
Recursive Objects (Part 4)

1

Trees
 a tree is a data structure made up of nodes
 each node stores data
 each node has links to zero or more nodes in the next level

of the tree
 children of the node

 each node has exactly one parent node
 except for the root node

2

3

50

11 6

79

34

88 67 23 33 99

1 31

83 6

4

50

11 6

79

34

88 67 23 33 99

1 31

83 6

Trees
 the root of the tree is the node that has no parent node
 all algorithms start at the root

5

6

50

11 6

79

34

88 67 23 33 99

1 31

83 6

root

Trees
 a node without any children is called a leaf

7

8

50

11 6

79

34

88 67 23 33 99

1 31

83 6

leaf leaf leaf leaf leaf

leaf leaf

leaf

Trees
 the recursive structure of a tree means that every node

is the root of a tree

9

10

50

11 6

79

34

88 67 23 33 99

1 31

83 6

subtree

11

50

11 6

79

34

88 67 23 33 99

1 31

83 6

subtree

12

50

11 6

79

34

88 67 23 33 99

1 31

83 6

subtree

13

50

11 6

79

34

88 67 23 33 99

1 31

83 6

subtree

14

50

11 6

79

34

88 67 23 33 99

1 31

83 6

subtree

Binary Tree
 a binary tree is a tree where each node has at most two

children
 very common in computer science
 many variations

 traditionally, the children nodes are called the left
node and the right node

15

50

27 73

8 44 83

73 93

left right

50

27 73

8 44 83

73 93

left right

50

27 73

8 44 83

73 93

right

50

27 73

8 44 83

74 93

left right

Binary Tree Algorithms
 the recursive structure of trees leads naturally to

recursive algorithms that operate on trees
 for example, suppose that you want to search a binary

tree for a particular element

20

21

public static <E> boolean contains(E element, Node<E> node) {

 if (node == null) {

 return false;

 }

 if (element.equals(node.data)) {

 return true;

 }

 boolean inLeftTree = contains(element, node.left);

 if (inLeftTree) {

 return true;

 }

 boolean inRightTree = contains(element, node.right);

 return inRightTree;

}

Iteration
 visiting every element of the tree can also be done

recursively
 3 possibilities based on when the root is visited
 inorder

 visit left child, then root, then right child
 preorder

 visit root, then left child, then right child
 postorder

 visit left child, then right child, then root

22

50

27 73

8 44 83

74 93

inorder: 8, 27, 44, 50, 73, 74, 83, 93

50

27 73

8 44 83

74 93

preorder: 50, 27, 8, 44, 73, 83, 74, 93

50

27 73

8 44 83

74 93

postorder: 8, 44, 27, 74, 93, 83, 73, 50

Binary Search Trees (BST)
 the tree from the previous slide is a special kind of

binary tree called a binary search tree
 in a binary search tree:

1. all nodes in the left subtree have data elements that are
less than the data element of the root node

2. all nodes in the right subtree have data elements that are
greater than the data element of the root node

3. rules 1 and 2 apply recursively to every subtree

26

50

27 73

8 44 83

74 93

right subtree

left subtree

51

rest of tree
not shown

76

Predecessors and Successors in a BST
 in a BST there is something special about a node's:
 left subtree right-most child
 right subtree left-most child

28

50

27 73

8 44 83

74 93

right subtree

left subtree

rightmost
child

51

leftmost
child

rest of tree
not shown

rightmost child = inorder predecessor

leftmost child = inorder successor

76

Deletion from a BST
 to delete a node in a BST there are 3 cases to consider:

1. deleting a leaf node
2. deleting a node with one child
3. deleting a node with two children

30

Deleting a Leaf Node
 deleting a leaf node is easy because the leaf has no

children
 simply remove the node from the tree

 e.g., delete 93

31

50

27 73

8 44 83

74 93

51

rest of tree
not shown

76

delete 93

50

27 73

8 44 83

74

51

rest of tree
not shown

76

Deleting a Node with One Child
 deleting a node with one child is also easy because of

the structure of the BST
 remove the node by replacing it with its child

 e.g., delete 83

34

50

27 73

8 44 83

74

51

rest of tree
not shown

76

delete 83

50

27 73

8 44 74 51

rest of tree
not shown

76

Deleting a Node with Two Children
 deleting a node with two children is a little trickier
 call the node to be deleted Z
 find the inorder predecessor OR the inorder successor

 call this node Y
 if the inorder predecessor does not exist, then you must find the

inorder successor (and vice versa)

 copy the data element of Y into the data element of Z
 delete Y

 e.g., delete 50

37

50

27 73

8 44 74 51

rest of tree
not shown

76

delete 50

50

27 73

8 44 74 51

rest of tree
not shown

76

Z

Y

inorder
successor

to Z

51

27 73

8 44 74 51

rest of tree
not shown

76

Z

Y

inorder
successor

to Z

copy Y data to Z data

51

27 73

8 44 74 51

rest of tree
not shown

76

Z

Y

delete Y

51

27 73

8 44 74

rest of tree
not shown

76

Recursion and Data Structures
in Computer Graphics

Ray Tracing

43

Forward Ray Tracing

 imagine that you take a picture of a room using a
camera

 exactly what is the camera sensing?
 light reflected from the surfaces of objects into the camera

lens

44

Forward Ray Tracing

45

light source

camera or
"eye"

