JDBC: Priming

e To compile the APP, javac needs to know where the
JDBC library is.

e To run the APP, java needs to know how to locate the
database system in question.
Mainly, this is setting up the CLASSPATH and
LD_LIBRARY_PATH correctly for the local system.

e On PRISM,

% source ~db2leduc/.cshrc

will do it.

CSCE-3421—Winter 2009—Godfrey — p. 1/10

JDBC: Establishing the Driver

The driver manages the type of data source (database
system) with which the APP will be communicating via
JDBC.

import java.net.*;
import java.sql.*;

// Register the driver with DriverManager.
Class.

forName("COM.ibm.db2. jdbc.app.DB2Driver").
newInstance();

CSCE-3421—Winter 2009—Godfrey — p. 2/10




JDBC: The Connection

Which database is it?

// Conn. to the DBMS.
private Connection conDB;
// URL: Which database?
private String url;

// URL: This database.
url = "jdbc:db2:c3421m";
conDB = DriverManager.getConnection(url);

conDB.close();

Can throw a COM. ibm.db2. jdbc.DB2Exception.
Typically one connection per APP, not one per object!

CSCE-3421—Winter 2009 —Godfrey — p. 3/10

JDBC: *““Talking” to the DB

1. Compose SQL in a string.

2. Prepare the SQL statement.

3. Execute the statement.

4. Walk through the resulting cursor.

CSCE-3421—Winter 2009—Godfrey — p. 4/10




Building the SQL Query

A query is pure SQL in a Java string.

// The SQL text.

String queryText = "";
// The query handle.
PreparedStatement querySt = null;
// A cursor.
ResultSet answers = null;
queryText =
"SELECT COUNT(*) as #custs"
+ " FROM yrb customer";

CSCE-3421—Winter 2009—Godfrey — p. 5/10

Preparing & Executing

® Prepare the statement:

querySt =
conDB.prepareStatement (queryText);

e Execute the statement:

answers = querySt.executeQuery();

Why two steps?

CSCE-3421—Winter 2009—Godfrey — p. 6/10




Walk the Cursor

if (answers.next()) {
int num of customers =
answers.getInt("#custs");
System.out.print("There are ");
System.out.print(num of customers);
System.out.println(
" number of customers.");
} else {
System.out.println(
"There are no customers.");

}

Can we ask answers how many rows there are? No.

CSCE-3421—Winter 2009—Godfrey — p. 7/10

Clean Up!

We’'re used to Java garbage collecting for us. However, this
does not guarantee that these “objects” are deallocated
when we are done with them on the DBMS side.

// Close the cursor.
answers.close();

// We’re done with the handle.
querySt.close();

// Close the connection.
conDB.close();

CSCE-3421—Winter 2009—Godfrey — p. 8/10




Cursors: Properties

e scrollability: Whether the cursor can move forward,
backward, or to a specific row.

® updatability: Whether the cursor can be used to update
or delete rows.

@ holdability: Whether the cursor stays open after a
commit.

Typically, a cursor is not scrollable unless declared so and
provisions have been made.

CSCE-3421—Winter 2009 —Godfrey — p. 9/10

Cursors: Bad Habits

while (custCR.next()) {

}

cid = custCR.getInt("cid");
salesST.setInt(1l, cid);

salesCR = salesST.executeQuery();
salesCR.next();

sales = salesCR.getFloat("sales");
System.out.print(cid);
System.out.print(sales);

@ Never use a cursor to do what could have been done
instead in a query.

® In procedural versus declarative, go declarative!

CSCE-3421—Winter 2009—Godfrey — p. 10/10




