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CSE1710  
Week 11, Lecture 20 

Fall 2013    Tuesday, Nov 19, 2013 
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Big Picture 
This class meeting (L20) and the next one (L21) will be spent on 
Chapter 5 conceptsof the textbook.   

There will be a labtest on Chapter 5 concepts on Thurs Nov 28/Fri Nov 
29. 

For the final three class meetings, and the final lab session we will be 
covering Chapter 6 concepts. 
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Image Recipes 
“How to” guides:  you want to iterate over…? !
•  …all of the pixels and mutate each one unconditionally!

•  …all of the pixels and mutate some of them conditionally!

•  …some of the pixels and mutate some of them conditionally  
!

•  There are a few skills here… !
•  how to construct the loop you need !
•  how to construct the boolean condition you need!

•  We will start with the basic case… but first a review of 
Pixel services!
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Pixels: How to mutate 
We learned that a Pixel object encapsulates a few 
attributes:!

•  its parent picture 

•  its x and y location within its parent picture 

•  its colour 

Of these three attributes…!
•  only one attribute is mutable*:  the pixel’s colour.  !
•  the pixel’s (x,y) coordinate within its parent image cannot 

be changed; they are immutable!
  
 
!

*mutable means able to be changed !
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Pixels: How to mutate 
Suppose the variable p is an object reference, and refers to 
a Pixel object.!

So the only attribute I can change in a Pixel object is its 
colour…. here are some examples:!

!

p.setColor( … ); 

!

this must be a reference 
to a Color object!

construct one from 
scratch!

use a predefined 
color!

use a reference 
from somewhere 
else (e.g., another 
pixel)!
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Pixels: How to mutate 
p.setColor( … ); 

!

this must be a reference 
to a Color object!

construct one from 
scratch!

use a predefined 
color!

use a reference 
from somewhere 
else (e.g., another 
pixel)!

new Color(255, 0, 0) 
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Pixels: How to mutate 
p.setColor( … ); 

!

this must be a reference 
to a Color object!

construct one from 
scratch!

use a predefined 
color!

use a reference 
from somewhere 
else (e.g., another 
pixel)!

Color.RED 

look at the API for 
the Color class…!
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Pixels: How to mutate 
p.setColor( … ); 

!

this must be a reference 
to a Color object!

construct one from 
scratch!

use a predefined 
color!

use a reference 
from somewhere 
else (e.g., another 
pixel)!

r.getColor() look at the API for 
the Pixel class to 
see the accessor 
method for an 
object’s color 
attribute…!
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Iterating over all of the pixels (v.1) 
The first version of this involves treating the pixels as a 
collection and using the collection-based version of 
iteration!

 

 
Pixel[] thePixels = myPict.getPixels(); 
for (Pixel p : thePixels) { 

 p.setColor(Color.RED); 
} 

	

*not covered in Ch 5; if 
you like, read 8.2.4 for 
more background 
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Iterating over all of the pixels (v.2) 

The second version of this involves iterating over a set of 
indices and using an index-based accessor method to 
obtain a reference to each and every pixel!

There are two ways to do this: by index in the array of 
pixels and by row and column index.!

First by index in the array of pixels	
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A Crash Course in Arrays 

	
Pixel[] thePixels = myPict.getPixels(); 
int firstPixelIndex = 0; 
int lastPixelIndex = thePixels.length-1; 
 
thePixels[60].getColor(); 
 
 
 
thePixels[lastPixelIndex+1].getColor(); 
 
thePixels[-1].getColor(); 
 

length is a special 
final attribute of 
arrays in Java!this retrieves the 

60th element in 
the array!

WHY minus 1?!

What 
happens 
here?!
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Iterating over all of the pixels (v.2) 

the array of pixels… 
	
Pixel[] thePixels = myPict.getPixels(); 
// this sets the color of the first pixel 

thePixels[firstPixelIndex].setColor(Color.RED); 
// this sets the color of the second pixel 

thePixels[firstPixelIndex+1].setColor(Color.RED); 
//… 

// this sets the color of the second-last pixel 

thePixels[lastPixelIndex-1].setColor(Color.RED); 
// this sets the color of the last pixel 

thePixels[lastPixelIndex].setColor(Color.RED); 

so how could 
we automate 
this? 
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Iterating over all of the pixels (v.2) 

Pixel[] thePixels = myPict.getPixels(); 
int firstPixelIndex = 0; 
int lastPixelIndex = thePixels.length-1; 
 
int currentIndex = firstPixelIndex; 
 
for(; currentIndex <= lastPixelIndex; currentIndex++) { 

 Pixel currentPixel = thePixels[currentIndex]; 
 currentPixel.setColor(Color.RED); 
 myPict.repaint(); 

} 
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Comprehension Questions (1 of 6) 

What happens in the code below:!
 
Pixel[] thePixels = myPict.getPixels(); 
int firstPixelIndex = 0; 
int lastPixelIndex = thePixels.length-1; 
 
int currentIndex = firstPixelIndex; 
 
for(; currentIndex <= lastPixelIndex; ) { 

 Pixel currentPixel = thePixels[currentIndex]; 
 currentPixel.setColor(Color.RED); 
 myPict.repaint(); 
 currentIndex++; 

} 
 

this is 
empty!
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Comprehension Questions (2 of 6) 

What happens in the code below:!
 