Forward Ray Tracing

 forward ray tracing traces the paths of light from the
light source to the camera to produce an image

 computationally infeasible because almost all of the
possible paths of light miss the camera

46

Backward Ray Tracing

 backward ray tracing traces the paths of light from the
camera out into the environment to produce an image

 computationally feasible because the process starts
with a single* ray per screen pixel

47

Why Ray Tracing: Shadows

48

shadows with ~1000 light sources

Ray Tracing for the Movie 'Cars', P. Christensen et al

Ray Tracing: Reflections

49 Ray Tracing for the Movie 'Cars', P. Christensen et al

Ray Tracing: Reflections

50 Ray Tracing for the Movie 'Cars', P. Christensen et al

Comment on Previous Images

 most of the rendering in the previous images was not
done using ray tracing

 ray tracing was only used on those parts of the image
that would produce a noticeable difference

51

Backward Ray Tracing

52 http://en.wikipedia.org/wiki/File:Ray_trace_diagram.svg

Shadows

 we can determine if a point is in shadow by tracing
rays from the point to each light source
 called shadow rays

 if a shadow ray hits an object before it reaches the light
source then the point is in shadow

53

Shadows

54

shadowed from L2

shadowed from L3

not shadowed from L1

Reflections

 if the ray hits a shiny object then we would like to
know what reflection is seen at the hit point

 we can cast a new ray in the mirror reflection direction
to determine the reflection

55

Reflections

56

incoming ray reflection ray

Transparent Objects

 if the ray hits a transparent object then we would like
to know what can be seen through the object

 we can cast a new ray in the refraction direction to
determine what can be seen through the object

57

Transparent Objects

58

incoming ray

refraction ray

Recursion

 each reflected and refracted ray can be treated as a
new emanating from a hit point
 i.e., we recursively trace the reflected and refracted rays

59

Ray Tracing as a Binary Tree

60

shadow rays

Stopping the Recursion
 what are the base cases?
 ray misses all objects
 level of recursion exceeds a fixed value
 other cases outside the scope of CSE1030

61

How Fast is Ray Tracing
 approaching real time for non-cinematic quality, e.g.,
 Brigade 2 game engine
 NVIDA OptiX

 demos here if you have a high-end NVIDIA graphics card

 cinematic quality is much slower

62

https://developer.nvidia.com/optix-interactive-examples

How Fast is Ray Tracing
 678 million triangles
 rays
 111 million diffuse
 37 million specular
 26 million shadow

 1.2 billion ray-triangle
intersections

 106 minutes on
2006 hardware

63

Bounding Volumes

 it is easy to compute the intersection of a ray with
certain shapes, e.g.,
 spheres and cubes

 it is hard or expensive to compute the intersection of a
ray with arbitrary shapes

 idea
 put complex shapes inside simple ones

64

Bounding Volumes

65

Hierarchy of Bounding Volumes

 why stop at putting complex shapes into bounding
volumes?

 why not put bounding volumes inside bounding
volumes?

66

Hierarchy of Bounding Volumes

67

Spatial Subdivision
 instead of putting objects inside volumes we can

subdivide space

68

Quadtree Decomposition

69

Using a Quadtree in Ray Tracing

70

Open Source Ray Tracers
 Art of Illusion
 POV-Ray
 YafaRay
 Manta
 several others

71

http://www.artofillusion.org/
http://www.povray.org/
http://www.povray.org/
http://www.yafaray.org/
http://mantawiki.sci.utah.edu/manta/index.php/Main_Page

	Recursive Objects (Part 4)
	Trees
	Slide Number 3
	Slide Number 4
	Trees
	Slide Number 6
	Trees
	Slide Number 8
	Trees
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Binary Tree
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Binary Tree Algorithms
	Slide Number 21
	Iteration
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Binary Search Trees (BST)
	Slide Number 27
	Predecessors and Successors in a BST
	Slide Number 29
	Deletion from a BST
	Deleting a Leaf Node
	Slide Number 32
	Slide Number 33
	Deleting a Node with One Child
	Slide Number 35
	Slide Number 36
	Deleting a Node with Two Children
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Recursion and Data Structures in Computer Graphics
	Forward Ray Tracing
	Forward Ray Tracing
	Forward Ray Tracing
	Backward Ray Tracing
	Why Ray Tracing: Shadows
	Ray Tracing: Reflections
	Ray Tracing: Reflections
	Comment on Previous Images
	Backward Ray Tracing
	Shadows
	Shadows
	Reflections
	Reflections
	Transparent Objects
	Transparent Objects
	Recursion
	Ray Tracing as a Binary Tree
	Stopping the Recursion
	How Fast is Ray Tracing
	How Fast is Ray Tracing
	Bounding Volumes
	Bounding Volumes
	Hierarchy of Bounding Volumes
	Hierarchy of Bounding Volumes
	Spatial Subdivision
	Quadtree Decomposition
	Using a Quadtree in Ray Tracing
	Open Source Ray Tracers

