Recursion
Chapter 3.5
Outline

• Induction
• Linear recursion
 – Example 1: Factorials
 – Example 2: Powers
 – Example 3: Reversing an array
• Binary recursion
 – Example 1: The Fibonacci sequence
 – Example 2: The Tower of Hanoi
• Drawbacks and pitfalls of recursion
Outcomes

• By understanding this lecture you should be able to:
 – Use induction to prove the correctness of a recursive algorithm.
 – Identify the base case for an inductive solution
 – Design and analyze linear and binary recursion algorithms
 – Identify the overhead costs of recursion
 – Avoid errors commonly made in writing recursive algorithms
Outline

• **Induction**

• Linear recursion
 – Example 1: Factorials
 – Example 2: Powers
 – Example 3: Reversing an array

• Binary recursion
 – Example 1: The Fibonacci sequence
 – Example 2: The Tower of Hanoi

• Drawbacks and pitfalls of recursion
Divide and Conquer

• When faced with a difficult problem, a classic technique is to break it down into smaller parts that can be solved more easily.

• Recursion uses induction to do this.
History of Induction

- Implicit use of induction goes back at least to Euclid’s proof that the number of primes is infinite (c. 300 BC).
- The first explicit formulation of the principle is due to Pascal (1665).

Euclid of Alexandria, "The Father of Geometry" c. 300 BC

Blaise Pascal, 1623 - 1662
Induction: Review

• Induction is a mathematical method for proving that a statement is true for a (possibly infinite) sequence of objects.

• There are two things that must be proved:
 1. **The Base Case**: The statement is true for the first object
 2. **The Inductive Step**: If the statement is true for a given object, it is also true for the next object.

• If these two statements hold, then the statement holds for all objects.
Induction Example: An Arithmetic Sum

• Claim: \(\sum_{i=0}^{n} i = \frac{1}{2} n(n+1) \quad \forall n \in \mathbb{N} \)

• Proof:

1. **Base Case.** The statement holds for \(n = 0 \):

\[
\sum_{i=0}^{n} i = \sum_{i=0}^{0} i = 0
\]

\[
\frac{1}{2}n(n+1) = \frac{1}{2}0(0+1) = 0
\]

2. **Inductive Step.** If the claim holds for \(n = k \), then it also holds for \(n = k+1 \).

\[
\sum_{i=0}^{k+1} i = k + 1 + \sum_{i=0}^{k} i = k + 1 + \frac{1}{2}k(k+1) = \frac{1}{2}(k+1)(k+2)
\]
Recursive Divide and Conquer

- You are given a problem input that is too big to solve directly.
- You imagine,
 - "Suppose I had a friend who could give me the answer to the same problem with slightly smaller input."
 - "Then I could easily solve the larger problem."
- In recursion this "friend" will actually be another instance (clone) of yourself.

Tai (left) and Snuppy (right): the first puppy clone.
Friends & Induction

Recursive Algorithm:
- Assume you have an algorithm that works.
- Use it to write an algorithm that works.

If I could get in,
I could get the key.
Then I could unlock the door
so that I can get in.

Circular Argument!

Example from J. Edmonds – Thanks Jeff!
Friends & Induction

Recursive Algorithm:

• Assume you have an algorithm that works.
• Use it to write an algorithm that works.

To get into my house
I must get the key from a smaller house
Recursive Algorithm:
• Assume you have an algorithm that works.
• Use it to write an algorithm that works.

Use brute force to get into the smallest house.

The “base case”
Outline

• Induction

• **Linear recursion**
 – Example 1: Factorials
 – Example 2: Powers
 – Example 3: Reversing an array

• Binary recursion
 – Example 1: The Fibonacci sequence
 – Example 2: The Tower of Hanoi

• Drawbacks and pitfalls of recursion
Recall: Design Pattern

• A template for a software solution that can be applied to a variety of situations.
• Main elements of solution are described in the abstract.
• Can be specialized to meet specific circumstances.
Linear Recursion Design Pattern

• **Test for base cases**
 - Begin by testing for a set of base cases (there should be at least one).
 - Every possible chain of recursive calls **must** eventually reach a base case, and the handling of each base case should not use recursion.

