
1	

1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

CSE1710
Week 11, Lecture 20

Fall 2013  Tuesday, Nov 19, 2013

2

Big Picture
This class meeting (L20) and the next one (L21) will be spent on
Chapter 5 conceptsof the textbook.

There will be a labtest on Chapter 5 concepts on Thurs Nov 28/Fri Nov
29.

For the final three class meetings, and the final lab session we will be
covering Chapter 6 concepts.

3

Image Recipes
“How to” guides: you want to iterate over…? !
•  …all of the pixels and mutate each one unconditionally!

•  …all of the pixels and mutate some of them conditionally!

•  …some of the pixels and mutate some of them conditionally  
!

•  There are a few skills here… !
•  how to construct the loop you need !
•  how to construct the boolean condition you need!

•  We will start with the basic case… but first a review of
Pixel services!

4

Pixels: How to mutate
We learned that a Pixel object encapsulates a few
attributes:!

•  its parent picture

•  its x and y location within its parent picture

•  its colour

Of these three attributes…!
•  only one attribute is mutable*: the pixel’s colour. !
•  the pixel’s (x,y) coordinate within its parent image cannot

be changed; they are immutable!
  
 
!

*mutable means able to be changed !

2	

5

Pixels: How to mutate
Suppose the variable p is an object reference, and refers to
a Pixel object.!

So the only attribute I can change in a Pixel object is its
colour…. here are some examples:!

!

p.setColor(…);

!

this must be a reference
to a Color object!

construct one from
scratch!

use a predefined
color!

use a reference
from somewhere
else (e.g., another
pixel)!

6

Pixels: How to mutate
p.setColor(…);

!

this must be a reference
to a Color object!

construct one from
scratch!

use a predefined
color!

use a reference
from somewhere
else (e.g., another
pixel)!

new Color(255, 0, 0)

7

Pixels: How to mutate
p.setColor(…);

!

this must be a reference
to a Color object!

construct one from
scratch!

use a predefined
color!

use a reference
from somewhere
else (e.g., another
pixel)!

Color.RED

look at the API for
the Color class…!

8

Pixels: How to mutate
p.setColor(…);

!

this must be a reference
to a Color object!

construct one from
scratch!

use a predefined
color!

use a reference
from somewhere
else (e.g., another
pixel)!

r.getColor() look at the API for
the Pixel class to
see the accessor
method for an
object’s color
attribute…!

3	

9

Iterating over all of the pixels (v.1)
The first version of this involves treating the pixels as a
collection and using the collection-based version of
iteration!

Pixel[] thePixels = myPict.getPixels();
for (Pixel p : thePixels) {

 p.setColor(Color.RED);
}

	

*not covered in Ch 5; if
you like, read 8.2.4 for
more background

10

Iterating over all of the pixels (v.2)

The second version of this involves iterating over a set of
indices and using an index-based accessor method to
obtain a reference to each and every pixel!

There are two ways to do this: by index in the array of
pixels and by row and column index.!

First by index in the array of pixels	

11

A Crash Course in Arrays

	
Pixel[] thePixels = myPict.getPixels();
int firstPixelIndex = 0;
int lastPixelIndex = thePixels.length-1;

thePixels[60].getColor();

thePixels[lastPixelIndex+1].getColor();

thePixels[-1].getColor();

length is a special
final attribute of
arrays in Java!this retrieves the

60th element in
the array!

WHY minus 1?!

What
happens
here?!

12

Iterating over all of the pixels (v.2)

the array of pixels… 
	
Pixel[] thePixels = myPict.getPixels();
// this sets the color of the first pixel

thePixels[firstPixelIndex].setColor(Color.RED);
// this sets the color of the second pixel

thePixels[firstPixelIndex+1].setColor(Color.RED);
//…

// this sets the color of the second-last pixel

thePixels[lastPixelIndex-1].setColor(Color.RED);
// this sets the color of the last pixel

thePixels[lastPixelIndex].setColor(Color.RED);

so how could
we automate
this?

4	

13

Iterating over all of the pixels (v.2)

Pixel[] thePixels = myPict.getPixels();
int firstPixelIndex = 0;
int lastPixelIndex = thePixels.length-1;

int currentIndex = firstPixelIndex;

for(; currentIndex <= lastPixelIndex; currentIndex++) {

 Pixel currentPixel = thePixels[currentIndex];
 currentPixel.setColor(Color.RED);
 myPict.repaint();

}

14

Comprehension Questions (1 of 6)

What happens in the code below:!

Pixel[] thePixels = myPict.getPixels();
int firstPixelIndex = 0;
int lastPixelIndex = thePixels.length-1;

int currentIndex = firstPixelIndex;

for(; currentIndex <= lastPixelIndex;) {

 Pixel currentPixel = thePixels[currentIndex];
 currentPixel.setColor(Color.RED);
 myPict.repaint();
 currentIndex++;

}

this is
empty!

