
1	

1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

CSE1710
Week 06, Lecture 12

Fall 2013 Thursday, Oct 17, 2013

2

Big Picture
The assigned reading was for today:

  read section 3.2 “A Development Walk-Through”

  review Ch 3 KC’s 7-14

  do Ch 3 RQ’s 13-25

  do Ch 3 Ex’s 3.12-3.16

  last week’s lab covered Lab Exercise L3.2 “A Software Project” (pp.
124-126), also listed as Ex 3.18

2	

3

Checklist (for next time, Lecture 13)
What you should be doing to prepare for what comes next…

  read section 3.3

  review Ch 3 all key concepts, all review questions, remainder of
exercises

  do Ch 3 Ex’s 3.17.

4

Comprehension Q’s: printf
•  println, print, and printf : are all of these services

of the same class?

•  overloading:
•  is printf an overloaded method?
•  is print an overloaded method?
•  is println an overloaded method?

•  How are print and println similar? How are they
different?

•  Is printf more similar to print or to println?

3	

5

Comprehension Q’s: printf
•  Which class or classes offer the services println,

print, and printf?

•  overloading:
•  is printf an overloaded method?
•  is print an overloaded method?
•  is println an overloaded method?

•  How are print and println similar? How are they
different?

•  In what key way is the signature of printf different from
the signatures of print and println?

•  Is printf more similar to print or to println?

6

Comprehension Q’s: printf
•  The method printf has a format specifier.

What is the best general purpose specifier to use?
•  Suppose you want to replicate the result of print(67.8)

or print(“hello”) but using printf instead?

•  overloading:
•  is printf an overloaded method?
•  is print an overloaded method?
•  is println an overloaded method?

4	

7

Comprehension Q’s: printf
•  In terms of behaviour, how are print and println

similar? How are they different?

•  In terms of being services within the PrintStream class,
how are print and println similar? How are they
different?

•  In what crucial way is the signature of printf different
from the signatures of print and println?

•  Is printf more similar to print or to println?

8

Comprehension Q’s: printf
The method printf has a format string.

The format string is a String which may contain fixed text
and zero or more embedded format specifiers

Idea #1: The format specifiers are optional

Consider what happens when you leave out them out
•  stdOut.printf("hello");
•  stdOut.printf("56");
•  stdOut.printf("56\n");
•  stdOut.printf("\t56\n");

5	

9

Comprehension Q’s: printf
The format string is a String which may contain fixed text
and zero or more embedded format specifiers. Each format
specifier requires a conversion character.

Idea #2: The most basic conversion for the format
specifier is %s.

The number of format specifiers must match the
number of arguments (in addition to the format string)

Consider the following
•  stdOut.printf(“hello%s”,56f);
•  stdOut.printf(“56%s”,4L);
•  stdOut.printf(“56%s%s%s\n”,33,88.7,“hi”);
•  stdOut.printf(“%s\t56\n”, 33.567);

10

Comprehension Q’s: printf
Idea #3: The “\n” string is equivalent to the format
specifier %n.

Consider the following:
•  stdOut.printf(“hello\n”);
•  stdOut.printf(“hello%n”);

6	

11

Comprehension Q’s: printf
Idea #4: The difference between the d and f conversion
characters: d takes int/long, f takes float/double

Consider the following:
•  stdOut.printf(“ans: %d%n”,56);
•  stdOut.printf(“ans: %d%n”,56L);
•  stdOut.printf(“ans: %f%n”,56.67);
•  stdOut.printf(“ans: %f%n”,56.67f);

In case of mismatch, what happens?

12

Comprehension Q’s: printf
Idea #5: The width component specifies the number of
characters for the output. The output is right justified.

Consider the following:
•  stdOut.printf("ans: %10s%n", "hi");

•  stdOut.printf("ans: %10d%n", 56);

•  stdOut.printf("ans: %10f%n", 56.6798);

7	

13

Comprehension Q’s: printf
Idea #6: The precision component cannot be used with
int/long; only for float/double

Consider the following:
•  stdOut.printf("ans: %10.2s%n", "hi");

•  stdOut.printf("ans: %10.2d%n", 56);

•  stdOut.printf("ans: %10.2f%n", 56.6798);

14

Comprehension Q’s: printf
Idea #7: The flag component can be , and/or 0. It can
be used only with numerical types

Consider the following:

•  stdOut.printf("ans: %010d%n", 5666);

•  stdOut.printf("ans: %,10d%n", 5666);

