Comparison Sorts

Chapter 11
Sorting

- We have seen the advantage of sorted data representations for a number of applications
 - Sparse vectors
 - Maps
 - Dictionaries

- Here we consider the problem of how to efficiently transform an unsorted representation into a sorted representation.

- We will focus on sorted array representations.
Outline

- Definitions

- Comparison Sorting Algorithms
 - Selection Sort
 - Bubble Sort
 - Insertion Sort
 - Merge Sort
 - Heap Sort
 - Quick Sort

- Lower Bound on Comparison Sorts
Outline

- Definitions

- Comparison Sorting Algorithms
 - Selection Sort
 - Bubble Sort
 - Insertion Sort
 - Merge Sort
 - Heap Sort
 - Quick Sort

- Lower Bound on Comparison Sorts
Comparison Sorts

- Comparison Sort algorithms sort the input by successive comparison of pairs of input elements.

- Comparison Sort algorithms are very general: they make no assumptions about the values of the input elements.

\[
\begin{array}{cccccccc}
4 & 3 & 7 & 11 & 2 & 2 & 1 & 3 & 5 \\
e.g., 3 \leq 11?
\end{array}
\]
Some algorithms sort by swapping elements within the input array.

Such algorithms are said to sort in place, and require only $O(1)$ additional memory.

Other algorithms require allocation of an output array into which values are copied.

These algorithms do not sort in place, and require $O(n)$ additional memory.
Stable Sort

- A sorting algorithm is said to be **stable** if the ordering of identical keys in the input is preserved in the output.

- The stable sort property is important, for example, when entries with identical keys are already ordered by another criterion.

- (Remember that stored with each key is a record containing some useful information.)

```
4 3 7 11 2 2 1 3 5
1 2 2 3 3 4 5 7 11
```
Outline

- Definitions

- Comparison Sorting Algorithms
 - Selection Sort
 - Bubble Sort
 - Insertion Sort
 - Merge Sort
 - Heap Sort
 - Quick Sort

- Lower Bound on Comparison Sorts
Outline

- Definitions
- Comparison Sorting Algorithms
 - Selection Sort
 - Bubble Sort
 - Insertion Sort
 - Merge Sort
 - Heap Sort
 - Quick Sort
- Lower Bound on Comparison Sorts
Selection Sort

- Selection Sort operates by first finding the smallest element in the input list, and moving it to the output list.
- It then finds the next smallest value and does the same.
- It continues in this way until all the input elements have been selected and placed in the output list in the correct order.
- Note that every selection requires a search through the input list.
- Thus the algorithm has a nested loop structure

Selection Sort Example
Selection Sort

for i = 0 to n-1

LI: A[0…i-1] contains the i smallest keys in sorted order.
 A[i…n-1] contains the remaining keys

\[j_{\text{min}} = i \]

for j = i+1 to n-1
 if A[j] < A[j_{\text{min}}]
 \[j_{\text{min}} = j \]

swap A[i] with A[j_{\text{min}}]

Running time?

\[O(n - i - 1) \]

\[T(n) = \sum_{i=0}^{n-1} (n - i - 1) = \sum_{i=0}^{n-1} i = \mathcal{O}(n^2) \]
Outline

- Definitions

- Comparison Sorting Algorithms
 - Selection Sort
 - Bubble Sort
 - Insertion Sort
 - Merge Sort
 - Heap Sort
 - Quick Sort

- Lower Bound on Comparison Sorts
Bubble Sort

- Bubble Sort operates by successively comparing adjacent elements, swapping them if they are out of order.
- At the end of the first pass, the largest element is in the correct position.
- A total of n passes are required to sort the entire array.
- Thus bubble sort also has a nested loop structure

Bubble Sort Example
Expert Opinion on Bubble Sort
Bubble Sort

for $i = n-1$ downto 1

LI: $A[i+1 \ldots n-1]$ contains the $n-i-1$ largest keys in sorted order. $A[0 \ldots i]$ contains the remaining keys

for $j = 0$ to $i-1$

 swap $A[j]$ and $A[j+1]$

Running time?

$T(n) = \sum_{i=1}^{n-1} i = O(n^2)$
Comparison

➢ Thus both Selection Sort and Bubble Sort have $O(n^2)$ running time.