Pixel[] thePixels = myPict.getPixels(); 
int firstPixelIndex = 0; 
int lastPixelIndex = thePixels.length-1; 
 
int currentIndex = firstPixelIndex; 
 
for(; currentIndex <= lastPixelIndex; ) { 

 Pixel currentPixel = thePixels[currentIndex]; 
 currentPixel.setColor(Color.RED); 
 myPict.repaint(); 

} 
 

this is 
empty!
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Comprehension Questions (3 of 6) 

What happens in the code below:!
 
Pixel[] thePixels = myPict.getPixels(); 
int firstPixelIndex = 0; 
int lastPixelIndex = thePixels.length-1; 
 
int currentIndex = firstPixelIndex; 
 
for(; true ; currentIndex++) { 

 Pixel currentPixel = thePixels[currentIndex]; 
 currentPixel.setColor(Color.RED); 
 myPict.repaint(); 

} 
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Comprehension Questions (4 of 6) 

What happens in the code below:!
 
Pixel[] thePixels = myPict.getPixels(); 
int firstPixelIndex = 0; 
int lastPixelIndex = thePixels.length-1; 
 
int currentIndex = firstPixelIndex; 
 
for(; ; currentIndex++) { 

 Pixel currentPixel = thePixels[currentIndex]; 
 currentPixel.setColor(Color.RED); 
 myPict.repaint(); 

} 
 

this is 
empty!
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Comprehension Questions (5 of 6) 

What happens in the code below:!
 
Pixel[] thePixels = myPict.getPixels(); 
int firstPixelIndex = 0; 
int lastPixelIndex = thePixels.length-1; 
 
int currentIndex = firstPixelIndex; 
 
for(; currentIndex <= lastPixelIndex ;) { 

 int x = currentIndex; 
 currentIndex = -98923; //or any other crazy number 
 Pixel currentPixel = thePixels[x]; 
 currentPixel.setColor(Color.RED); 
 myPict.repaint(); 
 currentIndex = x+1; 

} 
 

this 
condition 
becomes 
false in 
the 
middle of 
the body!
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Comprehension Questions (6 of 6) 

What happens in the code below:!
 
Pixel[] thePixels = myPict.getPixels(); 
int firstPixelIndex = 0; 
int lastPixelIndex = thePixels.length-1; 
 
int currentIndex = lastPixelIndex+1; 
 
for(; currentIndex <= lastPixelIndex ;) { 

 Pixel currentPixel = thePixels[currentIndex]; 
 currentPixel.setColor(Color.RED); 
 myPict.repaint(); 

} 
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The DigitalPicture class 

We have been using the service getPixels() 
 
Pixel[] thePixels = myPict.getPixels(); 

!
There is also getPixel(int, int) 
 
Pixel aPixel = myPict.getPixel(6,7); 

 
This will get the pixel located in column 6, row 7!

suppose we iterate over the columns, and then for 
each column, we iterate over each row in that 
column…	
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Iterating over the columns 

int firstColumn = 0; 
int lastColumn = myPict.getWidth() - 1; 
 
int currentIndex = firstColumn; 
 
for (; currentIndex <= lastColumn; currentIndex++) { 

int numRows = myPict.getHeight(); 
stdOut.printf("column #: %s has %s rows. %n", currentIndex, numRows); 
// the 1st pixel is myPict.getPixel(currentIndex, 0); 
// the 2nd pixel is myPict.getPixel(currentIndex, 1); 
// the 3rd pixel is myPict.getPixel(currentIndex, 2); 
// ... 
// the 2nd-last pixel is myPict.getPixel(currentIndex, numRows-2); 
// the last pixel is myPict.getPixel(currentIndex, numRows-1); 
// more generally… 
// Pixel thePixel = myPict.getPixel(currentIndex, i); 

} 
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…and the rows 

int firstColumn = 0; 
int lastColumn = myPict.getWidth() - 1; 
 
int currentIndex = firstColumn; 
 
for (; currentIndex <= lastColumn; currentIndex++) { 

int numRows = myPict.getHeight(); 
stdOut.printf("column #: %s has %s rows. %n", currentIndex, numRows); 
 
for (int i = 0; i < numRows; i++) { 

 Pixel thePixel = myPict.getPixel(currentIndex, i); 
} 

} 
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…and now do something… 

int firstColumn = 0; 
int lastColumn = myPict.getWidth() - 1; 
 
int currentIndex = firstColumn; 
 
for (; currentIndex <= lastColumn; currentIndex++) { 

int numRows = myPict.getHeight(); 
stdOut.printf("column #: %s has %s rows. %n", currentIndex, 
numRows); 
 
for (int i = 0; i < numRows; i++) { 

 Pixel thePixel = myPict.getPixel(currentIndex, i); 
 Color col = thePixel.getColor(); 
 stdOut.printf("colour of pixel (%s,%s) is %s. %n", 
      currentIndex, i, col); 

