Loop Invariants and Binary Search

Chapter 4.3.3 and 9.3.1
Outline

- Iterative Algorithms, Assertions and Proofs of Correctness
- Binary Search: A Case Study
Outline

- Iterative Algorithms, Assertions and Proofs of Correctness
- Binary Search: A Case Study
Assertions

- An **assertion** is a statement about the state of the data at a specified point in your algorithm.

- An assertion is not a task for the algorithm to perform.

- You may think of it as a comment that is added for the benefit of the reader.
Loop Invariants

- Binary search can be implemented as an **iterative algorithm** (it could also be done recursively).

- **Loop Invariant:** An **assertion** about the current state useful for designing, analyzing and proving the correctness of iterative algorithms.
Other Examples of Assertions

- **Preconditions:** Any assumptions that must be true about the input instance.

- **Postconditions:** The statement of what must be true when the algorithm/program returns.

- **Exit condition:** The statement of what must be true to exit a loop.
Iterative Algorithms

Take one step at a time
towards the final destination

loop (done)
take step
end loop
Establishing Loop Invariant

From the Pre-Conditions on the input instance we must establish the loop invariant.
Maintain Loop Invariant

- Suppose that
 - We start in a safe location (pre-condition)
 - If we are in a safe location, we always step to another safe location (loop invariant)

- Can we be assured that the computation will always be in a safe location?

- By what principle?
Maintain Loop Invariant

• By **Induction** the computation will always be in a safe location.

\[
\Rightarrow S(0) \\
\Rightarrow \forall i, S(i) \Rightarrow S(i + 1)
\]
Ending The Algorithm

- Define Exit Condition

- Termination: With sufficient progress, the exit condition will be met.

- When we exit, we know
 - exit condition is true
 - loop invariant is true

 From these we must establish the post conditions.
Definition of Correctness

\(<\text{PreCond}> \& <\text{code}> \Rightarrow <\text{PostCond}>\)

If the input meets the preconditions, then the output must meet the postconditions.

If the input does not meet the preconditions, then nothing is required.
Outline

- Iterative Algorithms, Assertions and Proofs of Correctness
- Binary Search: A Case Study
Define Problem: Binary Search

- PreConditions
 - Key: 25
 - Sorted List

- PostConditions
 - Find key in list (if there).

```
3  5  6  13  18  21  21  25  36  43  49  51  53  60  72  74  83  88  91  95
```
Define Loop Invariant

- Maintain a sublist.
- If the key is contained in the original list, then the key is contained in the sublist.

```
key 25
3  5  6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95
```
Define Step

- Cut sublist in half.
- Determine which half the key would be in.
- Keep that half.

If \(\text{key} \leq \text{mid} \), then key is in left half.
If \(\text{key} > \text{mid} \), then key is in right half.
Define Step

- It is faster not to check if the middle element is the key.
- Simply continue.

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

If key ≤ mid, then key is in left half.
If key > mid, then key is in right half.
The size of the list becomes smaller.
Exit Condition

key 25

- If the key is contained in the original list, then the key is contained in the sublist.
- Sublist contains one element.

- If element = key, return associated entry.
- Otherwise return false.
Running Time

The sublist is of size n, $n/2$, $n/4$, $n/8$, ..., 1

Each step $O(1)$ time.

Total = $O(\log n)$

If $key \leq \text{mid}$, then key is in left half.

If $key > \text{mid}$, then key is in right half.
Running Time

- Binary search can interact poorly with the memory hierarchy (i.e. caching), because of its random-access nature.

- It is common to abandon binary searching for linear searching as soon as the size of the remaining span falls below a small value such as 8 or 16 or even more in recent computers.
END OF LECTURE
FEB 13, 2014
BinarySearch(A[1..n], key)

<precondition>: A[1..n] is sorted in non-decreasing order

$postcondition$: If key is in A[1..n], algorithm returns its location

p = 1, q = n

while q > p
 <loop-invariant>: If key is in A[1..n], then key is in A[p..q]

 mid = \left\lfloor \frac{p + q}{2} \right\rfloor

 if key \leq A[mid]
 q = mid
 else
 p = mid + 1
 end
end

if key = A[p]
 return(p)
else
 return("Key not in list")
end
Simple, right?