➢ However, both can also easily be designed to
 □ Sort in place
 □ Stable sort
Outline

- Definitions

- Comparison Sorting Algorithms
 - Selection Sort
 - Bubble Sort
 - Insertion Sort
 - Merge Sort
 - Heap Sort
 - Quick Sort

- Lower Bound on Comparison Sorts
Insertion Sort

- Like Selection Sort, Insertion Sort maintains two sublists:
 - A left sublist containing sorted keys
 - A right sublist containing the remaining unsorted keys

- Unlike Selection Sort, the keys in the left sublist are not the smallest keys in the input list, but the first keys in the input list.

- On each iteration, the next key in the right sublist is considered, and inserted at the correct location in the left sublist.

- This continues until the right sublist is empty.

- Note that for each insertion, some elements in the left sublist will in general need to be shifted right.

- Thus the algorithm has a nested loop structure

- [Insertion Sort Example]
Insertion Sort

for i = 1 to n-1

LI: A[0..i-1] contains the first i keys of the input in sorted order. A[i..n-1] contains the remaining keys

key = A[i]

j = i

while j > 0 & A[j-1] > key
 j = j-1

A[j] = key

\[T(n) = \sum_{i=1}^{n-1} i = O(n^2) \]
Outline

- Definitions

- Comparison Sorting Algorithms
 - Selection Sort
 - Bubble Sort
 - Insertion Sort
 - Merge Sort
 - Heap Sort
 - Quick Sort

- Lower Bound on Comparison Sorts
Divide-and-Conquer

- Divide-and conquer is a general algorithm design paradigm:
 - Divide: divide the input data S in two disjoint subsets S_1 and S_2
 - Recur: solve the subproblems associated with S_1 and S_2
 - Conquer: combine the solutions for S_1 and S_2 into a solution for S
- The base case for the recursion is a subproblem of size 0 or 1
Recursive Sorts

- Given list of objects to be sorted

- Split the list into two sublists.

- Recursively have two friends sort the two sublists.

- Combine the two sorted sublists into one entirely sorted list.
Merge Sort

Divide and Conquer
Merge Sort

- **Merge-sort** is a sorting algorithm based on the divide-and-conquer paradigm
- It was invented by John von Neumann, one of the pioneers of computing, in 1945
Merge Sort

Split Set into Two (no real work)

Get one friend to sort the first half.

Get one friend to sort the second half.

25, 31, 52, 88, 98

14, 23, 30, 62, 79
Merge Sort

Merge two sorted lists into one

25, 31, 52, 88, 98

14, 23, 30, 62, 79

14, 23, 25, 30, 31, 52, 62, 79, 88, 98
Merge-Sort

Merge-sort on an input sequence S with n elements consists of three steps:

- **Divide**: partition S into two sequences S_1 and S_2 of about $n/2$ elements each
- **Recur**: recursively sort S_1 and S_2
- **Conquer**: merge S_1 and S_2 into a unique sorted sequence

Algorithm **mergeSort**(S)

Input sequence S with n elements

Output sequence S sorted

if S.size() > 1

$(S_1, S_2) \leftarrow split(S, n/2)$

mergeSort(S_1)

mergeSort(S_2)

merge(S_1, S_2, S)
Merge Sort Example
Merging Two Sorted Sequences

- The conquer step of merge-sort consists of merging two sorted sequences A and B into a sorted sequence S containing the union of the elements of A and B.

- Merging two sorted sequences, each with $n/2$ elements takes $O(n)$ time.

- Straightforward to make the sort stable.

- Normally, merging is not in-place: new memory must be allocated to hold S.

- It is possible to do in-place merging using linked lists.
 - Code is more complicated
 - Only changes memory usage by a constant factor
Merging Two Sorted Sequences (As Arrays)

Algorithm merge(S_1, S_2, S):

Input: Sorted sequences S_1 and S_2 and an empty sequence S, implemented as arrays

Output: Sorted sequence S containing the elements from S_1 and S_2

$i \leftarrow j \leftarrow 0$

while $i < S_1$.size() and $j < S_2$.size() do

if S_1.get(i) $\leq S_2$.get(j) then

S.addLast(S_1.get(i))

$i \leftarrow i + 1$

else

S.addLast(S_2.get(j))

$j \leftarrow j + 1$

while $i < S_1$.size() do

S.addLast(S_1.get(i))

