Maps, Hash Tables and Dictionaries

Chapter 9
Outline

- Maps
- Hashing
- Dictionaries
- Ordered Maps & Dictionaries
Outline

- Maps
- Hashing
- Dictionaries
- Ordered Maps & Dictionaries
Maps

- A map models a searchable collection of key-value entries
- The main operations of a map are for searching, inserting, and deleting items
- Multiple entries with the same key are not allowed
- Applications:
 - address book
 - student-record database
The Map ADT

- Map ADT methods:
 - get(k): if the map M has an entry with key k, return its associated value; else, return null
 - put(k, v): insert entry (k, v) into the map M; if key k is not already in M, then return null; else, return old value associated with k
 - remove(k): if the map M has an entry with key k, remove it from M and return its associated value; else, return null
 - size(), isEmpty()
 - keys(): return an iterator over the keys in M
 - values(): return an iterator of the values in M
 - entries(): returns an iterator over the entries in M
Example

<table>
<thead>
<tr>
<th>Operation</th>
<th>Output</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>isEmpty()</td>
<td>true</td>
<td>\emptyset</td>
</tr>
<tr>
<td>put(5, A)</td>
<td>null</td>
<td>(5, A)</td>
</tr>
<tr>
<td>put(7, B)</td>
<td>null</td>
<td>(5, A), (7, B)</td>
</tr>
<tr>
<td>put(2, C)</td>
<td>null</td>
<td>(5, A), (7, B), (2, C)</td>
</tr>
<tr>
<td>put(8, D)</td>
<td>null</td>
<td>(5, A), (7, B), (2, C), (8, D)</td>
</tr>
<tr>
<td>put(2, E)</td>
<td>C</td>
<td>(5, A), (7, B), (2, E), (8, D)</td>
</tr>
<tr>
<td>get(7)</td>
<td>B</td>
<td>(5, A), (7, B), (2, E), (8, D)</td>
</tr>
<tr>
<td>get(4)</td>
<td>null</td>
<td>(5, A), (7, B), (2, E), (8, D)</td>
</tr>
<tr>
<td>get(2)</td>
<td>E</td>
<td>(5, A), (7, B), (2, E), (8, D)</td>
</tr>
<tr>
<td>size()</td>
<td>4</td>
<td>(5, A), (7, B), (2, E), (8, D)</td>
</tr>
<tr>
<td>remove(5)</td>
<td>A</td>
<td>(7, B), (2, E), (8, D)</td>
</tr>
<tr>
<td>remove(2)</td>
<td>E</td>
<td>(7, B), (8, D)</td>
</tr>
<tr>
<td>get(2)</td>
<td>null</td>
<td>(7, B), (8, D)</td>
</tr>
<tr>
<td>isEmpty()</td>
<td>false</td>
<td>(7, B), (8, D)</td>
</tr>
</tbody>
</table>
Comparison with java.util.Map

<table>
<thead>
<tr>
<th>Map ADT Methods</th>
<th>java.util.Map Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>size()</td>
<td>size()</td>
</tr>
<tr>
<td>isEmpty()</td>
<td>isEmpty()</td>
</tr>
<tr>
<td>get(k)</td>
<td>get(k)</td>
</tr>
<tr>
<td>put(k,v)</td>
<td>put(k,v)</td>
</tr>
<tr>
<td>remove(k)</td>
<td>remove(k)</td>
</tr>
<tr>
<td>keys()</td>
<td>keySet()</td>
</tr>
<tr>
<td>values()</td>
<td>values()</td>
</tr>
<tr>
<td>entries()</td>
<td>entrySet()</td>
</tr>
</tbody>
</table>
A Simple List-Based Map

- We could implement a map using an unsorted list
 - We store the entries of the map in a doubly-linked list S, in arbitrary order
 - S supports the node list ADT (Section 6.2)
The get(k) Algorithm

