
1	

1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

CSE1710
Week 07, Lecture 13

Fall 2013  Tuesday, Oct 22, 2013

2

Big Picture
The assigned reading was for today:

  read section 3.3 “General Characteristics of Utility Classes”

  review Ch 3 KC’s 15-18

  do Ch 3 RQ’s 26-30

  do Ch 3 Exercises 3.1-3.22 (+ Lab L3.2 “A Software Project”)

2	

3

Checklist (for next time, Lecture 14)
What you should be doing to prepare for what comes next…

  read section 4.1 “What is an Object” pp.133-136

  read section 4.2 “The Life of an Object” pp. 136-148

  review Ch 4 KC’s 1-10

  do Ch 4 RQ’s 1-23

  do Ch 4 Ex’s 4.1-4.11

4

Review Questions
RQ.26 When a class is compiled, how does the compiler
know where in memory the class will be loaded?

In reading questions, ask yourself:

1.  what are the presuppositions of the question?

2.  Are these presuppositions indeed true?

Presupposition: something that is assumed to hold true at
the outset, but that is not stated overtly

3	

5

Review Questions
RQ.26 When a class is compiled, how does the compiler
know where in memory the class will be loaded?

Presupposition: that the compiler knows where in
memory the class will be loaded

But the compiler does not know in advance where in
memory a given class will be loaded. It cannot know,
since there are too many variables.

The question might instead be:
how are the addresses of class features assigned at
compile time and at run time?

6

Class Features: Addressing
•  A class’ features are its attributes and methods [Fig 2.9, p. 81]

•  A class’ attributes are its variables
•  they can be private or public
•  class variables that are public are fields

•  At compile time, a starting address of zero is assumed.
Every feature within a class is given an consecutive
address, relative this zero-offset

•  At runtime (class loading), the zero offset is replaced with
a non-zero offset. The addresses of all of the features are
shifted up.

4	

7

UM Diagram for MysteryClass
manually prepared automatically generated using

Eclipse plug-in

stereotype << utility >> means no
publically-available constructor,
all features are static

red square means “this feature is
private”
green circle means “this feature is
public”

“S” means static feature

8

Example:
For the class MysteryClass,
assign the zero-offset addresses in the
same way the compiler would
you may assume all features are shown in the UML class diagram

5	

9

Sample Solution

can’t be sure –
take an educated
guess

the offsets are
given by the data
types

10

Example:
For the class Example01,
assign the zero-offset
addresses in the same way
the compiler would

6	

11

Sample Solution

12

Example:
Draw a memory diagram to illustrate the contents of
memory for this app
(up to the point in time when the bytecode corresponding to line 7 is invoked,
but the app has not yet terminated)

7	

13

14

8	

15

Pros and Cons
Utility Non-Utility
less versatile more versatile
API is simpler (no constructor section,
cannot create instances)

API is more complex

at runtime, class definition is loaded
into memory

at runtime, class definition is loaded
into memory, plus an object is created
each time the class is instantiated

all attributes are static attributes are static or non-static
all methods are static methods are static or non-static
suitable for services that do not need
to store information about state

suitable for services that need to store
information about state

16

About the class Integer

three ways to get an
Integer object

auto-­‐boxing

auto-­‐unboxing

9	

17

Static features in class Integer

18

A non-static method in Integer

10	

19

Input Validation
Suppose you are expecting a numeric value that obeys
some sort of condition. For instance:

enter a non-zero positive integer:

How can we perform validation?

20

Input Validation

Validation Options
#1 let the app crash or make it crash

#2 stop the app (but not by crashing)
and tell the user the reason

#3 inform the user of the problem and
re-prompt

11	

21

Input Validation

Validation Options
Exception-­‐Based #1 let the app crash or make it crash
Message

#2 stop the app (but not by crashing)
and tell the user the reason

Friendly

#3 inform the user of the problem and
re-prompt

requires loops [Ch 5] requires selection
(if statement) [Ch 5]

we know how to do this!

22

Input Validation
Suppose you are expecting a numeric value that obeys
some sort of condition. For instance:

enter a non-zero positive integer:

How can we perform validation?

Scenarios:

1.  user enters something other than an int
•  we can take advantage of the services provided by

Scanner or Integer

2.  user enters an int, but it is zero or negative
•  we can take advantage of the services provided by

Scanner or Integer

12	

23

Exception-Based Validation
1. Need to validate the type of the user input

2. Need to validate the value of the user input

24

Exception-Based Validation
[Approach #1] To validate the type of the user input, use
the services of Scanner

13	

25

Example05

26

Exception-Based Validation
[Approach #2] To validate the type of the user input, use
the services of Integer

14	

27

Example06

28

Exception-Based Validation
To validate the value of the user input, construct a boolean
expression:

 boolean isValid = userValue > 0;

The conditionally trigger a runtime error using the services
of ToolBox

 final String MSG = “Amount was not non-zero
positive value”;

 ToolBox.crash(!isValid, MSG);

15	

29