• **Recurse once**
 - Perform a single recursive call. (This recursive step may involve a test that decides which of several possible recursive calls to make, but it should ultimately choose to make just one of these calls each time we perform this step.)
 - Define each possible recursive call so that it makes **progress** towards a base case.
Example 1

• The factorial function:
 – \(n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot (n-1) \cdot n \)

• Recursive definition:

\[
f(n) = \begin{cases}
1 & \text{if } n = 0 \\
n \cdot f(n-1) & \text{else}
\end{cases}
\]

• As a Java method:

```java
public static int recursiveFactorial(int n) {
    if (n == 0) return 1; // base case
    else return n * recursiveFactorial(n - 1); // recursive case
}
```
Linear Recursion

- recursiveFactorial is an example of linear recursion: only one recursive call is made per stack frame.

- Since there are \(n \) recursive calls, this algorithm has \(O(n) \) run time.

```java
// recursive factorial function
public static int recursiveFactorial(int n) {
    if (n == 0) return 1;  // base case
    else return n * recursiveFactorial(n-1); // recursive case
}
```
Example 2: Computing Powers

• The power function, $p(x,n) = x^n$, can be defined recursively:

$$p(x,n) = \begin{cases}
1 & \text{if } n = 0 \\
x \cdot p(x, n-1) & \text{otherwise}
\end{cases}$$

• Assume multiplication takes constant time (independent of value of arguments).

• This leads to a power function that runs in $O(n)$ time (for we make n recursive calls).

• Can we do better than this?
Recursive Squaring

• We can derive a more efficient linearly recursive algorithm by using repeated squaring:

\[
p(x,n) = \begin{cases}
1 & \text{if } n = 0 \\
x \cdot p(x,(n-1)/2)^2 & \text{if } n > 0 \text{ is odd} \\
p(x,n/2)^2 & \text{if } n > 0 \text{ is even}
\end{cases}
\]

• For example,

\[
\begin{align*}
2^4 &= 2^{(4/2)^2} = (2^4/2)^2 = (2^2)^2 = 4^2 = 16 \\
2^5 &= 2^{1+(4/2)^2} = 2(2^{4/2})^2 = 2(2^2)^2 = 2(4^2) = 32 \\
2^6 &= 2^{(6/2)^2} = (2^6/2)^2 = (2^3)^2 = 8^2 = 64 \\
2^7 &= 2^{1+(6/2)^2} = 2(2^{6/2})^2 = 2(2^3)^2 = 2(8^2) = 128.
\end{align*}
\]
A Recursive Squaring Method

Algorithm Power(x, n):

 Input: A number x and integer n

 Output: The value x^n

 if $n = 0$ then
 return 1
 if n is odd then
 $y = \text{Power}(x, (n - 1)/2)$
 return $x \cdot y \cdot y$
 else
 $y = \text{Power}(x, n/2)$
 return $y \cdot y$
Analyzing the Recursive Squaring Method

Algorithm Power(x, n):

Input: A number x and integer n = 0

Output: The value x^n

if $n = 0$ then
 return 1
if n is odd then
 $y = Power(x, (n - 1)/2)$
 return $x \cdot y \cdot y$
else
 $y = Power(x, n/2)$
 return $y \cdot y$

Although there are 2 statements that recursively call Power, only one is executed per stack frame.

Each time we make a recursive call we halve the value of n (roughly).

Thus we make a total of log n recursive calls. That is, this method runs in $O(\log n)$ time.
Tail Recursion

• Tail recursion occurs when a linearly recursive method makes its recursive call as its last step.

• Such a method can easily be converted to an iterative methods (which saves on some resources).
Example: Recursively Reversing an Array

Algorithm ReverseArray(A, i, j):

Input: An array A and nonnegative integer indices i and j

Output: The reversal of the elements in A starting at index i and ending at j

1. if $i < j$ then
 1. Swap $A[i]$ and $A[j]$
 2. ReverseArray(A, $i + 1$, $j - 1$)

 return
Example: Iteratively Reversing an Array

Algorithm IterativeReverseArray(A, i, j):

Input: An array A and nonnegative integer indices i and j

Output: The reversal of the elements in A starting at index i and ending at j

```
while $i < j$ do
    Swap $A[i]$ and $A[j]$
    $i = i + 1$
    $j = j - 1$

return
```
Defining Arguments for Recursion

• Solving a problem recursively sometimes requires passing additional parameters.