15

Comprehension Questions (2 of 6)

What happens in the code below:!

Pixel[] thePixels = myPict.getPixels();
int firstPixelIndex = 0;
int lastPixelIndex = thePixels.length-1;

int currentIndex = firstPixelIndex;

for(; currentIndex <= lastPixelIndex;) {

 Pixel currentPixel = thePixels[currentIndex];
 currentPixel.setColor(Color.RED);
 myPict.repaint();

}

this is
empty!

16

Comprehension Questions (3 of 6)

What happens in the code below:!

Pixel[] thePixels = myPict.getPixels();
int firstPixelIndex = 0;
int lastPixelIndex = thePixels.length-1;

int currentIndex = firstPixelIndex;

for(; true ; currentIndex++) {

 Pixel currentPixel = thePixels[currentIndex];
 currentPixel.setColor(Color.RED);
 myPict.repaint();

}

5	

17

Comprehension Questions (4 of 6)

What happens in the code below:!

Pixel[] thePixels = myPict.getPixels();
int firstPixelIndex = 0;
int lastPixelIndex = thePixels.length-1;

int currentIndex = firstPixelIndex;

for(; ; currentIndex++) {

 Pixel currentPixel = thePixels[currentIndex];
 currentPixel.setColor(Color.RED);
 myPict.repaint();

}

this is
empty!

18

Comprehension Questions (5 of 6)

What happens in the code below:!

Pixel[] thePixels = myPict.getPixels();
int firstPixelIndex = 0;
int lastPixelIndex = thePixels.length-1;

int currentIndex = firstPixelIndex;

for(; currentIndex <= lastPixelIndex ;) {

 int x = currentIndex;
 currentIndex = -98923; //or any other crazy number
 Pixel currentPixel = thePixels[x];
 currentPixel.setColor(Color.RED);
 myPict.repaint();
 currentIndex = x+1;

}

this
condition
becomes
false in
the
middle of
the body!

19

Comprehension Questions (6 of 6)

What happens in the code below:!

Pixel[] thePixels = myPict.getPixels();
int firstPixelIndex = 0;
int lastPixelIndex = thePixels.length-1;

int currentIndex = lastPixelIndex+1;

for(; currentIndex <= lastPixelIndex ;) {

 Pixel currentPixel = thePixels[currentIndex];
 currentPixel.setColor(Color.RED);
 myPict.repaint();

}

20

The DigitalPicture class

We have been using the service getPixels()

Pixel[] thePixels = myPict.getPixels();

!
There is also getPixel(int, int)

Pixel aPixel = myPict.getPixel(6,7);

 
This will get the pixel located in column 6, row 7!

suppose we iterate over the columns, and then for
each column, we iterate over each row in that
column…	

6	

21

Iterating over the columns

int firstColumn = 0;
int lastColumn = myPict.getWidth() - 1;

int currentIndex = firstColumn;

for (; currentIndex <= lastColumn; currentIndex++) {

int numRows = myPict.getHeight();
stdOut.printf("column #: %s has %s rows. %n", currentIndex, numRows);
// the 1st pixel is myPict.getPixel(currentIndex, 0);
// the 2nd pixel is myPict.getPixel(currentIndex, 1);
// the 3rd pixel is myPict.getPixel(currentIndex, 2);
// ...
// the 2nd-last pixel is myPict.getPixel(currentIndex, numRows-2);
// the last pixel is myPict.getPixel(currentIndex, numRows-1);
// more generally…
// Pixel thePixel = myPict.getPixel(currentIndex, i);

}

22

…and the rows

int firstColumn = 0;
int lastColumn = myPict.getWidth() - 1;

int currentIndex = firstColumn;

for (; currentIndex <= lastColumn; currentIndex++) {

int numRows = myPict.getHeight();
stdOut.printf("column #: %s has %s rows. %n", currentIndex, numRows);

for (int i = 0; i < numRows; i++) {

 Pixel thePixel = myPict.getPixel(currentIndex, i);
}

}

23

…and now do something…

int firstColumn = 0;
int lastColumn = myPict.getWidth() - 1;

int currentIndex = firstColumn;

for (; currentIndex <= lastColumn; currentIndex++) {

int numRows = myPict.getHeight();
stdOut.printf("column #: %s has %s rows. %n", currentIndex,
numRows);

for (int i = 0; i < numRows; i++) {

 Pixel thePixel = myPict.getPixel(currentIndex, i);
 Color col = thePixel.getColor();
 stdOut.printf("colour of pixel (%s,%s) is %s. %n",
 currentIndex, i, col);

