CSE1710

Week 07, Lecture 13

Fall 2013 4 Tuesday, Oct 22, 2013

uuuuuuuuuu
uuuuuu

Big Picture

The assigned reading was for today:

O read section 3.3 “General Characteristics of Utility Classes”
U review Ch 3 KC’s 15-18

Q0 do Ch 3 RQ’s 26-30

O do Ch 3 Exercises 3.1-3.22 (+ Lab L3.2 “A Software Project”)

uuuuuuuuuu
uuuuuu




Checklist (for next time, Lecture 14)

What you should be doing to prepare for what comes next...
U read section 4.1 “What is an Object” pp.133-136

O read section 4.2 “The Life of an Object” pp. 136-148

U review Ch 4 KC'’s 1-10

U do Ch4 RQ’s 1-23

O do Ch4 Ex's 4.1-4.11

uuuuuuuuuu
uuuuuu

Review Questions

RQ.26 When a class is compiled, how does the compiler
know where in memory the class will be loaded?

In reading questions, ask yourself:
1. what are the presuppositions of the question?

2. Are these presuppositions indeed true?

Presupposition: something that is assumed to hold true at
the outset, but that is not stated overtly

uuuuuuuuuu
uuuuuu




Review Questions

RQ.26 When a class is compiled, how does the compiler
know where in memory the class will be loaded?

Presupposition: that the compiler knows where in
memory the class will be loaded

But the compiler does not know in advance where in
memory a given class will be loaded. It cannot know,
since there are too many variables.

The question might instead be:
how are the addresses of class features assigned at
compile time and at run time? YORK I

uuuuuuuuuu
uuuuuu

Class Features: Addressing

» Aclass’ features are its attributes and methods [Fig 2.9, p. 81]

* Aclass’ attributes are its variables
» they can be private or public
 class variables that are public are fields

» At compile time, a starting address of zero is assumed.
Every feature within a class is given an consecutive
address, relative this zero-offset

+ At runtime (class loading), the zero offset is replaced with
a non-zero offset. The addresses of all of the features are
shifted up.

uuuuuuuuuu
uuuuuu




UM Diagram for MysteryClass

manually prepared

<< utility >>

lecturel3.MksteryClass
+fric: int
+frac: double
+fluff: char
+lint: byte
+dross: float
+isCreative:
+getTheValue():
+getTheOtherValu

: double

stereotype << utility >> means no
publically-available constructor,
all features are static

automatically generated using

Eclipse plug-in

<<Java Class>>
®MysteryClass

lecture13

o*fric: int

o*frac: double

o*fluff: char

olint: byte

o°dross: float
o*isCreative: boolean

by & MysteryClass()
o getTheValue()int
{TheOtherValue():double

“S” means static feature

red square megis “this feature is

private”

green circle means “this feature is

7 public”

Example:

For the class MysteryClass,

assign the zero-offset addresses in the

YORK

UNIVERSITE
UNIVERSITY

<< utility >>
lecturel3.MysteryClass

+fric: int

+frac: double
+fluff: char
+lint: byte

+dross: float

same way the compiler would

you may assume all features are shown in the UML class diagram

fric =>

frac =>

fluff =>

lint =>

dross =>

isCreative =>

getTheValue =>

getTheOtherValue =>

+isCreative: boolean

+getTheValue(): int

oietTheOtherValues a: double

YORKJ I

UNIVERSITE
UNIVERSITY



Sample Solution

: MysteryClass can't be sure —
_ 2 take an educated
fric => guess
frac => | 2% D B
fluff = | 0 the offsets are
given by the data
lint => 38 /
types
33
dross =>

isCreative => 43 /

getTheValue => 444 /

54 ¥

getTheOtherValue =>

uuuuuuuu

Exa m ple: 12 backage lecturel3;

public class Example@dl {

For the class Exampleo1, public static void main(String[] args) {
float x = 16.4f;

3
4
5,
. 6
assign the zero-offset 7 MysteryClass.dross = x;
. 8
addresses in the same way ; ’
0

the compiler would ‘

}

X =>

uuuuuuuu

10 UNIVERSITY



1"