$i \leftarrow i + 1$

while $j < S_2$.size() do

S.addLast(S_2.get(j))

$j \leftarrow j + 1$
Merging Two Sorted Sequences (As Linked Lists)

Algorithm merge(S_1, S_2, S):

Input: Sorted sequences S_1 and S_2 and an empty sequence S, implemented as linked lists

Output: Sorted sequence S containing the elements from S_1 and S_2

while $S_1 \neq \emptyset$ and $S_2 \neq \emptyset$ do
 if S_1.first().element() \leq S_2.first().element() then
 S.addLast(S_1.remove(S_1.first()))
 else
 S.addLast(S_2.remove(S_2.first()))

while $S_1 \neq \emptyset$ do
 S.addLast(S_1.remove(S_1.first()))

while $S_2 \neq \emptyset$ do
 S.addLast(S_2.remove(S_2.first()))
Merge-Sort Tree

- An execution of merge-sort is depicted by a binary tree
 - each node represents a recursive call of merge-sort and stores
 - unsorted sequence before the execution and its partition
 - sorted sequence at the end of the execution
 - the root is the initial call
 - the leaves are calls on subsequences of size 0 or 1
Execution Example

Partition

```
7 2 9 4 | 3 8 6 1
```

Diagram showing a partition process with numbers and nodes connected by lines.
Execution Example (cont.)

- Recursive call, partition

Diagram showing a recursive call with a partition of the array 7, 2, 9, 4, 3, 8, 6, 1.
Execution Example (cont.)

- Recursive call, partition
Execution Example (cont.)

- Recursive call, base case

Diagram showing a recursive call with a base case.
Execution Example (cont.)

- Recursive call, base case
Execution Example (cont.)

- Merge

[Diagram showing a merge operation with numbers 7, 2, 9, 4, 3, 8, 6, 1 being merged and steps indicated with arrows and numbers 7, 2, 7, 2 being shown in a tree structure]
Execution Example (cont.)

- Recursive call, ..., base case, merge

```
7 2 9 4 | 3 8 6 1
```

```
7 2 | 9 4
```

```
7 | 2 → 2 7
```

```
9 4 → 4 9
```

```
7 → 7
```

```
2 → 2
```

```
9 → 9
```

```
4 → 4
```
Execution Example (cont.)

