
Arrays, Pointers
and Memory Management

EECS 2031

Summer 2014

Przemyslaw Pawluk

May 20, 2014

Answer to the question from last week

strct->field
Returns the value of field in the structure pointed to by strct .

s t ruc t p e r s o n {
i n t age , s a l a r y ;
DEPT department ;
char name [1 2] ;
char a d d r e s s [6] [2 0] ;

} ;
typedef s t ruc t p e r s o n EMPLOYEE;

EMPLOYEE ∗Emp ;
. . .
p r i n t f (”Age : %d\n” ,Emp−>age) ;

What we will discuss today

Arrays

Pointers
Pointers
Pointers and Arrays

Memory management

Homework

Table of Contents

Arrays

Pointers
Pointers
Pointers and Arrays

Memory management

Homework

Array

What is an Array?

I is grouping of data of the same type

I is continuous block of memory

I programmers set array sizes explicitly

I can be multidimensional (defined as array of arrays)

I loops are commonly used to manipulate data

Example

Syntax

t y p e name [s i z e] ;

Declaration examples

i n t b i g A r r a y [1 0] ; // a r r a y o f i n t s o f s i z e 10
double a [3] ; // a r r a y o f doub l e s o f s i z e 3
char gr ad e [1 0] , oneGrade ; // cha r s o f s i z e 10
char ∗ s t r i n g s [] ; // a r r a y o f s t r i n g s
i n t m u l t i A r r a y [] [] ; // two d imen s i o n a l

Example

Definition of the array allocates the memory

type arrName[size]

Individual elements can be extracted/called

Using and index called also a subscript you can access array
elements

Example

i n t s c o r e [5] ; /∗ A l l o c a t e s f i v e (5) ad j a c en t
b l o c k s o f memory f o r i n t ∗/

s c o r e [0] = 1 0 0 ; /∗ s e t s a v a l u e f o r f i r s t
e l ement i n the a r r a y ∗/

Array in the memory

Example

i n t a r r [3] = {1 , 2 , 3} ;

I single block is a byte

I each integer occupies 4 bytes in the memory

I first element (index 0) stretches from byte 0 to byte 3

I Note: It is an example, in the memory addresses will not start
from 0!

Initialization

Static variables

I int a[5] = {22,51} – declares array and init first two
elements, remaining elements are 0

I int b[] = {1, 3, 22, 51, 4} – b has 5 elements listed in
curly brackets

If the initialization is empty, elements are initialized with value 0
(for a specific type)

Examples

I int c[10]; – array consisting 10 values 0

I float d[10]; – array consisting 10 values 0.0f

I char *str[5]; – array of 5 NULL

Arrays and indexes

Syntax

arrayName[index]

Examples

x = ar[2];
ar[3] = 2.7;

Question
What is the difference between the following expressions?
ar[i]++ – increment value of i th element
ar[i++] – access i th value and move index
ar[++i] – move index and access i th value

Arrays and indexes

Syntax

arrayName[index]

Examples

x = ar[2];
ar[3] = 2.7;

Question
What is the difference between the following expressions?
ar[i]++ – increment value of i th element
ar[i++] – access i th value and move index
ar[++i] – move index and access i th value

Arrays and indexes

Syntax

arrayName[index]

Examples

x = ar[2];
ar[3] = 2.7;

Question
What is the difference between the following expressions?
ar[i]++ – increment value of i th element
ar[i++] – access i th value and move index
ar[++i] – move index and access i th value

Arrays and indexes

Syntax

arrayName[index]

Examples

x = ar[2];
ar[3] = 2.7;

Question
What is the difference between the following expressions?
ar[i]++ – increment value of i th element
ar[i++] – access i th value and move index
ar[++i] – move index and access i th value

Arrays and indexes

Syntax

arrayName[index]

Examples

x = ar[2];
ar[3] = 2.7;

Question
What is the difference between the following expressions?
ar[i]++ – increment value of i th element
ar[i++] – access i th value and move index
ar[++i] – move index and access i th value

Table of Contents

Arrays

Pointers
Pointers
Pointers and Arrays

Memory management

Homework

Variables, Pointer and Addresses

Variable
Variable is a named block of memory of a specific type e.g.
int x; or float y; or char* str;

