CSE1710

Week 12, Lecture 23

Fall 2013 4 Thursday, Nov 28, 2013

uuuuuuuuuu
uuuuuu

Big Picture

» Tuesday, Dec 03 is designated as a study day. No classes.
» Thursday, Dec 05 is last lecture.
NOTE:

« The exercises will be distributed on Friday Nov 29t (written
answers and eCheck) after the labtest.

* Due Date: Friday Dec 6" (on-line submission)

uuuuuuuuuu
uuuuuu




String object vs char value

String Character
type: String char
non-primitive primitive
operators:  + + -/ *% (arithmetic operators)

cast to int

YORKJQI

ssssssss
uuuuuu

Recap: Strings are “objects with benefits”
= Creating strings is not different from creating any other object
= A String object, like any other object, has a state

= the state of a string object: the sequence of characters that is
encapsulated

= However, string objects have some bonus features

= they can masquerade as primitive value

= they are efficient (but in exchange they are immutable)
= masquerade aspect #1

= string objects can be specified using literal-like syntax

B String s = “hello”; (** creation of new objects only conditionally)

® System.out.println(“hello world”);
= masquerade aspect #2

= string objects can participate in expressions just like primitive-value
operands

= “hello” + 89

YORKJQI



REMEMBER!
®  Any string is represented by an object

= Avariable of type String is used to store the address
of the object.

m  The String object has a state
®  the state of an object is defined as the value of all
its attributes
= the only attribute of a String object is the attribute
that represents the sequence of characters

= the state of a String object basically boils down to
what is its sequence of characters?

REMEMBER!

= |f the state of a String object is such that its
sequence has no characters at all, how do we
understand this?
= this is the empty string
= the string has length zero
= THIS IS NOT A NULL STRING

= What is this “null string”?

= technically speaking, “null string” is not really a correctly-formed
term, there is no such thing

= HOWEVER, it is often used to mean a string reference that is
setto null.

= This means that a String reference has been declared, but that
there is NO String object. YORKQI

6

ssssss
uuuuuu




Can we modify the state of a String object?
= NO
® Once a string object is created, it cannot be changed.

® This is called immutability
® Strings are immutable

® This is an unusual property — MOST other objects are
mutable

How to get String object from anything

® any object has toString () method

= this also includes string objects, in which case toString()
is redundant

= do primitive values have a toString() method?
®NOo
® so how do we transform?
m concatenate primitive value to the empty string
® String strl = “” + 9;
B String str2 = “" + ‘x’;

YORK

ssssss
uuuuuu




How to get primitive values from String objects
® suppose we have a sequence of characters

® suppose that sequences happens to be the same as a
literal value from a primitive type
[] e.g., 11897" 118751" ufalse" ucn

m Use any of these static methods
B Integer.parselInt(str)
® Short.parseShort(str)
B Byte.parseByte(str)
® Long.parseLong(str)
® Double.parseDouble(str)
® Float.parseFloat(str)

® Boolean.parseBoolean(str)

® ook at API, note the contract re: parameter

® java.lang.NumberFormatException: Value out of
YUKKI'
range. 9 e

How to get primitive values from String objects

® suppose we have a one-character String and we want the
corresponding char
=eg., “C” “d” “9”

m there is a wrapper class Character(just like the others)

m unfo, there is no Character.parseCharacter(str) or
other such static method

® instead:
char ¢ = “C”.charAt(0)

YORKJQI
10 10 NTVERSTTY




1"

String methods, recap

strl.length() returns an int

= tells us the number of characters in the object’s character sequence
B strl.charAt(idx1) returns a char

= gives us the character at the specified index

= remember the first character of a string that is n characters long is at index 0
and the last character is at index n-1

B strl.equals(str2) returns a boolean
= tells us whether str2 has the same state as str1
= not whether str2 is the same object as str1
B substring(idx1l,idx2) returns a String
= gives a subset of the character sequence from the start index inclusive to the

end index exclusive YORK I |
11 SniveRsiTy

String methods, some new ones

assume strl, str2 are strings; idx1, idx2 are integers

®m strl.toUpperCase() returnsa String

®m str2.toLowerCase() returns a String
= these are NOT mutators!!!

= each returns a String obj, which is an entirely new object that is modified
version of strl

= strl is not changed at all (in fact, it cannot be changed, since it is
immutable)

®m strl.substring(idx1l) returns a String

m just like strl.substring(idxl, idx2), with the assumption that idx2 is
the length of strl

= anything you do using strl.substring(idx1), you could also do with
strl.substring(idxl, idx2)

= CONVINCE YOURSELVES OF THIS
YORKJQI

UNIvERSITE
12 UNTVERSITY



String methods

®m strl.indexOf(str2) returns an int
= if str2 does not occur within str1, the method gives us the value -1

= if str2 does occur within strl, the method gives us a value which is the
index at which str2 occurs in strl’s character sequence

= if str2 occurs more than once within str1, the method gives us a value which is the
index at which str2 first occurs in strl’s character sequence

B strl.indexOf(str2, idxl) returns an int

= just like strl.indexOf (str2), but the methods looks at str1’s character
sequence only starting at index position idx1 onwards

YORK
13 13 Luivinn

But what if we need to modify the state of a
String object?