Algorithm get(k):

\[B = S.\text{positions}() \quad \{ B \text{ is an iterator of the positions in } S \} \]

while \(B.\text{hasNext}() \) **do**

\[p = B.\text{next}() \quad // \text{the next position in } B \]

if \(p.\text{element}().\text{get_key}() = k \) **then**

\[\text{return } p.\text{element}().\text{get_value}() \]

return null \{there is no entry with key equal to \(k \)\}
The put(k,v) Algorithm

Algorithm `put(k,v)`:

1. `B = S.positions()`
2. **while** `B.hasNext()` **do**
 1. `p = B.next()`
 2. **if** `p.element().getKey() = k` **then**
 1. `t = p.element().getValue()`
 2. `S.set(p,(k,v))`
 3. **return** `t`
3. `S.addLast(((k,v)))`
4. `n = n + 1`
5. **return** `null`
 1. `{increment variable storing number of entries}`
 2. `{there was no previous entry with key equal to k}`
The remove\((k) \) Algorithm

Algorithm remove\((k) \):

\[
B = S.\text{positions}() \\
\text{while } B.\text{hasNext}() \text{ do} \\
\hspace{1em} p = B.\text{next}() \\
\hspace{1em} \text{if } p.\text{element}().\text{getKey}() = k \text{ then} \\
\hspace{1em} \hspace{1em} t = p.\text{element}().\text{getValue}() \\
\hspace{1em} \hspace{1em} S.\text{remove}(p) \\
\hspace{1em} \hspace{1em} n = n - 1 \text{ \{decrement number of entries\}} \\
\hspace{1em} \text{return } t \text{ \{return the removed value\}} \\
\hspace{1em} \text{return null} \text{ \{there is no entry with key equal to } k \text{\}}
\]
Performance of a List-Based Map

- Performance:
 - put, get and remove take $O(n)$ time since in the worst case (the item is not found) we traverse the entire sequence to look for an item with the given key

- The unsorted list implementation is effective only for small maps
Outline

- Maps
- Hashing
- Dictionaries
- Ordered Maps & Dictionaries
Hash Tables

- A hash table is a data structure that can be used to make map operations faster.
- While worst-case is still $O(n)$, average case is typically $O(1)$.
Applications of Hash Tables

- databases
- compilers
- browser caches
Hash Functions and Hash Tables

- A hash function h maps keys of a given type to integers in a fixed interval $[0, N-1]$

- Example:

 $$h(x) = x \mod N$$

 is a hash function for integer keys

- The integer $h(x)$ is called the hash value of key x

- A hash table for a given key type consists of

 - Hash function h
 - Array (called table) of size N

- When implementing a map with a hash table, the goal is to store item (k, o) at index $i = h(k)$
Example

- We design a hash table for a map storing entries as (SIN, Name), where SIN (social insurance number) is a nine-digit positive integer.

- Our hash table uses an array of size $N = 10,000$ and the hash function $h(x) = \text{last four digits of SIN } x$.

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>025-612-0001</td>
<td>981-101-0002</td>
<td>451-229-0004</td>
<td>\emptyset</td>
<td></td>
</tr>
<tr>
<td>9997</td>
<td>9998</td>
<td>9999</td>
<td>200-751-9998</td>
<td></td>
</tr>
</tbody>
</table>
Hash Functions

- A hash function is usually specified as the composition of two functions:

 Hash code:

 \[h_1 : \text{keys} \rightarrow \text{integers} \]

 Compression function:

 \[h_2 : \text{integers} \rightarrow [0, N-1] \]

- The hash code is applied first, and the compression function is applied next on the result, i.e.,

 \[h(x) = h_2(h_1(x)) \]

- The goal of the hash function is to “disperse” the keys in an apparently random way
Hash Codes

- Memory address:
 - We reinterpret the memory address of the key object as an integer (default hash code of all Java objects)
 - Does not work well when copies of the same object may be stored at different locations.

