared type of reference card is CreditCard.
Which of the following gives rise to a compile time error?

1 (RewardCard)card

2 (CreditCard)card

3 (Object)card

4 (Integer)card

Answer

4.

CSE 5910



Casting: at run time

(C’)r gives rise to a run time error if the actual type of r is not a
descendant of C’.

CSE 5910



Casting: at run time

Question

Assume that the actual type of reference card is CreditCard.
Which of the following gives rise to a run time error?

1 (RewardCard)card

2 (CreditCard)card

3 (Object)card

Answer

1.

CSE 5910



Casting: at run time

Question

Assume that the actual type of reference card is CreditCard.
Which of the following gives rise to a run time error?

1 (RewardCard)card

2 (CreditCard)card

3 (Object)card

Answer

1.

CSE 5910



Shapes

Cube Ellipse

Circle

Rectangle

Square

Sphere

CSE 5910



Collection of shapes

ShapeCollection ?
*

CSE 5910



Shape

Shape

Cube Ellipse

Circle

Rectangle

Square

Sphere

CSE 5910



Collection of shapes

ShapeCollection Shape
*

CSE 5910



Shape

Question

Can you draw a rectangle, ellipse, etc?

Answer

Yes!

Question

Can you draw a shape?

Answer

No. Shape is an abstract notion.

CSE 5910



Shape

Question

Can you draw a rectangle, ellipse, etc?

Answer

Yes!

Question

Can you draw a shape?

Answer

No. Shape is an abstract notion.

CSE 5910



Shape

Question

Can you draw a rectangle, ellipse, etc?

Answer

Yes!

Question

Can you draw a shape?

Answer

No. Shape is an abstract notion.

CSE 5910



Shape

Question

Can you draw a rectangle, ellipse, etc?

Answer

Yes!

Question

Can you draw a shape?

Answer

No. Shape is an abstract notion.

CSE 5910



Shape

Question

Can you create a Rectangle object, Ellipse object, etc?

Answer

Yes!

Question

Should one be able to create a Shape object?

Answer

No.

CSE 5910



Shape

Question

Can you create a Rectangle object, Ellipse object, etc?

Answer

Yes!

Question

Should one be able to create a Shape object?

Answer

No.

CSE 5910



Shape

Question

Can you create a Rectangle object, Ellipse object, etc?

Answer

Yes!

Question

Should one be able to create a Shape object?

Answer

No.

CSE 5910



Shape

Question

Can you create a Rectangle object, Ellipse object, etc?

Answer

Yes!

Question

Should one be able to create a Shape object?

Answer

No.

CSE 5910



Abstract class

An abstract class cannot be instantiated, that is, we cannot create
instances of the class.

An abstract class may contain methods.

Question

If one cannot create instances of a class, are its methods of any
use?

Answer

Yes! They can be inherited by subclasses.

CSE 5910



Abstract class

An abstract class cannot be instantiated, that is, we cannot create
instances of the class.

An abstract class may contain methods.

Question

If one cannot create instances of a class, are its methods of any
use?

Answer

Yes! They can be inherited by subclasses.

CSE 5910



Abstract class

API: public abstract class Shape

UML: class name in italics

CSE 5910



Shape collection

Problem

Create a random collection of shapes and print the total area of all
shapes combined.

CSE 5910



Shape collection

Problem

Create a random collection of shapes and print the total volume of
all shapes combined.

CSE 5910



Shape

Shape

Cube Ellipse

Circle

Rectangle

Square

Sphere

CSE 5910



Shape collection

Only Cube and Sphere have a volume.

Question

Can we introduce an abstract class HasVolume with method
getVolume() as a superclass for Cube and Sphere?

Answer

No, because Cube and Sphere already have a superclass and Java
does not support multiple inheritance.

CSE 5910



Shape collection

Only Cube and Sphere have a volume.

Question

Can we introduce an abstract class HasVolume with method
getVolume() as a superclass for Cube and Sphere?

Answer

No, because Cube and Sphere already have a superclass and Java
does not support multiple inheritance.

CSE 5910



Shape

<<interface>>
HasVolume

Shape

Cube Ellipse

Circle

Rectangle

Square

Sphere

CSE 5910



Interface

API: public interface HasVolume

UML: interface name preceded by <<interface>>

CSE 5910



Interface

An interface specifies methods, it does not provide an
implementation for them.

A class C implements an interface I if C contains an
implementation of each method specified in I.

CSE 5910



Another interface: Iterator

Interface Iterator<E>

E is a type parameter.

To use the Iterator interface, you need to provide a type as
argument.

Iterator<Shape> iterator = collection.iterator();

CSE 5910



Written test

When: Friday March 14, 12:00–13:00
Where: MCL 111
Material: Chapter 1–6, 8 and 9

CSE 5910



Programming test

When: Friday March 14, 13:25–14:20
Where: LAS 1004
Material: Chapter 1–6, 8 and 9
The APIs will be posted on the course website early next week.

CSE 5910



This week’s eCheck...

... has to be completed before March 12, so that I can provide
feedback before Friday’s test.

CSE 5910



To do

Study Chapter 9 of the textbook.

CSE 5910