• **ReverseArray** is a good example: although we might initially think of passing only the array \(A \) as a parameter at the top level, lower levels need to know where in the array they are operating.

• Thus the recursive interface is \(\text{ReverseArray}(A, i, j) \).

• We then invoke the method at the highest level with the message \(\text{ReverseArray}(A, 1, n) \).
Outline

• Induction

• Linear recursion
 – Example 1: Factorials
 – Example 2: Powers
 – Example 3: Reversing an array

• **Binary recursion**
 – Example 1: The Fibonacci sequence
 – Example 2: The Tower of Hanoi

• Drawbacks and pitfalls of recursion
Binary Recursion

- Binary recursion occurs whenever there are **two** recursive calls for each non-base case.

- Example 1: **The Fibonacci Sequence**
The Fibonacci Sequence

- Fibonacci numbers are defined recursively:

\[F_0 = 0 \]
\[F_1 = 1 \]
\[F_i = F_{i-1} + F_{i-2} \quad \text{for } i > 1. \]

The ratio \(F_i / F_{i-1} \) converges to \(\phi = \frac{1+\sqrt{5}}{2} = 1.61803398874989... \)

(The “Golden Ratio”)

Fibonacci (c. 1170 - c. 1250)
(aka Leonardo of Pisa)
The Golden Ratio

- Two quantities are in the **golden ratio** if the ratio of the sum of the quantities to the larger quantity is equal to the ratio of the larger quantity to the smaller one.

\[\varphi = \frac{a + b}{a} = \frac{a}{b} \]

\(\varphi \) is the unique positive solution to \(\varphi = \frac{a + b}{a} = \frac{a}{b} \).
The Golden Ratio

The Parthenon

Leonardo

\[\frac{a+b}{a} = \frac{a}{b} = \phi\]

\(a+b\) is to \(a\) as \(a\) is to \(b\)
Computing Fibonacci Numbers

\[
F_0 = 0 \\
F_1 = 1 \\
F_i = F_{i-1} + F_{i-2} \quad \text{for } i > 1.
\]

- A recursive algorithm (first attempt):

Algorithm BinaryFib(k):

Input: Positive integer \(k \)
Output: The \(k \)th Fibonacci number \(F_k \)

if \(k < 2 \) then

return \(k \)
else

return BinaryFib(k - 1) + BinaryFib(k - 2)
Analyzing the Binary Recursion Fibonacci Algorithm

• Let n_k denote number of recursive calls made by BinaryFib(k). Then

 – $n_0 = 1$
 – $n_1 = 1$
 – $n_2 = n_1 + n_0 + 1 = 1 + 1 + 1 = 3$
 – $n_3 = n_2 + n_1 + 1 = 3 + 1 + 1 = 5$
 – $n_4 = n_3 + n_2 + 1 = 5 + 3 + 1 = 9$
 – $n_5 = n_4 + n_3 + 1 = 9 + 5 + 1 = 15$
 – $n_6 = n_5 + n_4 + 1 = 15 + 9 + 1 = 25$
 – $n_7 = n_6 + n_5 + 1 = 25 + 15 + 1 = 41$
 – $n_8 = n_7 + n_6 + 1 = 41 + 25 + 1 = 67$.

• Note that n_k more than doubles for every other value of n_k. That is, $n_k > 2^{k/2}$. It increases exponentially!
A Better Fibonacci Algorithm

• Use **linear** recursion instead:

 Algorithm LinearFibonacci(k):

 Input: A positive integer \(k \)

 Output: Pair of Fibonacci numbers \((F_k, F_{k-1})\)

 if \(k = 1 \) then

 return \((k, 0)\)

 else

 \((i, j) = \text{LinearFibonacci}(k - 1)\)

 return \((i + j, i)\)

• Runs in **O(k)** time.
Binary Recursion

- Second Example: The Tower of Hanoi
Example
This job of mine is a bit daunting. Where do I start?
And I am lazy.
At some point, the biggest disk moves. I will do that job.