- Integer cast:
 - We reinterpret the bits of the key as an integer
 - Suitable for keys of length less than or equal to the number of bits of the integer type (e.g., byte, short, int and float in Java)

- Component sum:
 - We partition the bits of the key into components of fixed length (e.g., 16 or 32 bits) and we sum the components (ignoring overflows)
 - Suitable for keys of fixed length greater than or equal to the number of bits of the integer type (e.g., long and double in Java)
Problems with Component Sum Hash Codes

- Hashing works when
 - the number of different common keys is small relative to the hashing space (e.g., 2^{32} for a 32-bit hash code).
 - the hash codes for common keys are well-distributed (do not collide) in this space.

- Component Sum codes ignore the ordering of the components.
 - e.g., using 8-bit ASCII components, ‘stop’ and ‘pots’ yields the same code.

- Since common keys are often anagrams of each other, this is often a bad idea!
Polynomial Hash Codes

Polynomial accumulation:

- We partition the bits of the key into a sequence of components of fixed length (e.g., 8, 16 or 32 bits)
 \[a_0, a_1, \ldots, a_{n-1} \]

- We evaluate the polynomial
 \[p(z) = a_0 + a_1 z + a_2 z^2 + \ldots + a_{n-1} z^{n-1} \] at a fixed value \(z \), ignoring overflows

- Especially suitable for strings

- Polynomial \(p(z) \) can be evaluated in \(O(n) \) time using Horner’s rule:
 - The following polynomials are successively computed, each from the previous one in \(O(1) \) time
 \[p_0(z) = a_{n-1} \]
 \[p_i(z) = a_{n-i-1} + z p_{i-1}(z) \quad (i = 1, 2, \ldots, n-1) \]

- We have \(p(z) = p_{n-1}(z) \)
Compression Functions

- **Division:**

 \[h_2(y) = y \mod N \]

 The size \(N \) of the hash table is usually chosen to be a prime (on the assumption that the differences between hash keys \(y \) are less likely to be multiples of primes).

- **Multiply, Add and Divide (MAD):**

 \[h_2(y) = [(ay + b) \mod p] \mod N \]

 where

 - \(p \) is a prime number greater than \(N \)
 - \(a \) and \(b \) are integers chosen at random from the interval \([0, p - 1]\), with \(a > 0 \).
Collision Handling

- Collisions occur when different elements are mapped to the same cell

- **Separate Chaining:**
 - Let each cell in the table point to a linked list of entries that map there
 - Separate chaining is simple, but requires additional memory outside the table
Map Methods with Separate Chaining

Delegate operations to a list-based map at each cell:

Algorithm get(k):

Output: The value associated with the key k in the map, or **null** if there is no entry with key equal to k in the map

```java
return A[h(k)].get(k) {delegate the get to the list-based map at A[h(k)]}
```
Delegate operations to a list-based map at each cell:

Algorithm put(k,v):

Output: Store the new (key, value) pair. If there is an existing entry with key equal to k, return the old value; otherwise, return **null**

$t = A[h(k)].put(k,v)$ \{delegate the put to the list-based map at $A[h(k)]$\}

if $t = \text{null}$ then \{k is a new key\}

$n = n + 1$

return t
Map Methods with Separate Chaining

Delegate operations to a list-based map at each cell:

Algorithm remove\((k) \):

Output: The (removed) value associated with key \(k \) in the map, or null if there is no entry with key equal to \(k \) in the map

\[
t = A[h(k)].remove(k)
\]

{delegate the remove to the list-based map at \(A[h(k)] \)}

if \(t \neq \text{null} \) then

\[
n = n - 1
\]

{k was found}

return \(t \)
Open Addressing: Linear Probing

- **Open addressing**: the colliding item is placed in a different cell of the table
- **Linear probing** handles collisions by placing the colliding item in the next (circularly) available table cell
- Each table cell inspected is referred to as a “probe”
- Colliding items lump together, so that future collisions cause a longer sequence of probes

Example:

- $h(x) = x \mod 13$
- Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order
Get with Linear Probing