- Merge

```
7 2 9 4 | 3 8 6 1
7 2 | 9 4 → 2 4 7 9
7 → 7  2 → 2
9 → 9  4 → 4
```

```
Execution Example (cont.)

- Recursive call, ..., merge, merge
Execution Example (cont.)

- Merge -
END OF LECTURE
MAR 13, 2014
Analysis of Merge-Sort

- The height $h$ of the merge-sort tree is $O(\log n)$
  - at each recursive call we divide the sequence in half.
- The overall amount or work done at the nodes of depth $i$ is $O(n)$
  - we partition and merge $2^i$ sequences of size $n/2^i$
- Thus, the total running time of merge-sort is $O(n \log n)$!

\[
T(n) = 2T(n/2) + O(n)
\]
Thus MergeSort is much more efficient than SelectionSort, BubbleSort and InsertionSort. Why?

You might think that to sort n keys, each key would have to at some point be compared to every other key:

\[ O(n^2) \]

However, this is not the case.

- Transitivity: If A < B and B < C, then you know that A < C, even though you have never directly compared A and C.

- MergeSort takes advantage of this transitivity property in the merge stage.
Outline

- Definitions

- Comparison Sorting Algorithms
  - Selection Sort
  - Bubble Sort
  - Insertion Sort
  - Merge Sort
  - Heap Sort
  - Quick Sort

- Lower Bound on Comparison Sorts
Heapsort

- Invented by Williams & Floyd in 1964
- $O(n \log n)$ worst case – like merge sort
- Sorts in place – like selection sort
- Combines the best of both algorithms
Selection Sort

Largest i values are sorted on the right. Remaining values are off to the left.

Max is easier to find if the unsorted subarray is a heap.
Heap-Sort Algorithm

- Build an array-based (max) heap
- Iteratively call removeMax() to extract the keys in descending order
- Store the keys as they are extracted in the unused tail portion of the array
- Thus HeapSort is in-place!
- But is it stable?
  - No – heap operations may disorder ties
Heapsort is Not Stable

Example (MaxHeap)

![Diagram showing the process of inserting elements into a MaxHeap and the instability of Heapsort](image-url)
Heap-Sort Algorithm

Algorithm HeapSort(S)

Input: S, an unsorted array of comparable elements

Output: S, a sorted array of comparable elements

T = MakeMaxHeap (S)

for i = n-1 downto 0

S[i] = T.removeMax()
Heap Sort Example

(Using Min Heap)
Heap-Sort Running Time

- The heap can be built bottom-up in $O(n)$ time
- Extraction of the $i$th element takes $O(\log(n - i + 1))$ time (for downheaping)
- Thus total run time is

$$T(n) = O(n) + \sum_{i=1}^{n} \log(n - i + 1)$$

$$= O(n) + \sum_{i=1}^{n} \log i$$

$$\leq O(n) + \sum_{i=1}^{n} \log n$$

$$= O(n \log n)$$
Heap-Sort Running Time

➢ It turns out that HeapSort is also $\Omega(n \log n)$. Why?

$$T(n) = O(n) + \sum_{i=1}^{n} \log i,$$

where

$$\sum_{i=1}^{n} \log i \geq \left(\frac{n}{2}\right) \log \left(\frac{n}{2}\right)$$

$$= \left(\frac{n}{2}\right) \left(\log n - 1\right)$$

$$= \left(\frac{n}{4}\right) \left(\log n + \log n - 2\right)$$

$$\geq \left(\frac{n}{4}\right) \log n \quad \forall n \geq 4.$$ 

➢ Thus HeapSort is $\theta(n \log n)$. 
