Control flow in C
EECS 2031

Summer 2014

Przemyslaw Pawluk

June 3, 2014

What we will discuss today

Review
Control Flow
Functions and Program Structure

Compilation
Preprocessor

Homework

Table of Contents

Review

Array, Structures and Lists

Questions

Array, Structures and Lists

Questions

» What is an Array?

Array, Structures and Lists

Questions

» What is a Pointer?

Array, Structures and Lists

Questions

» What is a Structure?

Array, Structures and Lists

Questions

» Which data structure can be constructed with Structures?

Array, Structures and Lists

Questions

» What is an Array?
» What is a Pointer?
» What is a Structure?

» Which data structure can be constructed with Structures?

Linked List vs Binary Tree

Questions

Linked List vs Binary Tree

Questions

» What is a Linked List?

Linked List vs Binary Tree

Questions

» What is a Binary Tree?

Linked List vs Binary Tree

Questions

» How to construct a Linked List using Structures?

Linked List vs Binary Tree

Questions

» How to construct a Binary Tree using Structures?

Linked List vs Binary Tree

Questions

» Which of the mentioned data structure can be used to
improve searching?

Linked List vs Binary Tree

Questions

» What is a Linked List?
» What is a Binary Tree?
» How to construct a Linked List using Structures?
» How to construct a Binary Tree using Structures?
>

Which of the mentioned data structure can be used to
improve searching?

Table of Contents

Control Flow

Statements and Blocks

Statement
Is a code followed by a semicolon ;

Block
» enclosed by { and }

» syntactically equivalent to a single statement

» no semicolons after the right brace (})

Variables and Blocks
Variable can be defined in any block and it's visibility is limited to
this block only!

Control flow statements

> if-else
* » break
» switch .
» continue
» while
> goto
» for
> labels (1abelName:)
» do-while

if—else

Usage

A basic branching instruction taking a logical expression.
Example

if (x < v[mid])
high = mid + 1;

else if (x > v[mid])
low = mid + 1;

else /x found match x/
return mid;

switch

Usage
Similar to the if-else statement but allows for multiple branches
based on the value of an expression

Example
switch (c¢) {
case '0’: case '1’: case '2’': case '3’': case '4’
case '5': case '6': case '7’': case '8': case '9’
ndigit[c—"0"]++;
break :
case '_':
case '\n':
case '\t':
nwhite++;
break :
default:
nother++;
break;

switch

All cases must be

> unique (cannot duplicate cases)

» constant, e.g. case 2*x: is invalid

Guidelines

» avoid deliberate fall-through

» put a "break” at the end of the switch statement

Loops: while and for

while

Allows you to decide if to repeat an expression based on a logical
expression

for
Allows you to decide if to repeat an expression based on a
counter/calculated expression

Loops: while and for

Example: while

while ((c = getchar())
[e = "\t")

Example: for

for (i = 0; i < n; i++)

continue

Usage

Command continue allows you to skip an execution of the loop
and go directly to the next iteration

Example
for (i = 0; i <n; i++) {
if (a[i] < 0) /x skip negative x/
continue;

ali]++; /x increment non—negative x/

break

Usage
Allows you to break loop (stop execution and continue to the next
command after the loop)

Example
for (i =0; i <n; i++)
if (a[i] < 0) /x Ist negative element x/
break;
if (i <n)

return i;

goto and Labels

Usage

Allows you to make "jumps” in your program.

Example

if (a[i] = b[j])
goto found;
/+ didn 't find any common element x/

found
/x got one: a[i] = b[j] x/

goto and Labels

Usage
Allows you to make "jumps” in your program.
Example
if (a[i] =b[j])
goto found;

/+ didn 't find any common element x/
found:
/% got one: a[i] = b[j] x/

Note
Using goto is considered bad programming style

goto and Labels

» Code that relies on goto statements is generally harder to
understand and to maintain. So goto statements should be
used rarely, if at all.

» break and continue should be used only when necessary.

Table of Contents

Functions and Program Structure

Program Structure

» C programs are comprised of variables and functions.

» We have discussed variables, expressions and control flow.