- Consider a hash table A of length N that uses linear probing

- $\text{get}(k)$
 - We start at cell $h(k)$
 - We probe consecutive locations until one of the following occurs
 - An item with key k is found, or
 - An empty cell is found, or
 - N cells have been unsuccessfully probed

Algorithm $\text{get}(k)$

```plaintext
i \leftarrow h(k)
p \leftarrow 0
repeat
    c \leftarrow A[i]
    if c = \emptyset
        return null
    else if c.key() = k
        return c.element()
    else
        i \leftarrow (i + 1) \mod N
        p \leftarrow p + 1
until p = N
return null
```
Remove with Linear Probing

- Suppose we receive a **remove(44)** message.
- What problem arises if we simply remove the key = 44 entry?

<table>
<thead>
<tr>
<th>k</th>
<th>$h(k)$</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>41</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>22</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>44</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>59</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>32</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>31</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>73</td>
<td>8</td>
<td>11</td>
</tr>
</tbody>
</table>

- **Example:**
 - $h(x) = x \mod 13$
 - Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order
Removal with Linear Probing

- To address this problem, we introduce a special object, called AVAILABLE, which replaces deleted elements.
- AVAILABLE has a null key.
- No changes to get(k) are required.

Algorithm `get(k)`

\[
i \leftarrow h(k)\\
p \leftarrow 0\\
\text{repeat}\\
\quad c \leftarrow A[i]\\
\quad \text{if } c = \emptyset\\
\quad \quad \text{return null}\\
\quad \text{else if } c.key() = k\\
\quad \quad \text{return } c.element()\\
\quad \text{else}\\
\quad \quad i \leftarrow (i + 1) \mod N\\
\quad \quad p \leftarrow p + 1\\
\text{until } p = N\\
\text{return null}
\]
Updates with Linear Probing

- **remove**(\(k\))
 - We search for an entry with key \(k\)
 - If such an entry \((k, o)\) is found, we replace it with the special item \(AVAILABLE\) and we return element \(o\)
 - Else, we return \(null\)

- **put**(\(k, o\))
 - We throw an exception if the table is full
 - We start at cell \(h(k)\)
 - We probe consecutive cells until one of the following occurs
 - A cell \(i\) is found that is either empty or stores \(AVAILABLE\), or
 - \(N\) cells have been unsuccessfully probed
 - We store entry \((k, o)\) in cell \(i\)
Double hashing is an alternative open addressing method that uses a **secondary hash function** $h'(k)$ in addition to the primary hash function $h(x)$.

Suppose that the primary hashing $i = h(k)$ leads to a collision.

We then iteratively probe the locations $(i + jh'(k)) \mod N$ for $j = 0, 1, \ldots, N - 1$

The secondary hash function $h'(k)$ cannot have zero values.

N is typically chosen to be prime.

Common choice of secondary hash function $h'(k)$:

- $h'(k) = q - k \mod q$, where
 - $q < N$
 - q is a prime

The possible values for $h'(k)$ are $1, 2, \ldots, q$
END OF LECTURE
TUESDAY, FEB 11, 2014
Consider a hash table storing integer keys that handles collision with double hashing

- \(N = 13 \)
- \(h(k) = k \mod 13 \)
- \(h'(k) = 7 - k \mod 7 \)

Insert keys 18, 41, 22, 44, 59, 32, 31, 73

<table>
<thead>
<tr>
<th>(k)</th>
<th>(h(k))</th>
<th>(h'(k))</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>41</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>44</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>59</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>32</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>31</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>73</td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>
Example of Double Hashing

- Consider a hash table storing integer keys that handles collision with double hashing
 - \(N = 13 \)
 - \(h(k) = k \mod 13 \)
 - \(h'(k) = 7 - k \mod 7 \)

- Insert keys 18, 41, 22, 44, 59, 32, 31, 73

<table>
<thead>
<tr>
<th></th>
<th>(h(k))</th>
<th>(h'(k))</th>
<th>Probes</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>5</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>41</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>22</td>
<td>9</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>44</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>59</td>
<td>7</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>32</td>
<td>6</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>31</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>73</td>
<td>8</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Insertion order: 31, 41, 18, 32, 59, 73, 22, 44
Performance of Hashing

