
1	

1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

CSE1710
Week 13, Lecture 24

Fall 2013  Thursday, Dec 05, 2013

2

Big Picture
•  LAST CLASS TODAY!!!

•  Assignment is due Friday Dec 6th, 11pm (on-line submission)

•  Final Exam!!

Family Names starting with A-L
 report to LAS1002 to do LABTEST 9:00-10:25am

Family Names starting with M-Z
 report to LAS B to do WRITTEN TEST 9:00-10:25am

everyone switches at the half-way point (10:30am)

2	

3

Revisiting the String class
We discussed many important methods from the String class

length()
charAt(int)
substring(int,int) (int)
indexOf(String), indexOf(String,int)
toString(); equals()
compareTo(String)
toUpperCase(), toLowerCase()

4

Revisiting the String class
We discussed many important methods from the String class

length()
charAt(int)
substring(int,int) (int)
indexOf(String), indexOf(String,int)
toString(); equals()
compareTo(String)
toUpperCase(), toLowerCase()

There is one more we will cover:

split(String)

3	

5

Example
String str = “Here is a string!”;

String[] tokens;
// this declares a variable that has the type array
of String elements

tokens = str.split(“ ”);
// here we invoke the split method, which returns an
array of String elements, we assign the RHS to the
variable we already declared

int numTokens = tokens.length;
// here we determine the number of elements in the
array

6

Example
// here we iterate over the elements of the array
// using a for loop

for (int index = 0; index < numTokens; index++) {

 System.out.println(tokens[index]);

}

4	

7

Example
// here we iterate over the elements of the array
// using collection-based iteration

for (String s : tokens) {

 System.out.println(s);

}

8

StringBuffer, a really cool class
Examples:

StringBuffer buf1 = new StringBuffer(“Hi”);
buf1.append(“ ”);
buf1.append(“There!”);
buf1.append(“\n”);

StringBuffer buf2 = new StringBuffer("!");
buf2.insert(0, "Hi");
buf2.insert(2, "There!!");
buf2.insert(2, " ");
buf2.append("\n");
buf2.delete(8,10);

5	

9

StringBuffer, a really cool class
Examples:

StringBuffer buf3 = new StringBuffer(“Notification”);
buf3.reverse();
System.out.println(buf3.toString());

10

String StringBuffer

state?
attributes?

sequence of characters sequence of characters

object is
mutable?
(state can be
changed)

NO! YES!

has mutator
methods?

NO! YES!
append(String)
delete(int, int)
insert(int, String)
reverse()

objects can
be operands
with +
operator?

YES!
can masquerade as primitive operand
can also invoke methods on object
reference

NO!

can only invoke
methods on object
reference

instantiation? standard way
String s = new String(“Hi”);
also can use way that masquerades as
primitive
String s = “Hi”;

only the standard way
StringBuffer s;
s = new
StringBuffer(“Hi”);

6	

11

String instantiation: differences?
We have two ways to instantiate string objects…

String s1 = new String(“Hi”);
String s2 = “Hi”;

Are these two ways actually identically the same?

12

String instantiation: differences?
We have two ways to instantiate string objects…

String s1 = new String(“Hi”);
String s2 = “Hi”;

Are these two ways actually identically the same?

actually….
not exactly the same (next example will illustrate)

7	

13

String instantiation via constructor

String s1 = new String(“Hi”);
String s2 = new String(“Hi”);
String s3 = new String(“Hi”);

With the regular, old “constructor” approach,
these statements will result in the creation of 3 different
String objects at run time.

The objects do happen to have the same state, but they
are indeed different objects.

14

String instantiation via shortcut

String s4 = “Hi”;
String s5 = “Hi”;
String s6 = “Hi”;

With the “shortcut” approach,
these statements will result in the creation of only one
String object at run time.

The shortcut approach will reuse a String object if one
already exists with the required state.

There is a “pool” at run time to keep track of
String objects created via this shortcut method.

8	

15

and while we’re at it…
Let’s take another look at Strings masquerading as
primitive operands…

What is actually happening here?

String s1 = “X” + “Y”;

16

and while we’re at it…
Let’s take another look at Strings masquerading as primitive
operands…

What is actually happening here?

String s1 = “X” + “Y”;

…gets transformed to…

String s1 =
 new StringBuffer().append(“X”).append(“Y”).toString();