} 
} 
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mutate every pixel, column-by-column… 

int firstColumn = 0; 
int lastColumn = myPict.getWidth() - 1; 
 
int currentIndex = firstColumn; 
 
for (; currentIndex <= lastColumn; currentIndex++) { 

int numRows = myPict.getHeight(); 
stdOut.printf("column #: %s has %s rows. %n", currentIndex, 
numRows); 
 
for (int i = 0; i < numRows; i=+1) { 

 Pixel thePixel = myPict.getPixel(currentIndex, i); 
 thePixel.setColor(Color.RED); 

} 
} 
 

this is 
equivalent 
to i++ 
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change every other  
column… 

int firstColumn = 0; 
int lastColumn = myPict.getWidth() - 1; 
 
int currentIndex = firstColumn; 
 
for (; currentIndex <= lastColumn; currentIndex+=2) { 

int numRows = myPict.getHeight(); 
stdOut.printf("column #: %s has %s rows. %n", currentIndex, 
numRows); 
 
for (int i = 0; i < numRows; i=+1) { 

 Pixel thePixel = myPict.getPixel(currentIndex, i); 
 thePixel.setColor(Color.RED); 

} 
} 
 26 

change every other  
row… 

int firstColumn = 0; 
int lastColumn = myPict.getWidth() - 1; 
 
int currentIndex = firstColumn; 
 
for (; currentIndex <= lastColumn; currentIndex+=1) { 

int numRows = myPict.getHeight(); 
stdOut.printf("column #: %s has %s rows. %n", currentIndex, 
numRows); 
 
for (int i = 0; i < numRows; i=+2) { 

 Pixel thePixel = myPict.getPixel(currentIndex, i); 
 thePixel.setColor(Color.RED); 

} 
} 
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Test : is this pixel a shade of grey? 

 
 
 
 
Pixel thePixel = myPict.getPixel(currentIndex, i); 
 
boolean cond = thePixel.getRed() == thePixel.getGreen() 

   && thePixel.getRed() == thePixel.getBlue(); 
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Test : is this pixel close to a shade 
of grey? 

 
 
 
int THRES = 5; 
Pixel thePixel = myPict.getPixel(currentIndex, i); 
boolean cond = Math.abs(thePixel.getRed()-thePixel.getGreen()) < THRES 

 && Math.abs(thePixel.getRed()-thePixel.getGreen()) < THRES; 
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…make a copy, pixel by pixel 
DigitalPicture myPict = new DigitalPicture(thePath); 
DigitalPicture myPict2 = new DigitalPicture(myPict.getWidth(), myPict.getHeight()); 
myPict2.show(); 
 
int firstColumn = 0; 
int lastColumn = myPict.getWidth() - 1; 
 
int currentIndex = firstColumn; 
int THRES = 5; 
 
for (; currentIndex <= lastColumn; currentIndex += 1) { 

 int numRows = myPict.getHeight(); 
 for (int i = 0; i < numRows; i += 1) { 
  Pixel thePixel = myPict2.getPixel(currentIndex, i); 
  Pixel theOrigPixel = myPict.getPixel(currentIndex, i); 
  thePixel.setColor(theOrigPixel.getColor()); 
  myPict2.repaint(); 
 } 

} 
 
stdOut.println("Done."); 
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…make a flipped copy 

DigitalPicture myPict = new DigitalPicture(thePath); 
DigitalPicture myPict2 = new DigitalPicture(myPict.getWidth(),myPict.getHeight()); 
myPict2.show(); 
 
int firstColumn = 0; 
int lastColumn = myPict.getWidth() - 1; 
 
int currentIndex = firstColumn; 
int THRES = 5; 
 
for (; currentIndex <= lastColumn; currentIndex += 1) { 

 int numRows = myPict.getHeight(); 
 for (int i = 0; i < numRows; i += 1) { 
  Pixel thePixel = myPict2.getPixel(currentIndex, i); 
  Pixel theOrigPixel = myPict.getPixel(currentIndex, numRows-1-i); 
  thePixel.setColor(theOrigPixel.getColor()); 
  myPict2.repaint(); 
 } 

} 
 
stdOut.println("Done."); 

31 

…let’s flip K'Ehleyr only 
DigitalPicture myPict = new DigitalPicture(thePath); 
DigitalPicture myPict2 = new DigitalPicture(myPict.getWidth(), myPict.getHeight()); 
myPict2.show(); 
 
int firstColumn = 0; 
int lastColumn = myPict.getWidth() - 1; 
 
int currentIndex = firstColumn; 
int THRES = 5; 
 
for (; currentIndex <= lastColumn; currentIndex += 1) { 

 int numRows = myPict.getHeight(); 
 for (int i = 0; i < numRows; i += 1) { 
  Pixel thePixel = myPict2.getPixel(currentIndex, i); 
  int rowPos = i; 
  if (currentIndex < lastColumn / 2) { 
   rowPos = numRows - 1 - i; 
  } 
  Pixel theOrigPixel = myPict.getPixel(currentIndex, rowPos); 
  thePixel.setColor(theOrigPixel.getColor()); 
  myPict2.repaint(); 
 } 

} 
stdOut.println("Done."); 


