
1	

1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

CSE1710
Week 07, Lecture 14

Fall 2013  Thursday, Oct 24, 2013

2

Big Picture
The assigned coursework for today was:

  read section 4.1 “What is an Object” pp.133-136

  read section 4.2 “The Life of an Object” pp. 136-148

  review Ch 4 KC’s 1-10

  do Ch 4 RQ’s 1-23

  do Ch 4 Ex’s 4.1-4.11

2	

3

Checklist (for next time, Lecture 15)
What you should be doing to prepare for what comes next…

  re-read section 4.2 “The Life of an Object” pp. 136-148, with a focus
on 4.2.4, 4.2.5, 4.2.6

  read section 4.3 “The Object’s State” pp. 149-157

  review Ch 4 KC’s 11-16

  do Ch 4 RQ’s 23-34

  do Ch 4 Ex’s 4.12-4.22

4

The Java Class Library (JCL)
 the JCL provides developers with a set of useful facilities."

 these facilities are accessed via a set of classes (utility
and non-utility), organized into packages"

 E.g.,"
 java.lang : fundamental classes closely tied to the

language and runtime system."
 java.io : fundamental classes closely tied to input and

output and access to the platform file system."

 Almost all of the JCL is contained in a single Java archive
file called rt.jar
 rt.jar is provided with JRE and JDK distributions

3	

5

the build path vs the class path
  the source code of an app will depend on services!

  services as found in the JCL"
  services in external libraries, from other providers (e.g., JBA

textbook, etc)"

  these dependencies must be resolved at both compile time and at
runtime"
  at compile time, the compiler checks the build path in order to

locate any required classes on the file system"
  at run time, the JVM searches the class path to locate any required

classes"

  The Java Classloader : part of the Java Runtime Environment (JRE)"
  it loads Java classes into the Java Virtual Machine"
  usually classes are loaded on demand

6

Why are you telling me this?
Because you need to understand what the memory diagram is
depicting!
BASIC Operation of the JVM:!

1.  Start up the class loader:
  load the class definition that contains the main method "
  load required class definitions on demand "

2.  Execute bytecode:"
  execute the byte code that corresponds to the first statement of the main method "
  …execute the byte code corresponding to the next statement of the main

method... "
  …repeat until final statement is reached"

3.  Do a tidy shutdown"
  run all shutdown hooks (close network connections, databases, etc)"

4	

7

 … an object is an entity that encapsulates data
representation (attributes) and computation (methods) …

•  all objects of a certain type will follow the given “template” for that
type: they all will have the same set of methods and the same
set of attributes, BUT:
•  each object can have its own values for the given set of

attributes
•  an object’s methods will take into account the data that is

specific to that object

•  For instance:
•  any Rectangle object can have its own width and height values
•  the getArea() method for each Rectangle object will return the

area that is specific to that object’s width and height

8

 … Non-utility classes can be thought of as
factories for the creation of objects … (p. 136)
•  the “factory” can be open only at runtime

•  the “factory” has to be started up (the class needs to be
loaded by the virtual machine)

•  the objects get created by the “factory” via the use of the
constructor

•  an app can use the “factory” to crank out as many
objects as desired

5	

9

Quick Review about Fractions
•  A fraction is a numerical quantity that is not necessarily a

whole number.
•  integer numerator
•  non-zero integer denominator
•  types: simple , complex/compound, algebraic
•  simple: proper and improper forms

10

The Fraction class
•  Encapsulates simple fractions

•  Special characteristics of the Fraction encapsulation:
•  zero denominator permitted
•  if the fraction is negative, the negative sign is associated

with numerator, not the denominator
•  fraction kept in reduced form at all times

•  meaning the numerator & denominator never have a
common divisor > 1

•  supports printing both in proper and in improper formats
•  provides basic operations (add, subtract, multiply, divide)

6	

11

The Fraction class
•  the state of a Fraction object is

captured by the following four
attributes:
•  the numerator : long
•  the denominator : long
•  the character used to separate the numerator and

denominator in printing : char
•  whether “ ” appears in proper format : boolean

•  Default state:
•  numerator = 0

•  denominator = 1

•  separator = ‘/’

•  isQuoted = true

12

Exercise:

Can you predict the out0ut?

7	

13

Exercise:
For the class Fraction,
assign the zero-offset addresses in the
same way the compiler would

14

Exercise:
For the app Example01,
assign the zero-offset addresses in the
same way the compiler would

8	

15

Exercise:
Draw a memory diagram to illustrate the contents of
memory for the app Example01
(up to the point in time when the bytecode corresponding to line 11 is invoked)

16

Exercise:
Draw a memory diagram to illustrate the contents of
memory for the app Example01
(up to the point in time when the bytecode corresponding to line 12 is invoked)

9	

17

Exercise:
Draw a memory diagram to illustrate the contents of
memory for the app Example01
(up to the point in time when the bytecode corresponding to line 16 is invoked)

18

Exercise:
Draw a memory diagram to illustrate the contents of
memory for the app Example01
(up to the point in time when the bytecode corresponding to line 17 is invoked)

10	

19

Exercise:
Predict the output of the app Example02

20

Exercise:
Draw a memory diagram to illustrate the contents of
memory for the app Example02
(up to the point in time when the bytecode corresponding to line 11 is invoked)

11	

21

Exercise:
Draw a memory diagram to illustrate the contents of
memory for the app Example02
(up to the point in time when the bytecode corresponding to line 12 is invoked)

22

Exercise:
Draw a memory diagram to illustrate the contents of
memory for the app Example02
(up to the point in time when the bytecode corresponding to line 15 is invoked)

12	

23

Exercise:
Draw a memory diagram to illustrate the contents of
memory for the app Example02
(up to the point in time when the bytecode corresponding to line 16 is invoked)

24

Key Concept 4.3

To create an instance of a class at runtime, design your
source code as follows:

Import the class. Use the new keyword in conjunction with
the invocation of the class’s constructor. These statements,
when compiled into bytecode, will take care of instance
creation.

The invocation of the constructor, (as accomplished via the
corresponding bytecode, at runtime) will cause the
instance to be created and the object’s initial state to be
set.

13	

25

Key Concept 4.4

The default constructor is one that does not take any
parameters. Using it leads to an instance with a default
initial state. Nondefault constructors do take parameters
and allow you to customize the initial state of the created
instance.

26

Key Concept 4.5

The created instance, also called an object, occupies a
block in memory reserved for it. The address of that block
is the object’s “identity” (location in memory). To be able to
refer to this object, we declare a variable, called the object
reference, to be of the class type and assign its value to be
the object’s memory location.

The object reference is thus a “pointer” that points at the
object. It is sometimes referred to as the object’s handle.

