CSE1710

Week 09, Lecture 16

Fall 2013 4 Tuesday, Nov 05, 2013
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Big Picture

We are in week09. The remaining weeks are week10 - week13.
We will finish covering Chapter 4 this week.
On Tuesday, Nov 12, we will have a term test that focuses on Ch 4.

After this we move on to Ch 5 & 6, with a focus on images and strings.
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Big Picture

Reading that was assigned...

d re-read section 4.2 “The Life of an Object” pp. 136-148, with a focus
on4.24,425,426

U read section 4.3 “The Object’s State” pp. 149-157
U review Ch 4 KC'’s 11-16

U do Ch 4 RQ’s 23-34

O do Ch 4 Ex’'s 4.12-4.22
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Skills you should have...

® at runtime, be able to state how many unique objects
exist in memory; be able to describe what is happening
to these objects as a function of method invocations and/
or field modification.

m describe the function of assigning an object reference to
null

m be able to describe the difference between == and the
equals method

m explain the idea of obligatory methods and be able to
identify them (from memory and/or an API)
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Skills you should have...

® understand the process of garbage collection and be
able predict the results of garbage collection on the
contents of memory

m understand what accessor and mutator methods are; be
able to distinguish their function from the alternative
method of direct access of fields

= understand the notion of legal state for objects, describe
the importance of maintaining legal state;

= describe how mutators enforce legality, whereas public
visibility of attributes cannot.

= understand how this implements the core principle of
encapsulation.
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Skills you should have...

® understand the difference between static methods and
static attributes; understand how static attributes operate

® understand the characteristics of object and/or class
attributes that are final

m understand how final and static can be combined for
class attributes
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ssssssss
uuuuuu




Textbook Exercise (riff on pp.145-146)

= At runtime,

= how many references will be created?
= how many objects will be created?

= do any objects have the same state?
= predict the output

Fraction
Fraction
Fraction
Fraction
Fraction

f1
f1
£3
f4
£5

new

= f2;

new
new
f4,

Fraction(3, 5);

Fraction(2, 7);
Fraction(6, 10);

output.printf(“f1==f2, result: %s%n”,
output.printf(“f4==f5, result: %s%n”,
output.printf("f1==f4, result: %s%n",
output.printf(”"f1.equals(f4), result:

Exercises 4.1-4.10

m consult the API for class type.lib.Item
= we will revisit this class in this week’s lab exercises

f1==f2);

f4==f5);

f1 == f4);

%s%n", f1.equals(f4));
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The class Stock

® We will use the Stock class from type.jar for this
example

m A public company is a company that offers its stock/
shares for sale to the general public, typically through a
stock exchange

® A public company has a full name and is represented by a
two-character symbol

= ¢.g., name: “Alpha Bravo Co.”, symbol: “.AB”

® At any given point in time, the company’s shares have a
selling price.

, YORKR |
»® We use the class stock to encapsulate a single share:

The class Stock

® When constructing a Stock instance, the client must
specify the two-character symbol.

® The Stock class’ getName () accesses the name of the
company that corresponds to the stock’s two-character
stock exchange symbol:

ALPHA of BRAVO Company
Alpha of Bravo Company

® Whether the name is upper-case or camel-case, this is

determined by the boolean flag titleCaseName
YORKRJ
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The class Stock

1"

® The Stock class’ toString() produces a “nice” string

representation consisting of something like:

.AB*ALPHA
.AB:ALPHA
.AB+ALPHA
.AB ALPHA
.AB#ALPHA
.AB.ALPHA

m The character is red is called the delimiter

® The client can specify the character to be us

delimiter

of
of
of
of
of
of

BRAVO
BRAVO
BRAVO
BRAVO
BRAVO
BRAVO

The class Stock
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Company
Company
Company
Company
Company
Company
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® The Stock class’ getPrice () retrieves the most-
recently fetched version of the price. Upon instantiation,
the current price is fetched.

® The method refresh () will connect to the Stock
Exchange server and fetch the current version of the

price

YORK
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UML Diagram

type :: lib :: Stock

-price : double

+name : String

-symbol : String
+delimiter : char
+titleCaseName : boolean

Stock(String)

+getName(): String
+getPrince() : double
+getSymbol(): String
+setDelimiter(char): boolean
+setSymbol() : void

+refresh () : void

+toString(): String
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Exercise

= At runtime,

= how many references will be created?
= how many objects will be created?
= do any objects have the same state?

= predict the output
Stock s1 = new Stock("”.AB");
Stock s2 = new Stock("”.BT");
Stock s3 = new Stock(".XY");

Stock s4 = new Stock("”.AB");

output.printf(”s1: %s%n"”, s1.toString());
output.printf(”s2: %s%n", s2.toString());
output.printf(”s3: %s%n"”, s3.toString());
output.printf(”s1 == s4: %s%n", sl==s4);
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output.printf(”s1.equals(s4): %s%n", sl1.equals(s4));
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Exercises 4.11-4.12

m consult the API for class type.lib.Stock

= we will revisit this class in this week’s lab exercises
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