Graphs – Breadth First Search

[Diagram of a graph with nodes SFO, ORD, LAX, and DFW connected by edges with weights labeled: SFO to LAX 337, LAX to DFW 1233, DFW to ORD 802, ORD to SFO 1843]
Outline

- BFS Algorithm
- BFS Application: Shortest Path on an unweighted graph
- Unweighted Shortest Path: Proof of Correctness
Outline

- BFS Algorithm
- BFS Application: Shortest Path on an unweighted graph
- Unweighted Shortest Path: Proof of Correctness
Breadth-First Search

- Breadth-first search (BFS) is a general technique for traversing a graph
- A BFS traversal of a graph G
 - Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G
- BFS on a graph with $|V|$ vertices and $|E|$ edges takes $O(|V|+|E|)$ time
- BFS can be further extended to solve other graph problems
 - Cycle detection
 - Find and report a path with the minimum number of edges between two given vertices
BFS Algorithm Pattern

BFS(G,s)

Precondition: G is a graph, s is a vertex in G

Postcondition: all vertices in G reachable from s have been visited

for each vertex \(u \in V[G] \)

 \[\text{color}[u] \leftarrow \text{BLACK} \quad // \text{initialize vertex} \]

\[\text{colour}[s] \leftarrow \text{RED} \]

Q.enqueue(s)

while Q ≠ ∅

 \(u \leftarrow \text{Q.dequeue()} \)

 for each \(v \in \text{Adj}[u] \quad // \text{explore edge (u,v)} \)

 if \(\text{color}[v] = \text{BLACK} \)

 \[\text{colour}[v] \leftarrow \text{RED} \]

 Q.enqueue(\(v \))

\[\text{colour}[u] \leftarrow \text{GRAY} \]
BFS is a Level-Order Traversal

- Notice that in BFS exploration takes place on a wavefront consisting of nodes that are all the same distance from the source \(s \).

- We can label these successive wavefronts by their distance: \(L_0, L_1, \ldots \).
BFS Example

- **A**: undiscovered
- **A**: discovered (on Queue)
- **A**: finished
- **---**: unexplored edge
- **→**: discovery edge
- **---**: cross edge

L₀

L₁

A

B

C

D

E

F
BFS Example (cont.)
BFS Example (cont.)
Properties

Notation

\(G_s \): connected component of \(s \)

Property 1

\(BFS(G, s) \) visits all the vertices and edges of \(G_s \)

Property 2

The discovery edges labeled by \(BFS(G, s) \) form a spanning tree \(T_s \) of \(G_s \)

Property 3

For each vertex \(v \) in \(L_i \)

- The path of \(T_s \) from \(s \) to \(v \) has \(i \) edges
- Every path from \(s \) to \(v \) in \(G_s \) has at least \(i \) edges
Analysis

- Setting/getting a vertex/edge label takes $O(1)$ time
- Each vertex is labeled three times
 - once as BLACK (undiscovered)
 - once as RED (discovered, on queue)
 - once as GRAY (finished)
- Each edge is considered twice (for an undirected graph)
- Each vertex is placed on the queue once
- Thus BFS runs in $O(|V|+|E|)$ time provided the graph is represented by an adjacency list structure
END OF LECTURE
APRIL 1, 2014
Applications

BFS traversal can be specialized to solve the following problems in $O(|V|+|E|)$ time:

- Compute the connected components of G
- Compute a spanning forest of G
- Find a simple cycle in G, or report that G is a forest
- Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists
Outline

- BFS Algorithm
- BFS Application: Shortest Path on an unweighted graph
- Unweighted Shortest Path: Proof of Correctness
Application: Shortest Paths on an Unweighted Graph

- **Goal:** To recover the shortest paths from a source node s to all other reachable nodes v in a graph.
 - The length of each path and the paths themselves are returned.

- **Notes:**
 - There are an exponential number of possible paths
 - Analogous to level order traversal for trees
 - This problem is harder for general graphs than trees because of cycles!
Breadth-First Search

Input: Graph $G = (V, E)$ (directed or undirected) and source vertex $s \in V$.

Output:

$d[v] = \text{shortest path distance } \delta(s, v) \text{ from } s \text{ to } v, \forall v \in V$.

$\pi[v] = u \text{ such that } (u, v) \text{ is last edge on a shortest path from } s \text{ to } v$.