» We now want to combine these into a program

Functions

Function is a set of statements that may have

» a number of arguments, that is values that can be passed to
the function

> a return type that describes the value of this function in an
expression

Functions

Definition
Defining a function describes its return value, its arguments and
provides the code that implements the function

Returning values

If the function returns void
» finish execution (end of the block)
» return;

Else, you have to use

» return value;

Declaring Functions

Just declaration
» Sometimes we want to use a function without describing how
it works

» Declaring a function tells us its return type and arguments but
not its code.

int putchar(int c);

» Like a function definition but with ; instead of a block

No param names

» We can omit argument names int putchar(int);
» The type of arguments is what matters

» Good practice recommends putting names

void

void means nothing

Void as an argument means that there is nothing expected, as a
result that nothing is returned

Example

int getchar(void);

void exit(int status);

Returning value

int main()?

» The return value of main() is the programs exit status

» In main(), return x; is the same as exit (x);

Note
» Returning a value from a function that should return void is
an error

» Returning nothing from a function that should return a value
is valid but unpredictable

Local, global, external

Local
Variables only exist within their block

Global

Variable exist on a global level, and is visible,

External
Variable external — define in some other file in the program

Example

int x; //this is a global variable
extern int y; //declared in other file
void add_n_to_x(int n) {

X += n;
}

void set_x_to_m(int m) {
int x; //this is local variable
X = m;

Table of Contents

Compilation
Preprocessor

Compilation

Three phases of compilation

» Preprocessor - handles #define and #include

» Compiler - converts C code into binary processor instructions
(" object code™)

» Linker - puts multiple files together and creates an executable
program

Preprocessor

Handles #define and #include

Removes comments

Preprocesses C file — processes it before compiling it
Output is C code

vV v. v Y

Compilation

» When compiling multiple files, all .c files are converted to .o
files

» Then all .o files are combined (linked) to make a program.
» gcc —c compiles .c files to .o files

» gcc -o links .o files into ecexutable

Hiding symbols

» By default, all global symbols (functions and global variables)
in a source file are visible to the world.

» This is undesirable as it " pollutes” the global namespace and
may expose sensitive data.

Hiding symbols — static

Keyword static has two meanings depending on where it appears

Global symbols
It is used to hide a global variable e.g.

static int variable;

Inside function

To declare persistent variables (the value is kept between
executions of the function)

Question: How can we use such variable?

Table of Contents

Compilation
Preprocessor

The C Preprocessor

Handles #define and #include
Removes comments

Preprocesses C file before compiling it
Output is C code

vV v. v Y

#define

Usage
#define defines macros that substitute one value for another

Examples
#define IN 1

#define SQUARE(x) x*x

state = IN;
y = SQUARE(4) ;

#define

Usage
#define defines macros that substitute one value for another

Examples
#define IN 1

#define SQUARE(x) x*x
state = 1;
y = 4%4;
state = IN;
y = SQUARE(4) ;

#define

Be careful with parameters

Examples
#define SQUARE(x) x*x

y = SQUARE(5+2);

#define

Be careful with parameters

Examples
#define SQUARE(x) x*x

y = 5+2%5+2 ;//=17
// not Tx7=49

y = SQUARE(5+2);

#define

Makro has to be unique

Name of the makro has to be unique, parameters don’t count

Macros in substituted values are also evaluated
Macros in substituted values are also evaluated but not recursively!

Example
#define Y Z y

#define Z z
from Y will produce zy

#define

Makro has to be unique

Name of the makro has to be unique, parameters don’t count

Macros in substituted values are also evaluated
Macros in substituted values are also evaluated but not recursively!

Example
#define Y Z y #define Y Z y
#define Z z #define 2 Y z

from Y will produce zy Y becomes Y z y

Other operators used in makros

» # — can be used to make a string
> ## — macro concatenation operator
» # undef — undefined what has been defined before

» #if and #endif — conditional makros (e.g. #if
isdefined (DEBUG))

Putting everything together

Headers
Are usually used for header files, and header files are really just C
code

» Function declarations
» Macro definitions

» External variable declarations

Preventing multiple inclusions

A common use of #ifndef is to protect header files from being
included more than once

Compilation of multiple sources
gcc filel.c file2.c ... filen.c —-o myprog

Table of Contents

Homework

Homework

Create a simple C program that:
» Reads integers from the stdin

» Puts them into a binary tree

» if new element is smaller add it as a left leaf
> if new element is bigger add it as a right leaf

» Travers the tree in-order (left-parent-right) and prints the
values of all nodes

» All functions, structures and definitions should be
isolated in a separate files called tree.c and tree.h

	Review
	Control Flow
	Functions and Program Structure
	Compilation
	Preprocessor

	Homework

