CSE1710

Week 09, Lecture 16

Fall 2013 4 Tuesday, Nov 05, 2013

uuuuuuuuuu
uuuuuu

Big Picture

We are in week09. The remaining weeks are week10 - week13.
We will finish covering Chapter 4 this week.
On Tuesday, Nov 12, we will have a term test that focuses on Ch 4.

After this we move on to Ch 5 & 6, with a focus on images and strings.

uuuuuuuuuu
uuuuuu




Big Picture

Reading that was assigned...

d re-read section 4.2 “The Life of an Object” pp. 136-148, with a focus
on4.24,425,426

U read section 4.3 “The Object’s State” pp. 149-157
U review Ch 4 KC'’s 11-16

U do Ch 4 RQ’s 23-34

O do Ch 4 Ex’'s 4.12-4.22

ssssssssss
uuuuuu

Skills you should have...

® at runtime, be able to state how many unique objects
exist in memory; be able to describe what is happening
to these objects as a function of method invocations and/
or field modification.

m describe the function of assigning an object reference to
null

m be able to describe the difference between == and the
equals method

m explain the idea of obligatory methods and be able to
identify them (from memory and/or an API)

ssssssssss
uuuuuu




Skills you should have...

® understand the process of garbage collection and be
able predict the results of garbage collection on the
contents of memory

m understand what accessor and mutator methods are; be
able to distinguish their function from the alternative
method of direct access of fields

= understand the notion of legal state for objects, describe
the importance of maintaining legal state;

= describe how mutators enforce legality, whereas public
visibility of attributes cannot.

= understand how this implements the core principle of
encapsulation.

ssssssss
uuuuuu

Skills you should have...

® understand the difference between static methods and
static attributes; understand how static attributes operate

® understand the characteristics of object and/or class
attributes that are final

m understand how final and static can be combined for
class attributes

YORKJQI

ssssssss
uuuuuu




Textbook Exercise (riff on pp.145-146)

= At runtime,

= how many references will be created?
= how many objects will be created?

= do any objects have the same state?
= predict the output

Fraction
Fraction
Fraction
Fraction
Fraction

f1
f1
£3
f4
£5

new

= f2;

new
new
f4,

Fraction(3, 5);

Fraction(2, 7);
Fraction(6, 10);

output.printf(“f1==f2, result: %s%n”,
output.printf(“f4==f5, result: %s%n”,
output.printf("f1==f4, result: %s%n",
output.printf(”"f1.equals(f4), result:

Exercises 4.1-4.10

m consult the API for class type.lib.Item
= we will revisit this class in this week’s lab exercises

f1==f2);

f4==f5);

f1 == f4);

%s%n", f1.equals(f4));

uuuuuuuu
uuuuuu

uuuuuuuu
uuuuuu



The class Stock

® We will use the Stock class from type.jar for this
example

m A public company is a company that offers its stock/
shares for sale to the general public, typically through a
stock exchange

® A public company has a full name and is represented by a
two-character symbol

= ¢.g., name: “Alpha Bravo Co.”, symbol: “.AB”

® At any given point in time, the company’s shares have a
selling price.

, YORKR |
»® We use the class stock to encapsulate a single share:

The class Stock

® When constructing a Stock instance, the client must
specify the two-character symbol.

® The Stock class’ getName () accesses the name of the
company that corresponds to the stock’s two-character
stock exchange symbol:

ALPHA of BRAVO Company
Alpha of Bravo Company

® Whether the name is upper-case or camel-case, this is

determined by the boolean flag titleCaseName
YORKRJ

ssssssss

"m The attribute is public and static 10 i




The class Stock

1"

® The Stock class’ toString() produces a “nice” string

representation consisting of something like:

.AB*ALPHA
.AB:ALPHA
.AB+ALPHA
.AB ALPHA
.AB#ALPHA
.AB.ALPHA

m The character is red is called the delimiter

® The client can specify the character to be us

delimiter

of
of
of
of
of
of

BRAVO
BRAVO
BRAVO
BRAVO
BRAVO
BRAVO

The class Stock

12

Company
Company
Company
Company
Company
Company

ed fo
1

ssssssss
uuuuuu

® The Stock class’ getPrice () retrieves the most-
recently fetched version of the price. Upon instantiation,
the current price is fetched.

® The method refresh () will connect to the Stock
Exchange server and fetch the current version of the

price

YORK

ssssssss
uuuuuu




UML Diagram

type :: lib :: Stock

-price : double

+name : String

-symbol : String
+delimiter : char
+titleCaseName : boolean

Stock(String)

+getName(): String
+getPrince() : double
+getSymbol(): String
+setDelimiter(char): boolean
+setSymbol() : void

+refresh () : void

+toString(): String

13

14

Exercise

= At runtime,

= how many references will be created?
= how many objects will be created?
= do any objects have the same state?

= predict the output
Stock s1 = new Stock("”.AB");
Stock s2 = new Stock("”.BT");
Stock s3 = new Stock(".XY");

Stock s4 = new Stock("”.AB");

output.printf(”s1: %s%n"”, s1.toString());
output.printf(”s2: %s%n", s2.toString());
output.printf(”s3: %s%n"”, s3.toString());
output.printf(”s1 == s4: %s%n", sl==s4);

13

output.printf(”s1.equals(s4): %s%n", sl1.equals(s4));

YORK

UNIVERSITE
UNIVERSITY

YORK

UNIVERSITE
UNIVERSITY



15

Exercises 4.11-4.12

m consult the API for class type.lib.Stock

= we will revisit this class in this week’s lab exercises

uuuuuuuu
uuuuuu