Pointer
Pointer is a type of variable which value is an address of a variable
in the memory,
Syntax: type * variableName;
Example: char* str; or int* iptr; or float* fptr;

Address
Address is a number representing an index of the first memory
block of the variable (where does it start in the memory)
Use address of operator to get the address of the variable
pointer_variable = &ordinary_variable

Variables, Pointer and Addresses

Variable
Variable is a named block of memory of a specific type e.g.
int x; or float y; or char* str;

Pointer
Pointer is a type of variable which value is an address of a variable
in the memory,
Syntax: type * variableName;
Example: char* str; or int* iptr; or float* fptr;

Address
Address is a number representing an index of the first memory
block of the variable (where does it start in the memory)
Use address of operator to get the address of the variable
pointer_variable = &ordinary_variable

Variables, Pointer and Addresses

Variable
Variable is a named block of memory of a specific type e.g.
int x; or float y; or char* str;

Pointer
Pointer is a type of variable which value is an address of a variable
in the memory,
Syntax: type * variableName;
Example: char* str; or int* iptr; or float* fptr;

Address
Address is a number representing an index of the first memory
block of the variable (where does it start in the memory)
Use address of operator to get the address of the variable
pointer_variable = &ordinary_variable

Table of Contents

Arrays

Pointers
Pointers
Pointers and Arrays

Memory management

Homework

Pointers and Operators

I & operator – address of variable

I * operator – value pointed by the pointer

Example:

i n t ∗p1 , v1 ;
v1 = 0 ;
p1 = &v1 ;
∗p1 = 4 2 ;
p r i n t f (%d\ n , v1) ;
p r i n t f (%d\n ,∗ p1) ;

Result:
42
42

Note
Assigning a value for a pointer variable manually is a bad idea! e.g.
int *p1;
p1=2341

Pointers and Function Arguments

C passes arguments to functions by values
Question: What is the difference between these two functions?

Function 1

void swap (i n t x , i n t y)
{

i n t temp ;
temp = x ;
x = y ;
y = temp ;

}

Function 2

void swap (i n t ∗px , i n t ∗py)
{
i n t temp ;
temp = ∗px ;
∗px = ∗py ;
∗py = temp ;
}

Table of Contents

Arrays

Pointers
Pointers
Pointers and Arrays

Memory management

Homework

Pointers and Arrays

Identifier of an array is equivalent to the address of its first
element.

i n t numbers [2 0] ;
i n t ∗p ;

p = numbers ; // Va l i d
numbers = p ; // I n v a l i d

Arrays and Pointer Arithmetics

Array can be iterated using a pointer and * operator

Example

i n t a [] = {1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0} ;

i n t ∗pa ;
i n t x , y , z ;

pa = &a [0] ; //a=pa i s i l l e g a l ;
//a++ i s i l l e g a l
// but pa++ i s OK

x = ∗pa ; //x==1

y = ∗(pa + 1) ; //y==2
z = ∗(pa + 2) ; // z==3

Pointer Arithmetics cont.

Given pointers p and q of the same type and integer n, the
following pointer operations are legal:

I p + n, p n

I n is scaled according to the size of the objects p points to. If p
points to an integer of 4 bytes, p + n advances by 4*n bytes.

I q p, q p + 10, q p + n (assuming q > p)

I But p + q is illegal!
I q = p; p = q + 100;

I If p and q point to different types, must cast first. Otherwise,
the assignment is illegal!

I if (p == q), if (p = q + n) !

I p = NULL;

I if (p == NULL), same as if (!p)

Pointer Arithmetics – Summary

Legal:

I assignment of pointers of the same type

I adding or subtracting a pointer and an integer

I subtracting or comparing two pointers to members of the
same array

I assigning or comparing to zero (NULL)

Illegal:

I add two pointers

I multiply or divide or shift or mask pointer variables

I add float or double to pointers

I assign a pointer of one type to a pointer of another type
(except for void *) without a cast

Pointer Arithmetics – Summary

Legal:

I assignment of pointers of the same type

I adding or subtracting a pointer and an integer

I subtracting or comparing two pointers to members of the
same array

I assigning or comparing to zero (NULL)

Illegal:

I add two pointers

I multiply or divide or shift or mask pointer variables

I add float or double to pointers

I assign a pointer of one type to a pointer of another type
(except for void *) without a cast

Sub-arrays

Pointer can be used to access a sub-array and pass it to a function

Examples

my_func(int ar[]) {...} or
my_func(int *ar) {...}

my_func(&a[5]);
or
my_func(a + 5);

Character Pointers

I A string constant ("hello world") is an array of characters.