- In the worst case, searches, insertions and removals on a hash table take $O(n)$ time.
- The worst case occurs when all the keys inserted into the map collide.
- The load factor $\lambda = \frac{n}{N}$ affects the performance of a hash table.
 - For separate chaining, performance is typically good for $\lambda < 0.9$.
 - For open addressing, performance is typically good for $\lambda < 0.5$.
 - `java.util.HashMap` maintains $\lambda < 0.75$.
- Open addressing can be more memory efficient than separate chaining, as we do not require a separate data structure.
- However, separate chaining is typically as fast or faster than open addressing.
Rehashing

- When the load factor λ exceeds threshold, the table must be **rehashed**.

 - A larger table is allocated (typically at least double the size).
 - A new hash function is defined.
 - All existing entries are copied to this new table using the new hash function.
Outline

- Maps
- Hashing
- Dictionaries
Dictionary ADT

- The dictionary ADT models a searchable collection of key-element entries
- The main operations of a dictionary are searching, inserting, and deleting items
- Multiple items with the same key are allowed
- Applications:
 - word-definition pairs
 - credit card authorizations

Dictionary ADT methods:

- `get(k)`: if the dictionary has at least one entry with key k, returns one of them, else, returns null
- `getAll(k)`: returns an iterable collection of all entries with key k
- `put(k, v)`: inserts and returns the entry (k, v)
- `remove(e)`: removes and returns the entry e. Throws an exception if the entry is not in the dictionary.
- `entrySet()`: returns an iterable collection of the entries in the dictionary
- `size()`, `isEmpty()`
Dictionaries and Java

- Note: The java.util.Dictionary class actually implements a map ADT.

- There is no dictionary data structure in the Java Collections Framework that supports multiple entries with equal keys.

- The textbook (Section 9.5.3) provides an implementation of a Dictionary based upon a map of keys, each entry of which supports a linked list of entries with the same key.
Example

<table>
<thead>
<tr>
<th>Operation</th>
<th>Output</th>
<th>Dictionary</th>
</tr>
</thead>
<tbody>
<tr>
<td>put(5,A)</td>
<td>(5,A)</td>
<td>(5,A)</td>
</tr>
<tr>
<td>put(7,B)</td>
<td>(7,B)</td>
<td>(5,A),(7,B)</td>
</tr>
<tr>
<td>put(2,C)</td>
<td>(2,C)</td>
<td>(5,A),(7,B),(2,C)</td>
</tr>
<tr>
<td>put(8,D)</td>
<td>(8,D)</td>
<td>(5,A),(7,B),(2,C),(8,D)</td>
</tr>
<tr>
<td>put(2,E)</td>
<td>(2,E)</td>
<td>(5,A),(7,B),(2,C),(8,D),(2,E)</td>
</tr>
<tr>
<td>get(7)</td>
<td>(7,B)</td>
<td>(5,A),(7,B),(2,C),(8,D),(2,E)</td>
</tr>
<tr>
<td>get(4)</td>
<td>null</td>
<td>(5,A),(7,B),(2,C),(8,D),(2,E)</td>
</tr>
<tr>
<td>get(2)</td>
<td>(2,C)</td>
<td>(5,A),(7,B),(2,C),(8,D),(2,E)</td>
</tr>
<tr>
<td>getAll(2)</td>
<td>(2,C),(2,E)</td>
<td>(5,A),(7,B),(2,C),(8,D),(2,E)</td>
</tr>
<tr>
<td>size()</td>
<td>5</td>
<td>(5,A),(7,B),(2,C),(8,D),(2,E)</td>
</tr>
<tr>
<td>remove(get(5))</td>
<td>(5,A)</td>
<td>(7,B),(2,C),(8,D),(2,E)</td>
</tr>
<tr>
<td>get(5)</td>
<td>null</td>
<td>(7,B),(2,C),(8,D),(2,E)</td>
</tr>
</tbody>
</table>
Subtleties of `remove(e)`

- `remove(e)` will remove an entry that matches `e` (i.e., has the same (key, value) pair).
- If the dictionary contains more than one entry with identical (key, value) pairs, `remove(e)` will only remove one.

