Graphs – ADTs and Implementations
Applications of Graphs

- Electronic circuits
 - Printed circuit board
 - Integrated circuit
- Transportation networks
 - Highway network
 - Flight network
- Computer networks
 - Local area network
 - Internet
 - Web
- Databases
 - Entity-relationship diagram
Outline

- Definitions
- Graph ADT
- Implementations
Outline

- Definitions
- Graph ADT
- Implementations
Edge Types

- Directed edge
 - ordered pair of vertices \((u,v)\)
 - first vertex \(u\) is the origin
 - second vertex \(v\) is the destination
 - e.g., a flight

- Undirected edge
 - unordered pair of vertices \((u,v)\)
 - e.g., a flight route

- Directed graph (Digraph)
 - all the edges are directed
 - e.g., route network

- Undirected graph
 - all the edges are undirected
 - e.g., flight network
Vertices and Edges

- End vertices (or endpoints) of an edge
 - U and V are the endpoints of a

- Edges incident on a vertex
 - a, d, and b are incident on V

- Adjacent vertices
 - U and V are adjacent

- Degree of a vertex
 - X has degree 5

- Parallel edges
 - h and i are parallel edges

- Self-loop
 - j is a self-loop
A graph is a pair \((V, E)\), where

- \(V\) is a set of nodes, called vertices
- \(E\) is a collection of pairs of vertices, called edges
- Vertices and edges are positions and store elements

Example:

- A vertex represents an airport and stores the three-letter airport code
- An edge represents a flight route between two airports and stores the mileage of the route
Paths

- Path
 - sequence of alternating vertices and edges
 - begins with a vertex
 - ends with a vertex
 - each edge is preceded and followed by its endpoints

- Simple path
 - path such that all its vertices and edges are distinct

- Examples
 - $P_1 = (V, b, X, h, Z)$ is a simple path
 - $P_2 = (U, c, W, e, X, g, Y, f, W, d, V)$ is a path that is not simple
Cycles

- Cycle
 - circular sequence of alternating vertices and edges
 - each edge is preceded and followed by its endpoints

- Simple cycle
 - cycle such that all its vertices and edges are distinct

- Examples
 - $C_1 = (V, b, X, g, Y, f, W, c, U, a, V)$ is a simple cycle
 - $C_2 = (U, c, W, e, X, g, Y, f, W, d, V, a, U)$ is a cycle that is not simple
A subgraph S of a graph G is a graph such that

- The vertices of S are a subset of the vertices of G
- The edges of S are a subset of the edges of G

A spanning subgraph of G is a subgraph that contains all the vertices of G.
Connectivity

- A graph is connected if there is a path between every pair of vertices.
- A connected component of a graph G is a maximal connected subgraph of G.

Connected graph

Non connected graph with two connected components
Trees

A tree is a **connected**, **acyclic**, **undirected** graph.

A forest is a **set** of trees (not necessarily connected)
Spanning Trees

- A spanning tree of a connected graph is a spanning subgraph that is a tree.
- A spanning tree is not unique unless the graph is a tree.
- Spanning trees have applications to the design of communication networks.
- A spanning forest of a graph is a spanning subgraph that is a forest.
Reachability in Directed Graphs

- A node \(w \) is **reachable** from \(v \) if there is a directed path originating at \(v \) and terminating at \(w \).
 - E is reachable from B
 - B is not reachable from E
Properties

Property 1

\[\sum_v \deg(v) = 2|E| \]

Proof: each edge is counted twice

Property 2

In an undirected graph with no self-loops and no multiple edges

\[|E| \leq |V| (|V| - 1)/2 \]

Proof: each vertex has degree at most \(|V| - 1\)

Example

- \(|V| = 4\)
- \(|E| = 6\)
- \(\deg(v) = 3\)

Q: What is the bound for a digraph?

A: \(|E| \leq |V|(|V| - 1)\)
Outline

- Definitions
- Graph ADT
- Implementations
Main Methods of the (Undirected) Graph ADT

- Vertices and edges
 - are positions
 - store elements

- Accessor methods
 - endVertices(e): an array of the two endvertices of e
 - opposite(v, e): the vertex opposite to v on e
 - areAdjacent(v, w): true iff v and w are adjacent
 - replace(v, x): replace element at vertex v with x
 - replace(e, x): replace element at edge e with x

- Update methods
 - insertVertex(o): insert a vertex storing element o
 - insertEdge(v, w, o): insert an edge (v,w) storing element o
 - removeVertex(v): remove vertex v (and its incident edges)
 - removeEdge(e): remove edge e

- Iterator methods
 - incidentEdges(v): edges incident to v
 - vertices(): all vertices in the graph
 - edges(): all edges in the graph
Directed Graph ADT

- Additional methods:
 - isDirected(e): return true if e is a directed edge
 - insertDirectedEdge(v, w, o): insert and return a new directed edge with origin v and destination w, storing element o
END OF LECTURE
MARCH 25, 2014
Outline

- Definitions
- Graph ADT
- Implementations
Running Time of Graph Algorithms

- Running time often a function of both $|V|$ and $|E|$.

- For convenience, we sometimes drop the $|$. $|$ in asymptotic notation, e.g. $O(V+E)$.
Implementing a Graph (Simplified)

Space complexity: \(\Theta(V + E) \) \(\Theta(V^2) \)

Time to find all neighbours of vertex \(u \): \(\Theta(\text{degree}(u)) \) \(\Theta(V) \)

Time to determine if \((u, v) \in E \): \(\Theta(\text{degree}(u)) \) \(\Theta(1) \)
Representing Graphs (Details)

- Three basic methods
 - Edge List
 - Adjacency List
 - Adjacency Matrix
Edge List Structure

- **Vertex object**
 - element
 - reference to position in vertex sequence

- **Edge object**
 - element
 - origin vertex object
 - destination vertex object
 - reference to position in edge sequence

- **Vertex sequence**
 - sequence of vertex objects

- **Edge sequence**
 - sequence of edge objects
Adjacency List Structure

- Edge list structure
- Incidence sequence for each vertex
 - sequence of references to edge objects of incident edges
- Augmented edge objects
 - references to associated positions in incidence sequences of end vertices
Adjacency Matrix Structure

- Edge list structure
- Augmented vertex objects
 - Integer key (index) associated with vertex
- 2D-array adjacency array
 - Reference to edge object for adjacent vertices
 - Null for non-adjacent vertices
Asymptotic Performance
(assuming collections V and E represented as
doubly-linked lists)

- $|V|$ vertices, $|E|$ edges
- no parallel edges
- no self-loops
- Bounds are “big-Oh”

<table>
<thead>
<tr>
<th></th>
<th>Edge List</th>
<th>Adjacency List</th>
<th>Adjacency Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space</td>
<td>$</td>
<td>V</td>
<td>+</td>
</tr>
<tr>
<td>incidentEdges(v)</td>
<td>$</td>
<td>E</td>
<td>$</td>
</tr>
<tr>
<td>areAdjacent (v, w)</td>
<td>$</td>
<td>E</td>
<td>$</td>
</tr>
<tr>
<td>insertVertex(o)</td>
<td>1</td>
<td>1</td>
<td>$</td>
</tr>
<tr>
<td>insertEdge(v, w, o)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>removeVertex(v)</td>
<td>$</td>
<td>E</td>
<td>$</td>
</tr>
<tr>
<td>removeEdge(e)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Outline

- Definitions
- Graph ADT
- Implementations