CSE1710

Week 12, Lecture 23

Fall 2013 4 Thursday, Nov 28, 2013
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Big Picture

» Tuesday, Dec 03 is designated as a study day. No classes.
» Thursday, Dec 05 is last lecture.
NOTE:

« The exercises will be distributed on Friday Nov 29t (written
answers and eCheck) after the labtest.

* Due Date: Friday Dec 6" (on-line submission)
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String object vs char value

String Character
type: String char
non-primitive primitive
operators:  + + -/ *% (arithmetic operators)

cast to int
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Recap: Strings are “objects with benefits”
= Creating strings is not different from creating any other object
= A String object, like any other object, has a state

= the state of a string object: the sequence of characters that is
encapsulated

= However, string objects have some bonus features

= they can masquerade as primitive value

= they are efficient (but in exchange they are immutable)
= masquerade aspect #1

= string objects can be specified using literal-like syntax

B String s = “hello”; (** creation of new objects only conditionally)

® System.out.println(“hello world”);
= masquerade aspect #2

= string objects can participate in expressions just like primitive-value
operands

= “hello” + 89
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REMEMBER!
®  Any string is represented by an object

= Avariable of type String is used to store the address
of the object.

m  The String object has a state
®  the state of an object is defined as the value of all
its attributes
= the only attribute of a String object is the attribute
that represents the sequence of characters

= the state of a String object basically boils down to
what is its sequence of characters?

REMEMBER!

= |f the state of a String object is such that its
sequence has no characters at all, how do we
understand this?
= this is the empty string
= the string has length zero
= THIS IS NOT A NULL STRING

= What is this “null string”?

= technically speaking, “null string” is not really a correctly-formed
term, there is no such thing

= HOWEVER, it is often used to mean a string reference that is
setto null.

= This means that a String reference has been declared, but that
there is NO String object. YORKQI
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Can we modify the state of a String object?
= NO
® Once a string object is created, it cannot be changed.

® This is called immutability
® Strings are immutable

® This is an unusual property — MOST other objects are
mutable

How to get String object from anything

® any object has toString () method

= this also includes string objects, in which case toString()
is redundant

= do primitive values have a toString() method?
®NOo
® so how do we transform?
m concatenate primitive value to the empty string
® String strl = “” + 9;
B String str2 = “" + ‘x’;
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How to get primitive values from String objects
® suppose we have a sequence of characters

® suppose that sequences happens to be the same as a
literal value from a primitive type
[] e.g., 11897" 118751" ufalse" ucn

m Use any of these static methods
B Integer.parselInt(str)
® Short.parseShort(str)
B Byte.parseByte(str)
® Long.parseLong(str)
® Double.parseDouble(str)
® Float.parseFloat(str)

® Boolean.parseBoolean(str)

® ook at API, note the contract re: parameter

® java.lang.NumberFormatException: Value out of
YUKKI'
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How to get primitive values from String objects

® suppose we have a one-character String and we want the
corresponding char
=eg., “C” “d” “9”

m there is a wrapper class Character(just like the others)

m unfo, there is no Character.parseCharacter(str) or
other such static method

® instead:
char ¢ = “C”.charAt(0)

YORKJQI
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String methods, recap

strl.length() returns an int

= tells us the number of characters in the object’s character sequence
B strl.charAt(idx1) returns a char

= gives us the character at the specified index

= remember the first character of a string that is n characters long is at index 0
and the last character is at index n-1

B strl.equals(str2) returns a boolean
= tells us whether str2 has the same state as str1
= not whether str2 is the same object as str1
B substring(idx1l,idx2) returns a String
= gives a subset of the character sequence from the start index inclusive to the

end index exclusive YORK I |
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String methods, some new ones

assume strl, str2 are strings; idx1, idx2 are integers

®m strl.toUpperCase() returnsa String

®m str2.toLowerCase() returns a String
= these are NOT mutators!!!

= each returns a String obj, which is an entirely new object that is modified
version of strl

= strl is not changed at all (in fact, it cannot be changed, since it is
immutable)

®m strl.substring(idx1l) returns a String

m just like strl.substring(idxl, idx2), with the assumption that idx2 is
the length of strl

= anything you do using strl.substring(idx1), you could also do with
strl.substring(idxl, idx2)

= CONVINCE YOURSELVES OF THIS
YORKJQI
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String methods

®m strl.indexOf(str2) returns an int
= if str2 does not occur within str1, the method gives us the value -1

= if str2 does occur within strl, the method gives us a value which is the
index at which str2 occurs in strl’s character sequence

= if str2 occurs more than once within str1, the method gives us a value which is the
index at which str2 first occurs in strl’s character sequence

B strl.indexOf(str2, idxl) returns an int

= just like strl.indexOf (str2), but the methods looks at str1’s character
sequence only starting at index position idx1 onwards

YORK
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But what if we need to modify the state of a
String object?