Tower of Hanoi
Tower of Hanoi

To do this, the other disks must be in the middle.
Tower of Hanoi

How will these move? I will get a friend to do it. And another to move these. I only move the big disk.
Tower of Hanoi

Code:

algorithm TowersOfHanoi(n, source, destination, spare)

⟨pre-cond⟩: The n smallest disks are on pole source.
⟨post-cond⟩: They are moved to pole destination.

begin
 if(n = 1)
 Move the single disk from pole source to pole destination.
 else
 TowersOfHanoi(n – 1, source, spare, destination)
 Move the \(n^{th} \) disk from pole source to pole destination.
 TowersOfHanoi(n – 1, spare, destination, source)
 end if
end algorithm

2 recursive calls!
Tower of Hanoi

Code:

\begin{algorithm}
\textbf{TowersOfHanoi}(n, source, destination, spare)
\textbf{pre-cond}: The \(n\) smallest disks are on pole\text{source}.
\textbf{post-cond}: They are moved to pole\text{destination}.
\begin{algorithmic}
\begin{align*}
\text{begin} \\
\quad &\text{if}(n = 1) \\
\quad &\quad \text{Move the single disk from pole\text{source} to pole\text{destination}}, \\
\quad &\text{else} \\
\quad &\quad \text{TowersOfHanoi}(n - 1, source, spare, destination)\end{align*}
\begin{algorithmic}
\quad &\quad \text{Move the \(n\)th disk from pole\text{source} to pole\text{destination}}. \\
\quad &\quad \text{TowersOfHanoi}(n - 1, spare, destination, source) \\
\text{end if}
\text{end algorithm}
\end{algorithmic}
\end{align*}
\end{algorithm}

Time:

\begin{align*}
T(1) &= 1, \\
T(n) &= 1 + 2T(n-1) \\&\approx 2(2T(n-2)) \\&\approx 4(2T(n-3)) \\
&\approx 2^i T(n-i) \\
&\approx 2^n
\end{align*}
Binary Recursion: Summary

• Binary recursion spawns an exponential number of recursive calls.

• If the inputs are only declining \textit{arithmetically} (e.g., n-1, n-2, …) the result will be an exponential running time.

• In order to use binary recursion, the input must be declining \textit{geometrically} (e.g., n/2, n/4, …).

• We will see efficient examples of binary recursion with geometrically declining inputs when we discuss \textit{heaps} and \textit{sorting}.
Outline

• Induction

• Linear recursion
 – Example 1: Factorials
 – Example 2: Powers
 – Example 3: Reversing an array

• Binary recursion
 – Example 1: The Fibonacci sequence
 – Example 2: The Tower of Hanoi

• **Drawbacks and pitfalls of recursion**
The Overhead Costs of Recursion

• Many problems are naturally defined recursively.
• This can lead to simple, elegant code.
• However, recursive solutions entail a cost in time and memory: each recursive call requires that the current process state (variables, program counter) be pushed onto the system stack, and popped once the recursion unwinds.
• This typically affects the running time constants, but not the asymptotic time complexity (e.g., $O(n)$, $O(n^2)$ etc.)
• Thus recursive solutions may still be preferred unless there are very strict time/memory constraints.
The “Curse” in Recursion: Errors to Avoid

// recursive factorial function
public static int recursiveFactorial(int n) {
 return n * recursiveFactorial(n - 1);
}

• There must be a base condition: the recursion must ground out!
The “Curse” in Recursion: Errors to Avoid

// recursive factorial function

public static int recursiveFactorial(int n) {
 if (n == 0) return recursiveFactorial(n); // base case
 else return n * recursiveFactorial(n - 1); // recursive case
}

• The base condition must not involve more recursion!
The “Curse” in Recursion: Errors to Avoid

// recursive factorial function

public static int recursiveFactorial(int n) {
 if (n == 0) return 1; // base case
 else return (n - 1) * recursiveFactorial(n); // recursive case
}

• The input **must be converging** toward the base condition!
Outline

• Induction

• Linear recursion
 – Example 1: Factorials
 – Example 2: Powers
 – Example 3: Reversing an array

• Binary recursion
 – Example 1: The Fibonacci sequence
 – Example 2: The Tower of Hanoi

• Drawbacks and pitfalls of recursion
Outcomes

• By understanding this lecture you should be able to:
 – Use induction to prove the correctness of a recursive algorithm.
 – Identify the base case for an inductive solution
 – Design and analyze linear and binary recursion algorithms
 – Identify the overhead costs of recursion
 – Avoid errors commonly made in writing recursive algorithms
END OF LECTURE 7
JAN 28, 2014