- Idea: send out search ‘wave’ from s.
- Keep track of progress by colouring vertices:
 - Undiscovered vertices are coloured black
 - Just discovered vertices (on the wavefront) are coloured red.
 - Previously discovered vertices (behind wavefront) are coloured grey.
BFS Algorithm with Distances and Predecessors

BFS(G,s)

Precondition: G is a graph, s is a vertex in G
Postcondition: \(d[u] \) = shortest distance \(\delta[u] \) and
\(\pi[u] = \) predecessor of \(u \) on shortest path from \(s \) to each vertex \(u \) in \(G \)

for each vertex \(u \in V[G] \)

\(d[u] \leftarrow \infty \)
\(\pi[u] \leftarrow \text{null} \)
\(\text{color}[u] = \text{BLACK} \) \//initialize vertex

\text{color}[s] \leftarrow \text{RED}

\(d[s] \leftarrow 0 \)

\text{Q.enqueue}(s)

while \(Q \neq \emptyset \)

\(u \leftarrow \text{Q.dequeue}() \)

for each \(v \in \text{Adj}[u] \) \//explore edge \((u,v)\)

\text{if} \ \text{color}[v] = \text{BLACK}

\(\text{color}[v] \leftarrow \text{RED} \)

\(d[v] \leftarrow d[u] + 1 \)

\(\pi[v] \leftarrow u \)

\text{Q.enqueue}(v)

\text{color}[u] \leftarrow \text{GRAY}
BFS

First-In First-Out (FIFO) queue
stores ‘just discovered’ vertices
BFS

Found
Not Handled
Queue

d=0

d=1

d=1

s

a

b

c

d

e

f
g

h

i

j

k

l

m

n

CSE 2011
Prof. J. Elder

Last Updated 2014-03-18 8:09 AM
BFS

Found
Not Handled
Queue

d=0
d=1
d=2

da=0
da=1
da=2

d=1
d=2

d=1
d=2

d=2
BFS

Found
Not Handled
Queue

d=0

d=1

d=2

d=1

d=2
BFS

Found
Not Handled
Queue

d=0

d=1

d=2

d=1

d=2

c d=2

f

e d=2

m

j

BFS

s

a

d

b

d

d

e

g

f

j

m

k

h

i

l

- 25 -

CSE 2011
Prof. J. Elder

Last Updated 2014-03-18 8:09 AM
BFS

Not Handled
Queue

d=0

d=1

d=2

d=2

Found

CSE 2011
Prof. J. Elder

Last Updated 2014-03-18 8:09 AM
BFS

Found
Not Handled
Queue

d=0
d=1
d=2
d=3

s
a
b
c
d
e
g
h
i
j
k
l
m

CSE 2011
Prof. J. Elder

Last Updated 2014-03-18 8:09 AM
BFS

Found
Not Handled
Queue

d=0

d=1

d=2

d=3

d=2

d=3

- 29 -

CSE 2011
Prof. J. Elder

Last Updated 2014-03-18 8:09 AM
BFS

Found
Not Handled
Queue

d=0

d=1

d=2

d=3

s

d=0

a

d=1

b

d=2

d=3

d=2

d=3

d=2

d=3

Not Handled

Queue

b

d=1

d=2

d=3

d=3
BFS

Found
Not Handled
Queue

d=0

d=1

d=2

d=3

d=2

d=3

d=2

h

i

j

k

l

m

ds=0

ds=1

ds=2

ds=3

CSE 2011
Prof. J. Elder
BFS

Found Not Handled Queue

s

d=0

d=1

d=2

d=3

d=4

d=4

a

d

c

d

f

d

h

k

i

j

m

b

g

l

k

d=4

d=3

d=2

d=3

CSE 2011
Prof. J. Elder

Last Updated 2014-03-18 8:09 AM
BFS

Found
Not Handled
Queue

s

d=0

d=1

d=3

d=4

d=2

d=4

d=3

d=4

a
b
c
f
d
e
g
j
h
i
m
k
l

CSE 2011
Prof. J. Elder

Last Updated 2014-03-18 8:09 AM
BFS

Found Not Handled Queue

d=0

d=1

d=2

d=3

d=4

Queue k
BFS

Found
Not Handled
Queue

s

d=0

d=1

d=2

d=3

d=4

d=5

a

d

d

d

e

g

b

f

c

h

j

i

l

m

k

CSE 2011
Prof. J. Elder

Last Updated 2014-03-18 8:09 AM
Breadth-First Search Algorithm: Properties

BFS(G, s)
Precondition: G is a graph, s is a vertex in G
Postcondition: \(d[u] = \) shortest distance \(\delta[u]\) and \(\pi[u] = \) predecessor of \(u\) on shortest paths from \(s\) to each vertex \(u\) in \(G\)

for each vertex \(u \in V[G]\)
 \(d[u] \leftarrow \infty\)
 \(\pi[u] \leftarrow \) null
 \(\text{color}[u] = \) BLACK //initialize vertex