12

Sample Solution

Example@1

X =

uuuuuuuuuu
uuuuuu

Example:

Draw a memory diagram to illustrate the contents of

memory for this app
(up to the point in time when the bytecode corresponding to line 7 is invoked,

but the app has not yet terminated)

1 package lecturel3;
2

3 public class Example@1 {

4
5¢ public static void main(String[] args) {
6 float x = 16.4f;
7 MysteryClass.dross = x;
8 }
9

10 %}

uuuuuuuuuu
uuuuuu



13

X

fric

frac

fluff

lint
dross
isCreative

getTheValue

getTheOtherValue

14

=

=

=

=

220

Example@l

16.4F

6ee

MysteryClass

624

628

636

638

639

16.4F

643

G

YORK

UNIVERSITE
UNTVERS T Y

YORK

UNIVERSITE
UNTVERS T Y




15

16

Pros and Cons

less versatile

more versatile

APl is simpler (no constructor section,
cannot create instances)

API is more complex

at runtime, class definition is loaded
into memory

at runtime, class definition is loaded
into memory, plus an object is created
each time the class is instantiated

all attributes are static

attributes are static or non-static

all methods are static

methods are static or non-static

suitable for services that do not need
to store information about state

suitable for services that need to store
information about state

YORKRI
About the class Integer
1 package lecturel3;
2
3 import java.io.PrintStream;
4
5 public class Example@2 {
6
7= public static void main(String[] args) { three ways to get an
8 PrintStream output = System.out; Integer object
9 int x1 = 67;
10 String x2 = "67";
1 Integer y1 = new Integer
12 Integer y2 = Integep-
13 Integer y3 = x1; €e— auto-boxing
14 int x3 = y3;<— ]
15 output.printf("%d%n”, x1); auto-unboxing
16 output.printf("%s%n”, x2);
17 output.printf("%d%n"”, x3);
18 output.printf("%d%n”, y1);
19 output.printf("%d%n", y2);
20 output.printf("%d%n"”, y3);

22 }

UNIVERSITY




17

18

Static features in class Integer

1
2
3
4
5
6
7_
8
9
0
1
2
3
4

package lecturel3;
import java.io.PrintStream;

public class Example@3 {

public static void main(String[] args) {

}

PrintStream output = System.out;
String x2 = "1";
Integer y2 = Integer.parseInt(x2);

// here we see a static attribute of the class |Integer
output.printf(”max int:\t %2@d%n”, Integer.MAX_VALUE);
// here we demonstrate the wrap-around property of integers

int result = Integer.MAX_VALUE + y2;
output.printf(”result:\t %20d%n”, result);

YORK

UNIVERSITE
UNIVERSITY

A non-static method in Integer

package lecturel3;

import java.io.PrintStream;

1

2

3

4

5 public class Example@4 {
6

7_

8

9
10
1
12
13
14
15 }

public static void main(String[] args) {

}

PrintStream output = System.out;

String x1 = "87";

int x2 = 87;

Integer y1 = Integer.parseInt(x1);

int result = yl.compareTo(x2);
output.printf(“result:\t %2d%n", result);

YORK

UNIVERSITE
UNIVERSITY



Input Validation

Suppose you are expecting a numeric value that obeys
some sort of condition. For instance:

enter a non-zero positive integer:

How can we perform validation?

uuuuuuuuuu

19 ey

Input Validation

Validation Options

#1 let the app crash or make it crash

#2 stop the app (but not by crashing)
and tell the user the reason

#3 inform the user of the problem and
re-prompt

uuuuuuuuuu

200 UvERs Ty

10



21

22

we know how to do this!

Input Validation

Exception-Based #1 let the app crash or make it crash <«
Message #2 stop the app (but not by crashing)
and tell the user the reason
> Friendly #3 inform the user of the problem and
re-prompt
requires loops [Ch 5] requires selection

(if statement) [Ch 5]

uuuuuuuu
uuuuuu

Input Validation

Suppose you are expecting a numeric value that obeys
some sort of condition. For instance:

enter a non-zero positive integer:
How can we perform validation?