Instead of modifying the sequence, we just create new
strings that are modified verisons of the originals.

m |t is fast and easy, thanks to the + operator

m Given this, is it correct to say that String has mutators?

= not technically; they are actually generators of new modified
objects

YORK
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char : charAt(int) method

® remember — the indexing of the character positions
starts at 0!

B strl.charAt(idx1) returns a char
= gives us the character at the specified index

= remember the first character of a string that is n characters long is at index 0 and
the last character is at index n-1

\\\\\\\\\\
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String : substring(int, int) method
String : substring(int) method

what do each of these methods do?

Esubstring(idxl,idx2) returns a String

® gives a subset of the character sequence from the start index
inclusive to the end index exclusive

Can you live w/o substring(int) given the
overloaded (int,int)?

YORKJQI
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int : indexOf(char) method
int : indexOf(char, int) method

what do each of these methods do?

B strl.indexOf(str2) returns an int
= if str2 does not occur within str1, the method gives us the value -1

= if str2 does occur within strl, the method gives us a value which is the index
at which str2 occurs in strl’s character sequence

= jf str2 occurs more than once within str1, the method gives us a value which is the
index at which str2 first occurs in strl’s character sequence

® strl.indexOf(str2, idxl) returns an int

= just like strl.indexOf (str2), but the methods looks at str1’s character
sequence only starting at index position idx1 onwards

® strl.substring(idx1l) [REVISITED]
m just like strl.substring(idxl, idx2), withthe assumptio1n7thatuY@£iK '

NIVERSITE
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int : indexOf(char) method
int : indexOf(char, int) method

How would use use indexOf to detect all occurrences of a
substring?

® strl.substring(idx1) returns a String

m just like strl.substring(idx1l, idx2), with the assumption that idx2 is
the length of strl

= anything you do using strl.substring(idx1), you could also do with
strl.substring(idxl, idx2)

= CONVINCE YOURSELVES OF THIS

YORKJQI
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String : toString() method
boolean : equals(String) method

Do not underestimate what equals does

B strl.equals(str2) returns a boolean
= tells us whether str2 has the same state as str1
= not whether str2 is the same object as str1

YORK
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String methods, recap

®m strl.compareTo(str2) returns an int
= gives us an int that is a coded message
= Qifif strl and str2 are equal

= polarity (the sign, +ve or —ve) tells us whether str2 comes before str1l in the
dictionary.

= dictionary uses lexicographic ordering
= if strl and str2 are not equal, then the value is Unicode difference of the
first differing character

= if there is no index position at which they differ, then the value is the length
difference

YORK
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String matching/comparison (basic)
Suppose c1, c2 are chars

Suppose s1, s2 are Strings

= what does the equality boolean operator == tell us?
® boolean isMatch = cl==c2;

® boolean isMatch = sl==s2;

®m what does .equals(String) tell us?

® boolean isMatch = sl.equals(s2);

® what does .compareTo(String) tell us?

m int differingIndexPos = sl.compareTo(s2);

YORKJQI
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Elaboration of “compareTo(String)”

(sort of) “tell me whether the passed string comes before
this string in the dictionary”

“aardvark”.compareTo(“anvil”)

® anvil does not come before aardvark in the dictionary,
so the result is no (negative value)

“anvil”.compareTo(“aardvark”)

® aardvark does come before anvil in the dictionary, so
the result is yes (positive value)

(better) “tell me whether the passed string comes before this sgr@q{lk I
,.the dictionary and, for the first character that is the deterpyning ==+ -: L
factor, what is the distance”

11



Estrl.compareTo(str2) returns an int
® gives us an int that is a coded message
= Oifif strl and str2 are equal

= polarity (the sign, +ve or —ve) tells us whether str2 comes before
strl in the dictionary.