\(\text{colour}[s] \leftarrow \text{RED}\)
\(d[s] \leftarrow 0\)
Q.enqueue(s)

while \(Q \neq \emptyset\)
 \(u \leftarrow \) Q.dequeue()
 for each \(v \in \text{Adj}[u]\) //explore edge \((u, v)\)
 if \(\text{color}[v] = \) BLACK
 \(\text{colour}[v] \leftarrow \) RED
 \(d[v] \leftarrow d[u] + 1\)
 \(\pi[v] \leftarrow u\)
 Q.enqueue(v)

\(\text{colour}[u] \leftarrow \text{GRAY}\)

- Q is a FIFO queue.
- Each vertex assigned finite \(d\) value at most once.
- Q contains vertices with \(d\) values \(\{i, \ldots, i, i+1, \ldots, i+1\}\)
- \(d\) values assigned are monotonically increasing over time.
Breadth-First-Search is **Greedy**

- Vertices are handled (and finished):
 - in order of their discovery (FIFO queue)
 - Smallest d values first
Outline

- BFS Algorithm
- BFS Application: Shortest Path on an unweighted graph
- Unweighted Shortest Path: Proof of Correctness
Correctness

Basic Steps:

The shortest path to u has length d & there is an edge from u to v.

There is a path to v with length $d + 1$.
Correctness: Basic Intuition

- When we discover v, how do we know there is not a shorter path to v?
 - Because if there was, we would already have discovered it!
Correctness: More Complete Explanation

- Vertices are discovered in order of their distance from the source vertex s.

- Suppose that at time t_1 we have discovered the set V_d of all vertices that are a distance of d from s.

- Each vertex in the set V_{d+1} of all vertices a distance of $d+1$ from s must be adjacent to a vertex in V_d.

- Thus we can correctly label these vertices by visiting all vertices in the adjacency lists of vertices in V_d.
Inductive Proof of BFS

Suppose at step i that the set of nodes S_i with distance $\delta(v) \leq d_i$ have been discovered and their distance values $d[v]$ have been correctly assigned.

Further suppose that the queue contains only nodes in S_i with d values of d_i.

Any node v with $\delta(v) = d_i + 1$ must be adjacent to S_i.

Any node v adjacent to S_i but not in S_i must have $\delta(v) = d_i + 1$.

At step $i + 1$, all nodes on the queue with d values of d_i are dequeued and processed. In so doing, all nodes adjacent to S_i are discovered and assigned d values of $d_i + 1$.

Thus after step $i + 1$, all nodes v with distance $\delta(v) \leq d_i + 1$ have been discovered and their distance values $d[v]$ have been correctly assigned.

Furthermore, the queue contains only nodes in S_i with d values of $d_i + 1$.
Correctness: Formal Proof

Input: Graph $G = (V, E)$ (directed or undirected) and source vertex $s \in V$.

Output:

$d[v] = \text{distance } \delta(v) \text{ from } s \text{ to } v, \forall v \in V.$

$\pi[v] = u \text{ such that } (u, v) \text{ is last edge on shortest path from } s \text{ to } v.$

Two-step proof:

On exit:

1. $d[v] \geq \delta(s, v) \forall v \in V$

2. $d[v] \neq \delta(s, v) \forall v \in V$
Claim 1. d is never too small: $d[v] \geq \delta(s,v) \\forall v \in V$

Proof: There exists a path from s to v of length $\leq d[v]$.

By Induction:

Suppose it is true for all vertices thus far discovered (red and grey). v is discovered from some adjacent vertex u being handled.

$$d[v] = d[u] + 1 \geq \delta(s,u) + 1 \geq \delta(s,v)$$

since each vertex v is assigned a d value exactly once, it follows that on exit, $d[v] \geq \delta(s,v) \forall v \in V$.
Claim 1. d is never too small: $d[v] \geq \delta(s,v) \forall v \in V$

Proof: There exists a path from s to v of length $\leq d[v]$.

