
1	

1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

CSE1710
Week 09, Lecture 16

Fall 2013  Tuesday, Nov 05, 2013

2

Big Picture
We are in week09. The remaining weeks are week10 - week13.

We will finish covering Chapter 4 this week.

On Tuesday, Nov 12, we will have a term test that focuses on Ch 4.

After this we move on to Ch 5 & 6, with a focus on images and strings.

2	

3

Big Picture
Reading that was assigned…

  re-read section 4.2 “The Life of an Object” pp. 136-148, with a focus
on 4.2.4, 4.2.5, 4.2.6

  read section 4.3 “The Object’s State” pp. 149-157

  review Ch 4 KC’s 11-16

  do Ch 4 RQ’s 23-34

  do Ch 4 Ex’s 4.12-4.22

4

Skills you should have…
 at runtime, be able to state how many unique objects

exist in memory; be able to describe what is happening
to these objects as a function of method invocations and/
or field modification."

 describe the function of assigning an object reference to
null

 be able to describe the difference between == and the
equals method"

 explain the idea of obligatory methods and be able to
identify them (from memory and/or an API)"

3	

5

Skills you should have…
 understand the process of garbage collection and be

able predict the results of garbage collection on the
contents of memory"

 understand what accessor and mutator methods are; be
able to distinguish their function from the alternative
method of direct access of fields"

 understand the notion of legal state for objects, describe
the importance of maintaining legal state; "
 describe how mutators enforce legality, whereas public

visibility of attributes cannot. "
 understand how this implements the core principle of

encapsulation."

6

Skills you should have…
 understand the difference between static methods and

static attributes; understand how static attributes operate"

 understand the characteristics of object and/or class
attributes that are final"

 understand how final and static can be combined for
class attributes"

4	

7

Textbook Exercise (riff on pp.145-146)
  At runtime, "

  how many references will be created? "
  how many objects will be created? "
  do any objects have the same state?"
  predict the output"
"

Fraction f1 = new Fraction(3, 5);
Fraction f1 = f2;
Fraction f3 = new Fraction(2, 7);
Fraction f4 = new Fraction(6, 10);
Fraction f5 = f4;
output.printf(“f1==f2, result: %s%n”, f1==f2);
output.printf(“f4==f5, result: %s%n”, f4==f5);
output.printf("f1==f4, result: %s%n", f1 == f4);
output.printf("f1.equals(f4), result: %s%n", f1.equals(f4));

8

Exercises 4.1-4.10
  consult the API for class type.lib.Item

  we will revisit this class in this week’s lab exercises"

5	

9

The class Stock  

 We will use the Stock class from type.jar for this
example"

 A public company is a company that offers its stock/
shares for sale to the general public, typically through a
stock exchange "

 A public company has a full name and is represented by a
two-character symbol "
  e.g., name: “Alpha Bravo Co.”, symbol: “.AB”"

 At any given point in time, the company’s shares have a
selling price."

 We use the class Stock to encapsulate a single share 9

10

The class Stock  

 When constructing a Stock instance, the client must
specify the two-character symbol."

 The Stock class’ getName() accesses the name of the
company that corresponds to the stock’s two-character
stock exchange symbol: 
 
ALPHA of BRAVO Company  
Alpha of Bravo Company  
"

 Whether the name is upper-case or camel-case, this is
determined by the boolean flag titleCaseName "

 The attribute is public and static!

 See L06App01.java !

10

6	

11

The class Stock  

 The Stock class’ toString() produces a “nice” string
representation consisting of something like: 
.AB*ALPHA of BRAVO Company  
.AB:ALPHA of BRAVO Company  
.AB+ALPHA of BRAVO Company  
.AB ALPHA of BRAVO Company  
.AB#ALPHA of BRAVO Company  
.AB.ALPHA of BRAVO Company"

 The character is red is called the delimiter"

 The client can specify the character to be used for this
delimiter"

  See L06App02.java !

11

12

The class Stock  

 The Stock class’ getPrice() retrieves the most-
recently fetched version of the price. Upon instantiation,
the current price is fetched."

 The method refresh() will connect to the Stock
Exchange server and fetch the current version of the
price

12

7	

13

UML Diagram!

"

13

type :: lib :: Stock!

-price : double"
+name : String"
-symbol : String"
+delimiter : char"
+titleCaseName : boolean"

Stock(String)"
⋮
+getName(): String"
+getPrince() : double"
+getSymbol(): String"
+setDelimiter(char): boolean"
+setSymbol() : void"
⋮
+refresh () : void"
⋮
+toString(): String"

14

Exercise
  At runtime, "

  how many references will be created? "
  how many objects will be created? "
  do any objects have the same state?"
  predict the output"

"
Stock s1 = new Stock(".AB");
Stock s2 = new Stock(".BT");
Stock s3 = new Stock(".XY");
Stock s4 = new Stock(".AB");
output.printf("s1: %s%n", s1.toString());
output.printf("s2: %s%n", s2.toString());
output.printf("s3: %s%n", s3.toString());
output.printf("s1 == s4: %s%n", s1==s4);
output.printf("s1.equals(s4): %s%n", s1.equals(s4));

8	

15

Exercises 4.11-4.12

  consult the API for class type.lib.Stock

  we will revisit this class in this week’s lab exercises"