I The array is terminated with the null character ’\0’ so that
programs can find the end.

Example

char ∗pmessage ;
pmessage = ”now i s t he t ime ” ;

Assigns to pmessage a pointer to the first character in the array.
This is not a string copy; only pointers are involved.

What is the difference?

char amessage [] = ”now i s th e t ime ” ;
char ∗pmessage = ”now i s th e t ime ” ;

I amessage will always refer to the same storage.

I pmessage may later be modified to point elsewhere.

Note
C does not provide any operators for processing an entire string of
characters as a unit.

What is the difference?

char amessage [] = ”now i s th e t ime ” ;
char ∗pmessage = ”now i s th e t ime ” ;

I amessage will always refer to the same storage.

I pmessage may later be modified to point elsewhere.

Note
C does not provide any operators for processing an entire string of
characters as a unit.

What is the difference?

char amessage [] = ”now i s th e t ime ” ;
char ∗pmessage = ”now i s th e t ime ” ;

I amessage will always refer to the same storage.

I pmessage may later be modified to point elsewhere.

Note
C does not provide any operators for processing an entire string of
characters as a unit.

Table of Contents

Arrays

Pointers
Pointers
Pointers and Arrays

Memory management

Homework

Problem – following is not allowed in C

i n t x = 1 0 ;
i n t m y a r r ay [x] ;

How to allocate memory during run time?

Use functions to allocate (reserve) memory on heap,
e.g. malloc(), calloc(), realloc()

Problem – following is not allowed in C

i n t x = 1 0 ;
i n t m y a r r ay [x] ;

How to allocate memory during run time?

Use functions to allocate (reserve) memory on heap,
e.g. malloc(), calloc(), realloc()

malloc()

I Defined in stdlib.h

I Signature – void *malloc(int n);

I Allocates memory at run time.

I Returns a pointer (to a void, void*) to at least n bytes
available.

I Returns null if the memory was not allocated.

I The allocated memory is not initialized.

calloc()

I Defined in stdlib.h

I Signature – void *calloc(int n, int s);

I Allocates an array of n elements where each element has size s

I calloc() initializes the allocated memory all to 0.

realloc()

I Defined in stdlib.h

I Signature – void *realloc(void *ptr, int n);

I Resizes a previously allocated block of memory.

I ptr must have been returned from a previous calloc,
malloc, or realloc

I The new array may be moved if it cannot be extended in its
current location.

free()

I Defined in stdlib.h

I Signature – void free(void *ptr);

I Releases the memory we previously allocated.

I ptr must have been returned from a previous calloc,
malloc, or realloc.

Note:
C does not do automatic ”garbage collection”

Example

#include<s t d i o . h>
#include<s t d l i b . h>
i n t main () {
i n t ∗a , i , n , sum = 0 ;
p r i n t f (” I n p u t an a r r a y s i z e : ”) ;
s c a n f (”%d” , &n) ;
a = m a l l o c (n ∗ s i z eo f (i n t)) ;
/∗ a = c a l l o c (n , s i z e o f (i n t)) ; ∗/
f o r (i =0; i <n ; i++)

s c a n f (”%d” , &a [i]) ;
f o r (i =0; i <n ; i++)

sum += a [i] ;
f r e e (a) ;
p r i n t f (”Number o f e l e m e n t s = %d\n” , n) ;
p r i n t f (”Sum i s %d\n” , sum) ;
}

Table of Contents

Arrays

Pointers
Pointers
Pointers and Arrays

Memory management

Homework

Homework

Create a simple C program that:

I Reads a file called input.txt that contains a single integer
number. Let’s call it N

I Allocate an array of char of size N

I Reads N-1 characters from input

I Saves them at the end into the file output.txt

I Frees the memory allocated for the array

	Arrays
	Pointers
	Pointers
	Pointers and Arrays

	Memory management
	Homework