Instead of modifying the sequence, we just create new
strings that are modified verisons of the originals.

m |t is fast and easy, thanks to the + operator

m Given this, is it correct to say that String has mutators?

= not technically; they are actually generators of new modified
objects

YORK
14 14 suvann



char : charAt(int) method

® remember — the indexing of the character positions
starts at 0!

B strl.charAt(idx1) returns a char
= gives us the character at the specified index

= remember the first character of a string that is n characters long is at index 0 and
the last character is at index n-1

\\\\\\\\\\
15 5 HiversiTy

String : substring(int, int) method
String : substring(int) method

what do each of these methods do?

Esubstring(idxl,idx2) returns a String

® gives a subset of the character sequence from the start index
inclusive to the end index exclusive

Can you live w/o substring(int) given the
overloaded (int,int)?

YORKJQI
16 16 NTVERSTTY




int : indexOf(char) method
int : indexOf(char, int) method

what do each of these methods do?

B strl.indexOf(str2) returns an int
= if str2 does not occur within str1, the method gives us the value -1

= if str2 does occur within strl, the method gives us a value which is the index
at which str2 occurs in strl’s character sequence

= jf str2 occurs more than once within str1, the method gives us a value which is the
index at which str2 first occurs in strl’s character sequence

® strl.indexOf(str2, idxl) returns an int

= just like strl.indexOf (str2), but the methods looks at str1’s character
sequence only starting at index position idx1 onwards

® strl.substring(idx1l) [REVISITED]
m just like strl.substring(idxl, idx2), withthe assumptio1n7thatuY@£iK '

NIVERSITE

17 thelengthofstrl UNTVERSITY

int : indexOf(char) method
int : indexOf(char, int) method

How would use use indexOf to detect all occurrences of a
substring?

® strl.substring(idx1) returns a String

m just like strl.substring(idx1l, idx2), with the assumption that idx2 is
the length of strl

= anything you do using strl.substring(idx1), you could also do with
strl.substring(idxl, idx2)

= CONVINCE YOURSELVES OF THIS

YORKJQI

UNIvERSITE
18 UNTVERSITY



String : toString() method
boolean : equals(String) method

Do not underestimate what equals does

B strl.equals(str2) returns a boolean
= tells us whether str2 has the same state as str1
= not whether str2 is the same object as str1

YORK

UNivERSITE
19 UNTVERSITY

String methods, recap

®m strl.compareTo(str2) returns an int
= gives us an int that is a coded message
= Qifif strl and str2 are equal

= polarity (the sign, +ve or —ve) tells us whether str2 comes before str1l in the
dictionary.

= dictionary uses lexicographic ordering
= if strl and str2 are not equal, then the value is Unicode difference of the
first differing character

= if there is no index position at which they differ, then the value is the length
difference

YORK

UNIvERSITE
20 2 CNTVER STy

10



String matching/comparison (basic)
Suppose c1, c2 are chars

Suppose s1, s2 are Strings

= what does the equality boolean operator == tell us?
® boolean isMatch = cl==c2;

® boolean isMatch = sl==s2;

®m what does .equals(String) tell us?

® boolean isMatch = sl.equals(s2);

® what does .compareTo(String) tell us?

m int differingIndexPos = sl.compareTo(s2);

YORKJQI
21 21 NTVERSTTY

Elaboration of “compareTo(String)”

(sort of) “tell me whether the passed string comes before
this string in the dictionary”

“aardvark”.compareTo(“anvil”)

® anvil does not come before aardvark in the dictionary,
so the result is no (negative value)

“anvil”.compareTo(“aardvark”)

® aardvark does come before anvil in the dictionary, so
the result is yes (positive value)

(better) “tell me whether the passed string comes before this sgr@q{lk I
,.the dictionary and, for the first character that is the deterpyning ==+ -: L
factor, what is the distance”

11



Estrl.compareTo(str2) returns an int
® gives us an int that is a coded message
= Oifif strl and str2 are equal

= polarity (the sign, +ve or —ve) tells us whether str2 comes before
strl in the dictionary.

