
Recursive Objects (Part 4) 
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Trees 
 a tree is a data structure made up of nodes 
 each node stores data 
 each node has links to zero or more nodes in the next level 

of the tree 
 children of the node 

 each node has exactly one parent node 
 except for the root node 
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Trees 
 the root of the tree is the node that has no parent node 
 all algorithms start at the root 
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Trees 
 a node without any children is called a leaf 
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Trees 
 the recursive structure of a tree means that every node 

is the root of a tree 
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Binary Tree 
 a binary tree is a tree where each node has at most two 

children 
 very common in computer science 
 many variations 

 traditionally, the children nodes are called the left 
node and the right node 
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Binary Tree Algorithms 
 the recursive structure of trees leads naturally to 

recursive algorithms that operate on trees 
 for example, suppose that you want to search a binary 

tree for a particular element 
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public static <E> boolean contains(E element, Node<E> node) { 

  if (node == null) { 

    return false; 

  } 

  if (element.equals(node.data)) { 

    return true; 

  } 

  boolean inLeftTree = contains(element, node.left); 

  if (inLeftTree) { 

    return true; 

  } 

  boolean inRightTree = contains(element, node.right); 

  return inRightTree; 

} 

 



Iteration 
 visiting every element of the tree can also be done 

recursively 
 3 possibilities based on when the root is visited 
 inorder 

 visit left child, then root, then right child 
 preorder 

 visit root, then left child, then right child 
 postorder 

 visit left child, then right child, then root 
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Binary Search Trees (BST) 
 the tree from the previous slide is a special kind of 

binary tree called a binary search tree  
 in a binary search tree: 

1. all nodes in the left subtree have data elements that are 
less than the data element of the root node 

2. all nodes in the right subtree have data elements that are 
greater than the data element of the root node 

3. rules 1 and 2 apply recursively to every subtree 
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Predecessors and Successors in a BST 
 in a BST there is something special about a node's: 
 left subtree right-most child 
 right subtree left-most child 
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Deletion from a BST 
 to delete a node in a BST there are 3 cases to consider: 

1. deleting a leaf node 
2. deleting a node with one child 
3. deleting a node with two children 
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Deleting a Leaf Node 
 deleting a leaf node is easy because the leaf has no 

children 
 simply remove the node from the tree 
 

 e.g., delete 93 
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Deleting a Node with One Child 
 deleting a node with one child is also easy because of 

the structure of the BST 
 remove the node by replacing it with its child 
 

 e.g., delete 83 
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Deleting a Node with Two Children 
 deleting a node with two children is a little trickier 
 call the node to be deleted Z 
 find the inorder predecessor OR the inorder successor 

 call this node Y 
 if the inorder predecessor does not exist, then you must find the 

inorder successor (and vice versa) 

 copy the data element of Y into the data element of Z 
 delete Y 
 

 e.g., delete 50 
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Recursion and Data Structures 
in Computer Graphics 

Ray Tracing 
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Forward Ray Tracing 
 
 

 imagine that you take a picture of a room using a 
camera 

 exactly what is the camera sensing? 
 light reflected from the surfaces of objects into the camera 

lens 
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Forward Ray Tracing 
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Forward Ray Tracing 
 
 
 

 forward ray tracing traces the paths of light from the 
light source to the camera to produce an image 

 computationally infeasible because almost all of the 
possible paths of light miss the camera 
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Backward Ray Tracing 
 
 
 

 backward ray tracing traces the paths of light from the 
camera out into the environment to produce an image 

 computationally feasible because the process starts 
with a single* ray per screen pixel 
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Why Ray Tracing: Shadows 
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Ray Tracing: Reflections 

49 Ray Tracing for the Movie 'Cars', P. Christensen et al 



Ray Tracing: Reflections 

50 Ray Tracing for the Movie 'Cars', P. Christensen et al 



Comment on Previous Images 
 
 
 

 most of the rendering in the previous images was not 
done using ray tracing 

 ray tracing was only used on those parts of the image 
that would produce a noticeable difference 
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Backward Ray Tracing 
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Shadows 
 
 

 we can determine if a point is in shadow by tracing 
rays from the point to each light source 
 called shadow rays 

 if a shadow ray hits an object before it reaches the light 
source then the point is in shadow 
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Shadows 
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Reflections 
 
 
 

 if the ray hits a shiny object then we would like to 
know what reflection is seen at the hit point 

 we can cast a new ray in the mirror reflection direction 
to determine the reflection 
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Reflections 
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Transparent Objects 
 
 
 

 if the ray hits a transparent object then we would like 
to know what can be seen through the object 

 we can cast a new ray in the refraction direction to 
determine what can be seen through the object 
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Transparent Objects 
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Recursion 
 
 
 

 each reflected and refracted ray can be treated as a 
new emanating from a hit point 
 i.e., we recursively trace the reflected and refracted rays 
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Ray Tracing as a Binary Tree 
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Stopping the Recursion 
 what are the base cases? 
 ray misses all objects 
 level of recursion exceeds a fixed value 
 other cases outside the scope of CSE1030 
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How Fast is Ray Tracing 
 approaching real time for non-cinematic quality, e.g., 
 Brigade 2 game engine 
 NVIDA OptiX 

 demos here if you have a high-end NVIDIA graphics card 

 
 cinematic quality is much slower 
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https://developer.nvidia.com/optix-interactive-examples


How Fast is Ray Tracing 
 678 million triangles 
 rays 
 111 million diffuse 
 37 million specular 
 26 million shadow 

 1.2 billion ray-triangle 
intersections 

 106 minutes on 
2006 hardware 
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Bounding Volumes 
 

 it is easy to compute the intersection of a ray with 
certain shapes, e.g., 
 spheres and cubes 

 it is hard or expensive to compute the intersection of a 
ray with arbitrary shapes 

 idea 
 put complex shapes inside simple ones 
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Bounding Volumes 
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Hierarchy of Bounding Volumes 
 
 
 

 why stop at putting complex shapes into bounding 
volumes? 

 why not put bounding volumes inside bounding 
volumes? 
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Hierarchy of Bounding Volumes 
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Spatial Subdivision 
 instead of putting objects inside volumes we can 

subdivide space 
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Quadtree Decomposition 
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Using a Quadtree in Ray Tracing 
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Open Source Ray Tracers 
 Art of Illusion 
 POV-Ray 
 YafaRay 
 Manta 
 several others 
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http://www.artofillusion.org/
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http://mantawiki.sci.utah.edu/manta/index.php/Main_Page
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