
1	

1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

CSE1710
Week 11, Lecture 21

Fall 2013 Thursday, Nov 21, 2013

2

Big Picture
This is the final class meeting in which we’ll focus on Chapter 5
concepts.

There will be a labtest on Chapter 5 concepts on Thurs Nov 28/Fri Nov
29.

Starting next week, we will spend the remainder of the class meetings
on Chapter 6 concepts. Ensure you have read the entire chapter by
Tues, Nov 26.

2	

3

5.3.1 Input Validation

Validate means to check that something meets criteria for
being acceptable

For instance:
•  an input is a positive, non-zero integer
•  an input is a string consisting of two, space-delimited tokens
•  an input is a string that conforms to a particular format, such as:

letter-number-letter-number-letter-number

•  or some other such format (foreshadowing: regular expressions
in Ch 6)

It should be possible to instantiate the CRITERIA in a
boolean expression

•  if not, this is a clue that your criteria are not
sufficiently precise

4

Motivation for Input Validation?

Because user inputs are often used subsequently as
values that are…
•  used in arithmetic calculations and other derivations
•  passed as parameters to method and/or constructor

invocations

You want to be certain that the values meet the pre-
conditions of any services that are later used

Remember: if you, the client, do not meet the pre-
condition of a service, then the provider is under no
obligation at all to follow the contract.

This all relates to establishing the correctness of
an application

3	

5

Three Methods for Input Validation
•  Make the app crash

•  use the crash service of ToolBox or the built-in functionality of
services, such as Scanner’s nextInt

•  the app terminates with an exception
•  pretty rudimentary and basic, but better than no validation at all

•  Terminate the app (nicely, not with a crash)
•  use an if-else construct. If the input fails the validation

criteria, then skip the rest of the app
•  better than crashing, but still rudimentary

•  Provide feedback and allow retries
•  use iteration. Use the validation criteria in the

for loop’s condition.
•  Best option of the three.

6

Provide feedback and allow retries
Here is one case with numerical input"
"
// assume user has been prompted

Scanner input = new Scanner(System.in);

int userInput;

for (userInput=input.nextInt(); boolean expression; userInput=input.nextInt()) {

 output.println(…feedback goes here…);
}

Examples of boolean expressions"
•  userInput > 0
•  userInput >= 0 && userInput <= 10
•  userInput % 2 == 0
•  userInput % 2 != 0
•  Math.abs(userInput – 100) <= 5

4	

7

Provide feedback and allow retries
Here is one case with numerical input"
"
// assume user has been prompted

Scanner input = new Scanner(System.in);

int userInput;

for (userInput=input.nextInt(); boolean expression; userInput=input.nextInt()) {

 output.println(…feedback goes here…);
}

This is the initial of the loop."
It will always be invoked at least
once."
This is important since we need to
ensure that the variable userInput
gets initialized."

8

Provide feedback and allow retries
Here is one case with numerical input"
"
// assume user has been prompted

Scanner input = new Scanner(System.in);

int userInput;

for (userInput=input.nextInt(); boolean expression; userInput=input.nextInt()) {

 output.println(…feedback goes here…);
}

This condition is tested once the
initial is invoked. If it evaluates to
false, then the body of the loop is
invoked. 
The user is provided with the
friendly feedback."

5	

9

Provide feedback and allow retries
Here is one case with numerical input"
"
// assume user has been prompted

Scanner input = new Scanner(System.in);

int userInput;

for (userInput=input.nextInt(); boolean expression; userInput=input.nextInt()) {

 output.println(…feedback goes here…);
}

Once the user is provided with the
friendly feedback, the bottom of the
loop is invoked."
The bottom involves the nextInt()
method. This method causes the
program thread to block until the
user types the next input and
presses ‘enter’."
"
"

10

Provide feedback and allow retries
Here is one case with numerical input"
"
// assume user has been prompted

Scanner input = new Scanner(System.in);

int userInput;

for (userInput=input.nextInt(); boolean expression; userInput=input.nextInt()) {

 output.println(…feedback goes here…);
}

Then the condition is tested once
again… "
and so on until the condition
evaluates to true

6	

11

Input Validation –  
Exception-Based Approach"

boolean cond = amount < 0;

…

String msg = “The inputted amount was negative”;

…

ToolBox.crash(cond, msg);

11"

12

Input Validation –  
Message-Based Approach"

boolean cond = amount < 0;

…

String msg = “The inputted amount was negative”;

…

if (cond) {

 output.println(msg);

 }

else {

 //rest of program

}

12"

7	

13

 Now shifting topics away from input validation to File I/O

14

Abstraction of Output
By now you’ve typed the following statement a million
times…

PrintStream output = System.out;

…and then you use the variable output like so…

output.printf(“Here are my weighty words.%n”);

output.println(“and some more words”);

8	

15

Abstraction of Output
By now you’ve typed the following statement a million
times…

PrintStream output = System.out;

…and then you use the variable output like so…

output.printf(“Here are my weighty words.%n”);

output.println(“and some more words”);

here is a
PrintStream
variable

here is the PrintStream
variable in use

16

Abstraction of Output
Even though you could just as easily do this…

System.out.printf(“Here are my weighty words.%n”);

System.out.println(“and some more words”);

9	

17

Abstraction of Output
Even though you could just as easily do this…

System.out.printf(“Here are my weighty words.%n”);

System.out.println(“and some more words”);

here is a specific
PrintStream instance
being used, namely the
one that is assigned to the
static field of the System
class.

18

Abstraction of Output

… we coached you NOT to use the specific PrintStream
instance

…and we coached you to use a PrintStream variable
instead

the rationale is for the sake of abstraction…

NOW is finally the time to demonstrate WHY

10	

19

Abstraction of Output
Suppose you want your output to go to a file instead of to
the console.

If you abstracted your output using a PrintStream variable,
then the change is SUPER EASY!

Instead of this:

PrintStream output = System.out;

Do this:

PrintStream output = new PrintStream(“file.txt”);

20

Abstraction of Output
Suppose you want your output to go to a file instead of to
the console.

If you didn’t abstract your output using a PrintStream
variable and instead used System.out.println(…)
everywhere, then you need to go and change each and
every single statement.

11	

21

About the PrintStream constructor
But wait! Is it really so easy?

PrintStream output = new PrintStream(“file.txt”);

This statement is causing a compiler error. What gives?

22

About the PrintStream constructor
But wait! Is it really so easy?

PrintStream output = new PrintStream(“file.txt”);

This statement is causing a compiler error. What gives?
here is an issue that we
must deal with
If we don’t do so, the
compiler issues an error.

12	

23

Services that (potentially) throw exceptions

So the constructor of PrintStream can potentially throw an
exception. We’ve dealt with this sort of thing before, for
instance when we use Scanner

The nextInt() method may potentially
throw an exception.
We didn’t do anything extra or special.
And the compiler did not issue an error!?!

24

About the PrintStream constructor

This type of exception is different from the
InputMismatchException and others.
It is checked by the compiler, whereas
the others are unchecked.

13	

25

Adding a throws declaration
•  If you are using a service that potentially throws a

FileNotFoundException or other checked exception, and if you do
not add code that will anticipate the exception, the compiler will
issue an error.

•  If you are using a service that potentially throws an unchecked
exception, then you don’t need to add anything special.

Code to anticipate the exception is very simple.

Instead of this:
public static void main(String[] args) {

Do this:
public static void main(String[] args) throws FileNotFoundException {