= dictionary uses lexicographic ordering

® if strl and str2 are not equal, then the value is Unicode
difference of the first differing character

= if there is no index position at which they differ, then the value
is the length difference

\\\\\\\\\\
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toUpperCase() method
toLowerCase() method

String
String

Estrl.toUpperCase() returnsa String
Estr2.toLowerCase() returns a String

= these are NOT mutators!!!
® each returns a String obj, which is an entirely new object that is
modified version of str1l

® strl is not changed at all (in fact, it cannot be changed, sj
it is immutable) 24 %?Oﬁ“ffu
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Comparing strings: equals vs matches

suppose we have two strings, strl and str2
mstrl.equals(str2) returns true iff
® strl has the same state as str2
®strl.matches(str2) returns true iff
= str2 matches the pattern as stipulated by str2

= FOR NOW, WE WILL DO DEAD SIMPLE PATTERNS

YORKJQI
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“hello” .matches(“hello”)

= in the context of being a parameter to matches, str2
is interpreted as a regular expression (aka REGEX)

= the REGEX specifies 5 criteria:

“hello” .matches (“hello”)

REGEX criteria Criterion satisfied?
that the character h is in index position 0 yes
that the character e is in index position 1 yes
that the character 1 is in index position 2 yes
that the character 1 is in index position 3 yes
that the character o is in index position 4 yes

(implied) no further characters in the sequence | yes

D17 B
YOR I'
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Regular expressions: Simple classes

® g regular expression can also use special characters
and syntax to specify more patterns more generally

® [ abc ] defines a simple class of characters

“hello” .matches (“[Hh]ello”)

REGEX criteria

the character H or h is in index position 0
the character e is in index position 1

the character 1 is in index position 2

the character 1 is in index position 3

the character o is in index position 4

no further characters in the sequence

str1 satisfies?

yes
yes
yes
yes
yes
yes

L17App2

YORK

ssssssss
uuuuuu

Regular expressions: Simple classes using a

range

m [a-d] defines a simple class using a range

“hello” .matches (“[a-d]ello”)

REGEX criteria

the character a or b or ¢ or d is in index
position O

the character e is in index position 1
the character 1 is in index position 2
the character 1 is in index position 3
the character o is in index position 4
no further characters in the sequence

str1 satisfies?

yes

yes
yes
yes
yes
yes

L17App3
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Regular Expressions

® [a-d[f-h]] matches
= any of a,b,c,d,f,g,h
= the union of a-d and £-h
® [ “a-d] matches
= any character that is NOT a, b, ¢, 4,
= \d matches any digit
® same as: [0-9]
® \ s matches any whitespace character: L17App6
m same as: [ \t\n\xO0B\f\r]
m vertical tab is \x0B, aka \u000B
= \w matches any word character: L17App7
® same as: [a-zA-Z 0-9]

L17App4

L17App5

Regular Expressions

® a* matches
® 7ero or more a’s
® a+ matches
= 1 or more a’s
® 3? matches
mQoria’s
® a{n,m} matches
m at least n a’s but not more than m a’s

YORK




Regular Expressions

suppose we prompt the user for a time, with the
instructions that the time must be one of 3, 6, or 9 am
or pm
® acceptable: 9 am, 3 pm
= not acceptable: 10 am, 3 um, 9am, 9:00 am

® construct a regex to match this
m“[369] [ap]m”
suppose we want to allow the space to be optional
® acceptable: 9am, 12 am, 12pm
= not acceptable: 10am, 9:00am

® construct a regex to match this

= “[369] ?[ap]m” Or “[369][ ]2?[ap]m”
YORKJ |

String s = "1020";

int nl = Integer.parselInt(s);

long n2 = Long.parselLong(s) ;
double nZ2 = Double.parseDouble(s);

float n3 = Float.parseFloat (s);

YORKJQI
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How to get primitive values from String
objects
® suppose we have a sequence of characters

® suppose that sequences happens to be the same as
a literal value from a primitive type
m eg’ “897" “8751" ufalse" IIC"

m Use any of these static methods

B Integer.parselInt(str) L17App1b
® Short.parseShort(str)
® Byte.parseByte(str) L17Appic

B Long.parseLong(str)
® Double.parseDouble(str)
® Float.parseFloat(str)

® Boolean.parseBoolean(str)
- .
look at API, note the contract re: parameter YORKQ
33 ®m java.lang.NumberFormatException: Valu83outirefi+
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How to get primitive values from String
objects
® suppose we have a one-character String and we want
the corresponding char
=g, “C” “d” “9"
m there is a wrapper class Character(just like the
others)
= unfo, there is no

Character.parseCharacter (str) or other such
static method

® instead:
char ¢ = “C”.charAt(0)

YORKJQI

\\\\\\\\\\
34 4  NveReT

17