Outline

- Definitions
- Comparison Sorting Algorithms
  - Selection Sort
  - Bubble Sort
  - Insertion Sort
  - Merge Sort
  - Heap Sort
  - Quick Sort
- Lower Bound on Comparison Sorts
QuickSort

- Invented by C.A.R. Hoare in 1960

- “There are two ways of constructing a software design: One way is to make it so simple that there are obviously no deficiencies, and the other way is to make it so complicated that there are no obvious deficiencies. The first method is far more difficult.”
Quick-Sort

Quick-sort is a divide-and-conquer algorithm:

- **Divide**: pick a random element \( x \) (called a pivot) and partition \( S \) into
  - \( L \) elements less than \( x \)
  - \( E \) elements equal to \( x \)
  - \( G \) elements greater than \( x \)

- **Recur**: Quick-sort \( L \) and \( G \)

- **Conquer**: join \( L \), \( E \) and \( G \)
The Quick-Sort Algorithm

Algorithm QuickSort(S)

if S.size() > 1
    (L, E, G) = Partition(S)
    QuickSort(L) //Small elements are sorted
    QuickSort(G) //Large elements are sorted
    S = (L, E, G) //Thus input is sorted
Partition

- Remove, in turn, each element $y$ from $S$ and
- Insert $y$ into list $L$, $E$ or $G$, depending on the result of the comparison with the pivot $x$ (e.g., last element in $S$)
- Each insertion and removal is at the beginning or at the end of a list, and hence takes $O(1)$ time
- Thus, partitioning takes $O(n)$ time

Algorithm **Partition($S$)**

**Input** list $S$

**Output** sublists $L$, $E$, $G$ of the elements of $S$ less than, equal to, or greater than the pivot, resp.

$L$, $E$, $G$ $\leftarrow$ empty lists

$x$ $\leftarrow$ $S$.getLast().element

while $\neg S$.isEmpty()
  
  $y$ $\leftarrow$ $S$.removeFirst($S$)
  
  if $y < x$
    
    $L$.addLast($y$)
  
  else if $y = x$
    
    $E$.addLast($y$)
  
  else 
    
    $G$.addLast($y$)

return $L$, $E$, $G$
Partition

Since elements are removed at the beginning and added at the end, this partition algorithm is stable.

Algorithm $\text{Partition}(S)$

Input sequence $S$

Output subsequences $L, E, G$ of the elements of $S$ less than, equal to, or greater than the pivot, resp.

$L, E, G \leftarrow$ empty sequences

$x \leftarrow S$.getLast().element

while $\neg S$.isEmpty()

$y \leftarrow S$.removeFirst($S$)

if $y < x$

$L$.addLast($y$)

else if $y = x$

$E$.addLast($y$)

else \{ $y > x$ \}

$G$.addLast($y$)

return $L, E, G$
Quick-Sort Tree

- An execution of quick-sort is depicted by a binary tree
  - Each node represents a recursive call of quick-sort and stores
    - Unsorted sequence before the execution and its pivot
    - Sorted sequence at the end of the execution
  - The root is the initial call
  - The leaves are calls on subsequences of size 0 or 1
Execution Example

- Pivot selection

[Diagram showing an execution example with numbers and nodes connected by lines]
Partition, recursive call, pivot selection
Execution Example (cont.)

Partition, recursive call, base case