Scenarios:

1. user enters something other than an int

* we can take advantage of the services provided by
Scanner or Integer

2. user enters an int, but it is zero or negative

* we can take advantage of the services provided by
Scanner or Integer YORK

uuuuuuuu
uuuuuu

11



23

24

Exception-Based Validation

1. Need to validate the type of the user input

2. Need to validate the value of the user input

uuuuuuuuuu
uuuuuu

Exception-Based Validation

[Approach #1] To validate the type of the user input, use
the services of Scanner

public int nextInt()
Scans the next token of the input as an int.

An invocation of this method of the form nextInt () behaves in exactly the same way as the
invocation nextInt (radix), where radix is the default radix of this scanner.

Returns:
the int scanned from the input

Throws:
InputMismatchException - if the next token does not match the Integer regular expression, or

is out of range
NoSuchElementException - if input is exhausted
IllegalStateException - if this scanner is closed

uuuuuuuuuu
uuuuuu

12



1
1

Example®5

1 package lecturel3;

2

3# import java.io.PrintStream;[]
5

6 public class Example@5 {

7

8e public static void main(String[] args) {

9 PrintStream output = System.out;

0 Scanner input = new Scanner(System.in);

1 final String PROMPT = "enter a non-zero positive integer:”;
12 output.printf("%s%n”, PROMPT);

13 int userValue = input.nextInt();

14 output.printf(”inputted value: %d%n", userValue);

15 }

16 3}

25

26

YORKJ I

UNIVERSITE
UNIVERSITY

Exception-Based Validation

[Approach #2] To validate the type of the user input, use
the services of Integer

parselnt

public static int parselnt(String s)
throws NumberFormatException

Parses the string argument as a signed decimal integer. The characters in the string must all be
decimal digits, except that the first character may be an ASCII minus sign '-' (*\u002D") to indicate
a negative value. The resulting integer value is returned, exactly as if the argument and the radix 10
were given as arguments to the parseInt(java.lang.String, int) method.

Parameters:
s - a String containing the int representation to be parsed
Returns:
the integer value represented by the argument in decimal.
Throws:
NumberFormatException - if the string does not contain a parsable integer.

YORKJ I

UNIVERSITE
UNIVERSITY

13



Example06

1 package lecturel3;

2

3® import java.io.PrintStream;[]

5

6 public class Example@6 {

7

8¢ public static void main(String[] args) {

9 PrintStream output = System.out;

10 Scanner input = new Scanner(System.in);

1 final String PROMPT = "enter a non-zero positive integer:";
12 output.printf("%s%n”, PROMPT);

13 String userInput = input.nextLine();

14 int userValue = Integer.parseInt(userInput);

15 output.printf(”inputted value: %d%n”, userValue);
16 }

17 }

uuuuuuuuuu

27 UNTVERSITY

Exception-Based Validation

To validate the value of the user input, construct a boolean
expression:

boolean isValid = userValue > 0;

The conditionally trigger a runtime error using the services
of ToolBox

final String MSG = “Amount was not non-zero
positive value”;

ToolBox.crash(!isValid, MSG);

uuuuuuuuuu

28 vERs Ty

14



1 package lecturel3;

2

3# import java.io.PrintStream;[]

7

8 public class Example@7 {

9
10e
1
12
13
14
15
16
17
18
19
20

21
22}

29

public static void main(String[] args) {

}

PrintStream output = System.out;

Scanner input = new Scanner(System.in);

final String PROMPT = "enter a non-zero positive integer:”;
output.printf(”%s%n”, PROMPT);

String userInput = input.nextLine();

int userValue = Integer.parseInt(userInput);

final String MSG = "Amount was not non-zero positive value!”;
boolean isValue = userValue > 0;

ToolBox. crash(!isValue, MSG);

output.printf(”inputted value: %d%n”, userValue);

YORKJ I

UNIVERSITE
UNIVERSITY

15