- Although the concept is simple, binary search is notoriously easy to get wrong.
- Why is this?
Boundary Conditions

- The basic idea behind binary search is easy to grasp.
- It is then easy to write pseudocode that works for a ‘typical’ case.
- Unfortunately, it is equally easy to write pseudocode that fails on the boundary conditions.
Boundary Conditions

if \(key \leq A[mid] \)
\[
q = mid
\]
else
\[
p = mid + 1
\]
end

or

if \(key < A[mid] \)
\[
q = mid
\]
else
\[
p = mid + 1
\]
end

What condition will break the loop invariant?
Boundary Conditions

Code: \(\text{key} \geq A[\text{mid}] \rightarrow \text{select right half} \)

Bug!!
Boundary Conditions

If key ≤ A[mid]

q = mid
else
p = mid + 1
end

OK

If key < A[mid]

q = mid - 1
else
p = mid
end

OK

If key < A[mid]

q = mid
else
p = mid + 1
end

Not OK!!
Boundary Conditions

\[
\text{mid} = \left\lfloor \frac{p+q}{2} \right\rfloor \quad \text{or} \quad \text{mid} = \left\lceil \frac{p+q}{2} \right\rceil
\]

Shouldn't matter, right? Select \(\text{mid} = \left\lfloor \frac{p+q}{2} \right\rfloor \)
Boundary Conditions

Select \(\text{mid} = \left\lceil \frac{p + q}{2} \right\rceil \)

If \(\text{key} \leq \text{mid} \), then key is in left half.

If \(\text{key} > \text{mid} \), then key is in right half.
Boundary Conditions

Select $\text{mid} = \left\lfloor \frac{p + q}{2} \right\rfloor$

If $\text{key} \leq \text{mid}$, then key is in left half.
If $\text{key} > \text{mid}$, then key is in right half.
Boundary Conditions

If \(\text{key} \leq \text{mid} \), then key is in left half.

If \(\text{key} > \text{mid} \), then key is in right half.

Another bug!

Loops Forever!

Select \(\text{mid} = \left\lfloor \frac{p + q}{2} \right\rfloor \)
Boundary Conditions

\[
\text{mid} = \left\lfloor \frac{p + q}{2} \right\rfloor
\]

if \(\text{key} \leq A[\text{mid}] \)
\[
q = \text{mid}
\]
else
\[
p = \text{mid} + 1
\]
end

OK

\[
\text{mid} = \left\lfloor \frac{p + q}{2} \right\rfloor
\]

if \(\text{key} < A[\text{mid}] \)
\[
q = \text{mid} - 1
\]
else
\[
p = \text{mid}
\]
end

OK

\[
\text{mid} = \left\lfloor \frac{p + q}{2} \right\rfloor
\]

if \(\text{key} \leq A[\text{mid}] \)
\[
q = \text{mid}
\]
else
\[
p = \text{mid} + 1
\]
end

Not OK!!
Getting it Right

- How many possible algorithms?
- How many correct algorithms?
- Probability of guessing correctly?

\[\text{mid} = \left\lfloor \frac{p + q}{2} \right\rfloor \]

if \(\text{key} \leq A[\text{mid}] \)

\[q = \text{mid} \]

else

\[p = \text{mid} + 1 \]

end

or \(\text{mid} = \left\lceil \frac{p + q}{2} \right\rceil \)?

or if \(\text{key} < A[\text{mid}] \)?

or if \(\text{key} < A[\text{mid}] \)?

or \(q = \text{mid} - 1 \)

else

\[p = \text{mid} \]

end
Alternative Algorithm: Less Efficient but More Clear

BinarySearch(A[1..n], key)
<precondition>: A[1..n] is sorted in non-decreasing order
<postcondition>: If key is in A[1..n], algorithm returns its location

p = 1, q = n
while q ≥ p
 <loop-invariant>: If key is in A[1..n], then key is in A[p..q]
 mid = \left\lfloor \frac{p + q}{2} \right\rfloor
 if key < A[mid]
 q = mid - 1
 else if key > A[mid]
 p = mid + 1
 else
 return(mid)
 end
end
return("Key not in list")

Still Θ(log n), but with slightly larger constant.
Card Trick

- A volunteer, please.
Thanks to J. Edmonds for this example.
Loop Invariant:
The selected card is one of these.
Which column?

left
Loop Invariant: The selected card is one of these.
Selected column is placed in the middle
I will rearrange the cards
Relax Loop Invariant:
I will remember the same about each column.
Which column?

right
Loop Invariant: The selected card is one of these.
Selected column is placed in the middle
I will rearrange the cards
Which column?

left
Loop Invariant: The selected card is one of these.
Selected column is placed in the middle
Here is your card.

Wow!
Loop Invariant: selected card in central subset of cards

Size of subset = \[\left\lfloor \frac{n}{3^{i-1}} \right\rfloor \]

where

\(n = \) total number of cards

\(i = \) iteration index

How many iterations are required to guarantee success?
Learning Outcomes

From this lecture, you should be able to:

- Use the loop invariant method to think about iterative algorithms.
- Prove that the loop invariant is established.
- Prove that the loop invariant is maintained in the ‘typical’ case.
- Prove that the loop invariant is maintained at all boundary conditions.
- Prove that progress is made in the ‘typical’ case.
- Prove that progress is guaranteed even near termination, so that the exit condition is always reached.
- Prove that the loop invariant, when combined with the exit condition, produces the post-condition.
- Trade off efficiency for clear, correct code.