```
7 2 9 4 3 7 6 1
```

```
2 4 3 1
```

```
1 → 1
```

```
```
Recursive call, ..., base case, join
Execution Example (cont.)

- Recursive call, pivot selection
Execution Example (cont.)

- Partition, …, recursive call, base case
Execution Example (cont.)

- Join, join

[Diagram showing execution example with numbers and arrows]
Quick-Sort Properties

- The algorithm just described is **stable**, since elements are removed from the beginning of the input sequence and placed on the end of the output sequences (L, E, G).

- However it **does not sort in place**: O(n) new memory is allocated for L, E and G

- Is there an in-place quick-sort?
In-Place Quick-Sort

**Note**: Use the lecture slides here instead of the textbook implementation (Section 11.2.2)

Partition set into **two** using randomly chosen pivot
In-Place Quick-Sort

Get one friend to sort the first half.

Get one friend to sort the second half.

14, 23, 25, 30, 31

≤ 52 < 88 62 79 98 88

14, 23, 25, 30, 31

62, 79, 98, 88
In-Place Quick-Sort

Glue pieces together.
(No real work)

14,23,25,30,31,52,62,79,88,98
The In-Place Partitioning Problem

Input:

\[ x = 52 \]

88  31  25  98  62  30  23

Output:

\[ \leq 52 < \]

14  31  30  25  23

88  62  98  79

Problem: Partition a list into a set of small values and a set of large values.
Precise Specification

Precondition: $A[p...r]$ is an arbitrary list of values. $x = A[r]$ is the pivot.

\[
\begin{array}{ccccccc}
p & 8 & 1 & 6 & 4 & 0 & 3 & 9 & r
\end{array}
\]

Postcondition: $A$ is rearranged such that $A[p...q-1] \leq A[q] = x < A[q+1...r]$ for some $q$.

\[
\begin{array}{ccccccc}
p & 1 & 4 & 0 & 3 & 5 & 8 & 9 & r
\end{array}
\]
Loop Invariant:

3 subsets are maintained:

- One containing values less than or equal to the pivot
- One containing values greater than the pivot
- One containing values yet to be processed

Loop invariant:

1. All entries in $A[p \ldots i]$ are $\leq$ pivot.
2. All entries in $A[i + 1 \ldots j - 1]$ are $> pivot$.

Diagram:

- Left section: values $\leq x$
- Center section: values $> x$
- Right section: unrestricted values
Maintaining Loop Invariant

• Consider element at location j
  – If greater than pivot, incorporate into ‘> set’ by incrementing j.
  – If less than or equal to pivot, incorporate into ‘≤ set’ by swapping with element at location i+1 and incrementing both i and j.
  – Measure of progress: size of unprocessed set.
Maintaining Loop Invariant

\textbf{PARTITION}(A, p, r)

1. \quad x \leftarrow A[r]
2. \quad i \leftarrow p - 1
3. \quad \textbf{for } j \leftarrow p \textbf{ to } r - 1
4. \quad \quad \textbf{do if } A[j] \leq x
5. \quad \quad \quad \textbf{then } i \leftarrow i + 1
6. \quad \quad \text{exchange } A[i] \leftrightarrow A[j]
7. \quad \text{exchange } A[i + 1] \leftrightarrow A[r]
8. \quad \textbf{return } i + 1

\textbf{Loop invariant:}

1. All entries in \( A[p \ldots i] \) are \( \leq \) pivot.
2. All entries in \( A[i + 1 \ldots j - 1] \) are \( > \) pivot.
Establishing Loop Invariant

Loop invariant:
1. All entries in $A[p \ldots i]$ are $\leq$ pivot.
2. All entries in $A[i + 1 \ldots j - 1]$ are $> pivot.$

\begin{array}{cccccc}
8 & 1 & 6 & 4 & 0 & 3 & 9 & 5
\end{array}
Establishing Postcondition

\textsc{Partition}(A, p, r)
1. \( x \leftarrow A[r] \)
2. \( i \leftarrow p - 1 \)
3. \textbf{for} \( j \leftarrow p \) \textbf{to} \( r - 1 \)
4. \quad \textbf{do if} \( A[j] \leq x \)
5. \quad \quad \textbf{then} \( i \leftarrow i + 1 \)
6. \quad \text{exchange} \( A[i] \leftrightarrow A[j] \)
7. \text{exchange} \( A[i+1] \leftrightarrow A[r] \)
8. \text{return} \( i + 1 \)

Loop invariant:
1. All entries in \( A[p \ldots i] \) are \( \leq \) pivot.
2. All entries in \( A[i + 1 \ldots j - 1] \) are \( > \) pivot.

\( p \quad i \quad r = j \) on exit

\begin{array}{cccccccc}
1 & 4 & 0 & 3 & 6 & 8 & 9 & 5 \\
\end{array}

Exhaustive on exit
Establishing Postcondition

\textsc{Partition}(A, p, r)

1. \( x \leftarrow A[r] \)
2. \( i \leftarrow p - 1 \)
3. \text{for } j \leftarrow p \text{ to } r - 1 \text{ do if } A[j] \leq x \text{ then } i \leftarrow i + 1 \)
4. \text{exchange } A[i] \leftrightarrow A[j] \)
5. \text{exchange } A[i + 1] \leftrightarrow A[r] \)
6. \text{return } i + 1 \)

\begin{center}
\begin{tabular}{c c c c c c c}
\textbf{p} & \textbf{i} & \textbf{r} \\
1 & 4 & 0 & 3 & 6 & 8 & 9 & 5 \\
1 & 4 & 0 & 3 & 5 & 8 & 9 & 6 \\
\end{tabular}
\end{center}
An Example
In-Place Partitioning: Running Time

Each iteration takes $O(1)$ time $\Rightarrow$ Total $= O(n)$
In-Place Partitioning is NOT Stable

or

or
The In-Place Quick-Sort Algorithm

Algorithm QuickSort(A, p, r)

if p < r

q = Partition(A, p, r)

QuickSort(A, p, q - 1) //Small elements are sorted
QuickSort(A, q + 1, r) //Large elements are sorted

//Thus input is sorted
Running Time of Quick-Sort
Quick-Sort Running Time

- We can analyze the running time of Quick-Sort using a recursion tree.
- At depth $i$ of the tree, the problem is partitioned into $2^i$ sub-problems.
- The running time will be determined by how balanced these partitions are.