Example:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Output</th>
<th>Dictionary</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>e1 = put(2,C)</code></td>
<td>(2,C)</td>
<td>(5,A),(7,B),(2,C)</td>
</tr>
<tr>
<td><code>e2 = put(8,D)</code></td>
<td>(8,D)</td>
<td>(5,A),(7,B),(2,C),(8,D)</td>
</tr>
<tr>
<td><code>e3 = put(2,E)</code></td>
<td>(2,E)</td>
<td>(5,A),(7,B),(2,C),(8,D),(2,E)</td>
</tr>
<tr>
<td><code>remove(get(5))</code></td>
<td>(5,A)</td>
<td>(7,B),(2,C),(8,D),(2,E)</td>
</tr>
<tr>
<td><code>remove(e3)</code></td>
<td>(2,E)</td>
<td>(7,B),(2,C),(8,D)</td>
</tr>
<tr>
<td><code>remove(e1)</code></td>
<td>(2,C)</td>
<td>(7,B),(8,D)</td>
</tr>
</tbody>
</table>
A List-Based Dictionary

- A log file or audit trail is a dictionary implemented by means of an unsorted sequence
 - We store the items of the dictionary in a sequence (based on a doubly-linked list or array), in arbitrary order

- Performance:
 - *insert* takes $O(1)$ time since we can insert the new item at the beginning or at the end of the sequence
 - *find* and *remove* take $O(n)$ time since in the worst case (the item is not found) we traverse the entire sequence to look for an item with the given key

- The log file is effective only for dictionaries of small size or for dictionaries on which insertions are the most common operations, while searches and removals are rarely performed (e.g., historical record of logins to a workstation)
The getAll and put Algorithms

Algorithm getAll(k)

Create an initially-empty list L

for e: D do

 if e.getKey() = k then

 L.addLast(e)

return L

Algorithm put(k,v)

Create a new entry e = (k,v)

S.addLast(e) {S is unordered}

return e
The remove Algorithm

Algorithm remove(e):

{ We don’t assume here that e stores its position in S }

B = S.positions()

while B.hasNext() do

 p = B.next()

 if p.element() = e then
 S.remove(p)

 return e

return null {there is no entry e in D}
Hash Table Implementation

- We can also create a hash-table dictionary implementation.
 - If we use separate chaining to handle collisions, then each operation can be delegated to a list-based dictionary stored at each hash table cell.
Outline

- Maps
- Hashing
- Dictionaries
- **Ordered Maps & Dictionaries**
Ordered Maps and Dictionaries

- If keys obey a total order relation, can represent a map or dictionary as an ordered search table stored in an array.
- Can then support a fast `find(k)` using **binary search**.
 - at each step, the number of candidate items is halved
 - terminates after a logarithmic number of steps
 - Example: `find(7)`
Ordered Search Tables

- Performance:
 - **find** takes $O(\log n)$ time, using binary search
 - **insert** takes $O(n)$ time since in the worst case we have to shift n items to make room for the new item
 - **remove** takes $O(n)$ time since in the worst case we have to shift n items to compact the items after the removal

- A search table is effective only for dictionaries of small size or for dictionaries on which searches are the most common operations, while insertions and removals are rarely performed (e.g., credit card authorizations)
Summary: Learning Outcomes

- Maps
 - ADT
 - What are they good for?
 - Naïve implementation – running times

- Hashing
 - Running time
 - Types of hashing

- Dictionaries
 - ADT
 - What are they good for?

- Ordered Maps & Dictionaries
 - What are they good for?
 - Running time