= dictionary uses lexicographic ordering

® if strl and str2 are not equal, then the value is Unicode
difference of the first differing character

= if there is no index position at which they differ, then the value
is the length difference

\\\\\\\\\\
23 23 SR

toUpperCase() method
toLowerCase() method

String
String

Estrl.toUpperCase() returnsa String
Estr2.toLowerCase() returns a String

= these are NOT mutators!!!
® each returns a String obj, which is an entirely new object that is
modified version of str1l

® strl is not changed at all (in fact, it cannot be changed, sj
it is immutable) 24 %?Oﬁ“ffu

uuuuuu

12



Comparing strings: equals vs matches

suppose we have two strings, strl and str2
mstrl.equals(str2) returns true iff
® strl has the same state as str2
®strl.matches(str2) returns true iff
= str2 matches the pattern as stipulated by str2

= FOR NOW, WE WILL DO DEAD SIMPLE PATTERNS

YORKJQI
25 25 NTVERSTTY

“hello” .matches(“hello”)

= in the context of being a parameter to matches, str2
is interpreted as a regular expression (aka REGEX)

= the REGEX specifies 5 criteria:

“hello” .matches (“hello”)

REGEX criteria Criterion satisfied?
that the character h is in index position 0 yes
that the character e is in index position 1 yes
that the character 1 is in index position 2 yes
that the character 1 is in index position 3 yes
that the character o is in index position 4 yes

(implied) no further characters in the sequence | yes

D17 B
YOR I'
26 26 viversity

13



27

28

Regular expressions: Simple classes

® g regular expression can also use special characters
and syntax to specify more patterns more generally

® [ abc ] defines a simple class of characters

“hello” .matches (“[Hh]ello”)

REGEX criteria

the character H or h is in index position 0
the character e is in index position 1

the character 1 is in index position 2

the character 1 is in index position 3

the character o is in index position 4

no further characters in the sequence

str1 satisfies?

yes
yes
yes
yes
yes
yes

L17App2

YORK

ssssssss
uuuuuu

Regular expressions: Simple classes using a

range

m [a-d] defines a simple class using a range

“hello” .matches (“[a-d]ello”)

REGEX criteria

the character a or b or ¢ or d is in index
position O

the character e is in index position 1
the character 1 is in index position 2
the character 1 is in index position 3
the character o is in index position 4
no further characters in the sequence

str1 satisfies?

yes

yes
yes
yes
yes
yes

L17App3

YORK

ssssssss
uuuuuu

14



Regular Expressions

® [a-d[f-h]] matches
= any of a,b,c,d,f,g,h
= the union of a-d and £-h
® [ “a-d] matches
= any character that is NOT a, b, ¢, 4,
= \d matches any digit
® same as: [0-9]
® \ s matches any whitespace character: L17App6
m same as: [ \t\n\xO0B\f\r]
m vertical tab is \x0B, aka \u000B
= \w matches any word character: L17App7
® same as: [a-zA-Z 0-9]

L17App4

L17App5

Regular Expressions

® a* matches
® 7ero or more a’s
® a+ matches
= 1 or more a’s
® 3? matches
mQoria’s
® a{n,m} matches
m at least n a’s but not more than m a’s

YORK




Regular Expressions

suppose we prompt the user for a time, with the
instructions that the time must be one of 3, 6, or 9 am
or pm
® acceptable: 9 am, 3 pm
= not acceptable: 10 am, 3 um, 9am, 9:00 am

® construct a regex to match this
m“[369] [ap]m”
suppose we want to allow the space to be optional
® acceptable: 9am, 12 am, 12pm
= not acceptable: 10am, 9:00am

® construct a regex to match this

= “[369] ?[ap]m” Or “[369][ ]2?[ap]m”
YORKJ |

String s = "1020";

int nl = Integer.parselInt(s);

long n2 = Long.parselLong(s) ;
double nZ2 = Double.parseDouble(s);

float n3 = Float.parseFloat (s);

YORKJQI

zzzzzzzz
LLLLLLLL

Coovriaht ©

16



How to get primitive values from String
objects
® suppose we have a sequence of characters

® suppose that sequences happens to be the same as
a literal value from a primitive type
m eg’ “897" “8751" ufalse" IIC"

m Use any of these static methods

B Integer.parselInt(str) L17App1b
® Short.parseShort(str)
® Byte.parseByte(str) L17Appic

B Long.parseLong(str)
® Double.parseDouble(str)
® Float.parseFloat(str)

® Boolean.parseBoolean(str)
- .
look at API, note the contract re: parameter YORKQ
33 ®m java.lang.NumberFormatException: Valu83outirefi+

ranoa

How to get primitive values from String
objects
® suppose we have a one-character String and we want
the corresponding char
=g, “C” “d” “9"
m there is a wrapper class Character(just like the
others)
= unfo, there is no

Character.parseCharacter (str) or other such
static method

® instead:
char ¢ = “C”.charAt(0)

YORKJQI

\\\\\\\\\\
34 4  NveReT

17