```
depth
0
1
...
h
```
Quick Sort

Let pivot be the first element in the list?
Quick Sort

If the list is already sorted, then the list is worst case unbalanced.
QuickSort: Choosing the Pivot

- Common choices are:
  - random element
  - middle element
  - median of first, middle and last element
The best case for quick-sort occurs when each pivot partitions the array in half.

Then there are $O(\log n)$ levels.

There is $O(n)$ work at each level.

Thus total running time is $O(n \log n)$.

<table>
<thead>
<tr>
<th>depth</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$n$</td>
</tr>
<tr>
<td>1</td>
<td>$n$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>$i$</td>
<td>$n$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>$\log n$</td>
<td>$n$</td>
</tr>
</tbody>
</table>
Quick Sort

Best Time: \[ T(n) = 2T(n/2) + \Theta(n) = \Theta(n \log n) \]

Worst Time:

Expected Time:
Worst-case Running Time

- The worst case for quick-sort occurs when the pivot is the unique minimum or maximum element.
- One of $L$ and $G$ has size $n - 1$ and the other has size 0.
- The running time is proportional to the sum
  \[ n + (n - 1) + \ldots + 2 + 1 \]
- Thus, the worst-case running time of quick-sort is $O(n^2)$.
Average-Case Running Time

- If the pivot is selected randomly, the average-case running time for Quick Sort is $O(n \log n)$.
- Proving this requires a probabilistic analysis.
- We will simply provide an intuition for why average-case $O(n \log n)$ is reasonable.

![Quick Sort Tree Diagram]

- Depth 0
- Depth 1
- Depth $h$
Expected Time Complexity for Quick Sort

Q: Why is it reasonable to expect $O(n \log n)$ time complexity?

A: Because on average, the partition is not too unbalanced.

Example: Imagine a deterministic partition, in which the 2 subsets are always in fixed proportion, i.e., $pn \& qn$, where $p, q$ are constants, $p, q \in [0..1], p + q = 1$. 

\[pn \quad qn\]
Expected Time Complexity for Quick Sort

Then \( T(n) = T(pn) + T(qn) + O(n) \)

wlog, suppose that \( q > p \).
Let \( k \) be the depth of the recursion tree
Then \( q^k n = 1 \rightarrow k = \log n / \log(1 / q) \)
Thus \( k \in O(\log n) \):

\( O(n) \) work done per level \( \rightarrow T(n) = O(n \log n) \).
Properties of QuickSort

- In-place? ✓
- Stable? ✓

Fast?
- Depends.
- Worst Case: $\Theta(n^2)$
- Expected Case: $\Theta(n \log n)$, with small constants
## Summary of Comparison Sorts

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Best Case</th>
<th>Worst Case</th>
<th>Average Case</th>
<th>In Place</th>
<th>Stable</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection</td>
<td>(n^2)</td>
<td>(n^2)</td>
<td>(n^2)</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Bubble</td>
<td>(n)</td>
<td>(n^2)</td>
<td>(n^2)</td>
<td>Yes</td>
<td>Yes</td>
<td>Must count swaps for linear best case running time.</td>
</tr>
<tr>
<td>Insertion</td>
<td>(n)</td>
<td>(n^2)</td>
<td>(n^2)</td>
<td>Yes</td>
<td>Yes</td>
<td>Good if often almost sorted</td>
</tr>
<tr>
<td>Merge</td>
<td>(n \log n)</td>
<td>(n \log n)</td>
<td>(n \log n)</td>
<td>No</td>
<td>Yes</td>
<td>Good for very large datasets that require swapping to disk</td>
</tr>
<tr>
<td>Heap</td>
<td>(n \log n)</td>
<td>(n \log n)</td>
<td>(n \log n)</td>
<td>Yes</td>
<td>No</td>
<td>Best if guaranteed (n \log n) required</td>
</tr>
<tr>
<td>Quick</td>
<td>(n \log n)</td>
<td>(n^2)</td>
<td>(n \log n)</td>
<td>Yes</td>
<td>Yes</td>
<td>Usually fastest in practice</td>
</tr>
</tbody>
</table>

**But not both!**
Outline

- Definitions
- Comparison Sorting Algorithms
  - Selection Sort
  - Bubble Sort
  - Insertion Sort
  - Merge Sort
  - Heap Sort
  - Quick Sort
- Lower Bound on Comparison Sorts
Comparison Sort: Lower Bound

MergeSort and HeapSort are both $\theta(n \log n)$ (worst case).

Can we do better?
Comparison Sort: Decision Trees

Example: Sorting a 3-element array A[1..3]
Comparison Sort: Decision Trees

- For a 3-element array, there are 6 external nodes.
- For an $n$-element array, there are $n!$ external nodes.
Comparison Sort

- To store $n!$ external nodes, a decision tree must have a height of at least $\lceil \log n! \rceil$

- Worst-case time is equal to the height of the binary decision tree.

Thus $T(n) \in \Omega\left(\log n!\right)$

where $\log n! = \sum_{i=1}^{n} \log i \geq \sum_{i=1}^{\left\lfloor n/2 \right\rfloor} \log \left\lfloor n / 2 \right\rfloor \in \Omega(n \log n)$

Thus $T(n) \in \Omega(n \log n)$

Thus MergeSort & HeapSort are asymptotically optimal.
Outline

- Definitions

- Comparison Sorting Algorithms
  - Selection Sort
  - Bubble Sort
  - Insertion Sort
  - Merge Sort
  - Heap Sort
  - Quick Sort

- Lower Bound on Comparison Sorts
Comparison Sorts: Learning Outcomes

You should be able to:

- Select a comparison sorting method that is well-suited for a specific application.
- Explain what is meant by sorting in place and stable sorting.
- State a tight bound on the problem of comparison sorting, and explain why no algorithm can do better.
- Explain and/or code any of the sorting algorithms we have covered, and state their asymptotic run times.