}
}

24

mutate every pixel, column-by-column…

int firstColumn = 0;
int lastColumn = myPict.getWidth() - 1;

int currentIndex = firstColumn;

for (; currentIndex <= lastColumn; currentIndex++) {

int numRows = myPict.getHeight();
stdOut.printf("column #: %s has %s rows. %n", currentIndex,
numRows);

for (int i = 0; i < numRows; i=+1) {

 Pixel thePixel = myPict.getPixel(currentIndex, i);
 thePixel.setColor(Color.RED);

}
}

this is
equivalent
to i++

7	

25

change every other
column…

int firstColumn = 0;
int lastColumn = myPict.getWidth() - 1;

int currentIndex = firstColumn;

for (; currentIndex <= lastColumn; currentIndex+=2) {

int numRows = myPict.getHeight();
stdOut.printf("column #: %s has %s rows. %n", currentIndex,
numRows);

for (int i = 0; i < numRows; i=+1) {

 Pixel thePixel = myPict.getPixel(currentIndex, i);
 thePixel.setColor(Color.RED);

}
}
 26

change every other
row…

int firstColumn = 0;
int lastColumn = myPict.getWidth() - 1;

int currentIndex = firstColumn;

for (; currentIndex <= lastColumn; currentIndex+=1) {

int numRows = myPict.getHeight();
stdOut.printf("column #: %s has %s rows. %n", currentIndex,
numRows);

for (int i = 0; i < numRows; i=+2) {

 Pixel thePixel = myPict.getPixel(currentIndex, i);
 thePixel.setColor(Color.RED);

}
}

27

Test : is this pixel a shade of grey?

Pixel thePixel = myPict.getPixel(currentIndex, i);

boolean cond = thePixel.getRed() == thePixel.getGreen()

 && thePixel.getRed() == thePixel.getBlue();

28

Test : is this pixel close to a shade
of grey?

int THRES = 5;
Pixel thePixel = myPict.getPixel(currentIndex, i);
boolean cond = Math.abs(thePixel.getRed()-thePixel.getGreen()) < THRES

 && Math.abs(thePixel.getRed()-thePixel.getGreen()) < THRES;

8	

29

…make a copy, pixel by pixel
DigitalPicture myPict = new DigitalPicture(thePath);
DigitalPicture myPict2 = new DigitalPicture(myPict.getWidth(), myPict.getHeight());
myPict2.show();

int firstColumn = 0;
int lastColumn = myPict.getWidth() - 1;

int currentIndex = firstColumn;
int THRES = 5;

for (; currentIndex <= lastColumn; currentIndex += 1) {

 int numRows = myPict.getHeight();
 for (int i = 0; i < numRows; i += 1) {
 Pixel thePixel = myPict2.getPixel(currentIndex, i);
 Pixel theOrigPixel = myPict.getPixel(currentIndex, i);
 thePixel.setColor(theOrigPixel.getColor());
 myPict2.repaint();
 }

}

stdOut.println("Done.");

30

…make a flipped copy

DigitalPicture myPict = new DigitalPicture(thePath);
DigitalPicture myPict2 = new DigitalPicture(myPict.getWidth(),myPict.getHeight());
myPict2.show();

int firstColumn = 0;
int lastColumn = myPict.getWidth() - 1;

int currentIndex = firstColumn;
int THRES = 5;

for (; currentIndex <= lastColumn; currentIndex += 1) {

 int numRows = myPict.getHeight();
 for (int i = 0; i < numRows; i += 1) {
 Pixel thePixel = myPict2.getPixel(currentIndex, i);
 Pixel theOrigPixel = myPict.getPixel(currentIndex, numRows-1-i);
 thePixel.setColor(theOrigPixel.getColor());
 myPict2.repaint();
 }

}

stdOut.println("Done.");

31

…let’s flip K'Ehleyr only
DigitalPicture myPict = new DigitalPicture(thePath);
DigitalPicture myPict2 = new DigitalPicture(myPict.getWidth(), myPict.getHeight());
myPict2.show();

int firstColumn = 0;
int lastColumn = myPict.getWidth() - 1;

int currentIndex = firstColumn;
int THRES = 5;

for (; currentIndex <= lastColumn; currentIndex += 1) {

 int numRows = myPict.getHeight();
 for (int i = 0; i < numRows; i += 1) {
 Pixel thePixel = myPict2.getPixel(currentIndex, i);
 int rowPos = i;
 if (currentIndex < lastColumn / 2) {
 rowPos = numRows - 1 - i;
 }
 Pixel theOrigPixel = myPict.getPixel(currentIndex, rowPos);
 thePixel.setColor(theOrigPixel.getColor());
 myPict2.repaint();
 }

}
stdOut.println("Done.");