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: $d[u] =$ shortest distance $\delta[u]$ and
$\pi[u] =$ predecessor of u on shortest paths from s to each vertex u in G

for each vertex $u \in V[G]$

\begin{align*}
 d[u] &\leftarrow \infty \\
 \pi[u] &\leftarrow \text{null} \\
 \text{color}[u] &\leftarrow \text{BLACK} \quad \text{//initialize vertex}
\end{align*}

color[s] \leftarrow RED

d[s] \leftarrow 0

Q.enqueue(s)

while Q $\neq \emptyset$

\begin{align*}
 u &\leftarrow Q\text{.dequeue}() \\
 \text{for each } v \in \text{Adj}[u] \quad \text{//explore edge (u,v)} \\
 \quad \text{if color}[v] = \text{BLACK} \\
 \quad \quad \text{color}[v] \leftarrow \text{RED} \\
 \quad \quad d[v] &\leftarrow d[u] + 1 \\
 \quad \quad \pi[v] &\leftarrow u \\
 \quad \quad Q\text{.enqueue}(v)
\end{align*}

color[u] \leftarrow GRAY

\[\delta(s,v) \geq \delta(s,u) + 1 \geq \delta(s,v) \]
Claim 2. \(d \) is never too big: \(d[v] \leq \delta(s,v) \forall v \in V \)

Proof by contradiction:

Suppose one or more vertices receive a \(d \) value greater than \(\delta \).

Let \(v \) be the vertex with minimum \(\delta(s,v) \) that receives such a \(d \) value.

Suppose that \(v \) is discovered and assigned this \(d \) value when vertex \(x \) is dequeued.

Let \(u \) be \(v \)'s predecessor on a shortest path from \(s \) to \(v \).

Then
\[
\delta(s,v) < d[v] \\
\rightarrow \delta(s,v) - 1 < d[v] - 1 \\
\rightarrow d[u] < d[x]
\]

Recall: vertices are dequeued in increasing order of \(d \) value.

\(\rightarrow \) \(u \) was dequeued before \(x \).

\(\rightarrow d[v] = d[u] + 1 = \delta(s,v) \) \hspace{1em} Contradiction!
Correctness

Claim 1. d is never too small: $d[v] \geq \delta(s,v) \forall v \in V$

Claim 2. d is never too big: $d[v] \leq \delta(s,v) \forall v \in V$

$\Rightarrow d$ is just right: $d[v] = \delta(s,v) \forall v \in V$
Progress? ➚ On every iteration one vertex is processed (turns gray).

BFS(G,s)

Precondition: G is a graph, s is a vertex in G

Postcondition: d[u] = shortest distance δ[u] and

π[u] = predecessor of u on shortest paths from s to each vertex u in G

for each vertex u ∈ V[G]

 d[u] ← ∞
 π[u] ← null
 color[u] = BLACK //initialize vertex

colour[s] ← RED

q[d[s] ← 0

Q.enqueue(s)

while Q ≠ ∅

 u ← Q.dequeue()

 for each v ∈ Adj[u] //explore edge (u,v)
 if color[v] = BLACK
 colour[v] ← RED
 d[v] ← d[u] + 1
 π[v] ← u
 Q.enqueue(v)

 colour[u] ← GRAY
The shortest path problem has the optimal substructure property:

- Every subpath of a shortest path is a shortest path.

The optimal substructure property is a hallmark of both greedy and dynamic programming algorithms.

- allows us to compute both shortest path distance and the shortest paths themselves by storing only one d value and one predecessor value per vertex.
Recovering the Shortest Path

For each node v, store predecessor of v in $\pi(v)$.

Predecessor of v is $\pi(v) = u$.

\[s = \pi(\pi(\pi(\pi(v)))) \]
Recovering the Shortest Path

PRINT-PATH(G, s, v)
Precondition: s and v are vertices of graph G
Postcondition: the vertices on the shortest path from s to v have been printed in order
if v = s then
 print s
else if π[v] = NIL then
 print "no path from" s "to" v "exists"
else
 PRINT-PATH(G, s, π[v])
 print v
BFS Algorithm without Colours

BFS(G,s)

Precondition: G is a graph, s is a vertex in G

Postcondition: predecessors $\pi[u]$ and shortest distance $d[u]$ from s to each vertex u in G has been computed

for each vertex $u \in V[G]$

 $d[u] \leftarrow \infty$

 $\pi[u] \leftarrow \text{null}$

$d[s] \leftarrow 0$

Q.enqueue(s)

while Q $\neq \emptyset$

 $u \leftarrow \text{Q.dequeue()}$

 for each $v \in \text{Adj}[u]$ //explore edge (u,v)

 if $d[v] = \infty$

 $d[v] \leftarrow d[u] + 1$

 $\pi[v] \leftarrow u$

 Q.enqueue(v)
Outline

- BFS Algorithm
- BFS Application: Shortest Path on an unweighted graph
- Unweighted Shortest Path: Proof of Correctness