•  stdOut.printf("ans: %0,10d%n", 5666);

•  stdOut.printf("ans: %010.2f%n", 98956.6798);

•  stdOut.printf("ans: %,10.2f%n", 98956.6798);

•  stdOut.printf("ans: %0,10.2f%n", 98956.6798);

8	

15

Overview: printf
•  The first parameter holds format specifiers
•  Each specifier has the form:  

%[flags][width][.precision]conversion

•  flags can be: , and/or 0

•  width: how many characters to be allocated
•  precision: # of decimal digits (for f conversion letter only)

•  conversion letter can be:
•  d : int/long

•  f : float/double

•  s : string

•  n : new line

16

About the Dev’t Process
•  What is the difference between the requirements analysis phase

and the design phases?

•  At what stage does coding take place?

•  At what stage would the designer create UML class diagrams?

•  In the implementation stage, how does the implementer know
what functionality should be implemented?

•  In the testing phase, a set of test cases are uses to assess
correctness.
What is the basis for the creation of these test cases?

9	

17

3.2.4 Relational Operators
•  Numeric operands: < <= > >=

•  Numeric/boolean operands (any type): == !=

•  All relational operands violate closure

•  No matter what the operand type is, the result type is
always boolean.

18

Operator Precedence

Precedence Operator Operands Syntax true if

< numeric x < y x is less than y

<= numeric x <= y x is less than or equal to y

> numeric x > y x is greater than y

>= numeric x >= y x is greater than or equal to y

-7

instanceof
x instanceof C is true if object reference x points at an
instance of class C or a subclass of C.

== any type x == y x is equal to y
-8

!= any type x != y x is not equal to y

10	

19

Relational Operators & Non-
Primitive Types
Rectangle r1 = new Rectangle(10, 10);

Rectangle r2 = new Rectangle(10, 10);

Rectangle r3 = new Rectangle(20, 20);

boolean isEqual1 = r1==r2;

boolean isEqual2 = r1==r3;

20

Coming up: 
Working with Images#

To work with images, we need to:#

 work with the file system#

 work with the operating system’s window manager and
the platform’s graphics hardware#

 understand colour models and representation formats#

 iterate and construct conditions#

20#

11	

21

 
File pathnames are system dependent#

 Windows Local File System (LFS):#
  C:\USER\DOCS\LETTER.TXT!

 Windows Uniform Naming Convention (UNC)#
  \\Server\Volume\File!

 Unix-like OS#
  /home/user/docs/Letter.txt!

Which details are system dependent?#

What can be abstracted away?#
 separator (e.g., /, \) #File.separator
 system prefix (e.g., /, \\, C:\) #

21#

22

also lists of pathnames are system
dependent#

 Windows Local File System (LFS):#
  C:\USER\DOCS\;C:\BIN!

 Unix-like OS#
  /home/user/docs/:/usr/bin/:/sbin/!

Which details are system dependent?#

What can be abstracted away?#
 path separator (e.g., ;, :) File.pathSeparator!

22#

12	

23

Useful class: java.io.File!

 The class java.io.File encapsulates a file on
the platform’s file system#
 a file in this context can be #
  a directory #
  a “normal file” (i.e., not a directory)#

 files constructed from pathnames!

 the class File is not utility#
 it provides some static features to encapsulate system-

dependent elements#
  separator, path separator#
  demo: File_Example01

23#

24

Recap: the File class 
#

24#

java::io::File!

+separator: String!
⋮!

File(String)!
⋮!
+exists(): boolean!
+lastModified(): long!
+length(): long!
+getPath(): String!
⋮ !

The File class encapsulates information about and
operations on either potentially-existing files and already-
existing files.#

just because an object is
instantiated for a pathname
doesn’t necessarily mean that
there is an actual file
corresponding to that pathname!

13	

25

 
Services provided by the File class!

  provides constructor for object creation, given a pathname#
  demo: File_Example01#

  provides delegation of file-related tasks:#
  does this file exist?#
  is this file a directory or a normal file?#
  what is the size of this file?#

  can I write to this file? #
  which files are in this directory, if any?#
  assumes this file is a directory#

  make a directory, as specified by this file#
  assumes pathname is not already in use and operation is allowed

##

25#

26

 
Services provided by the File class!

  Additional services#
  can I write to this file? #
  which files are in this directory, if any?#
  assumes this file is a directory#

  make a directory, as specified by this file#
  assumes pathname is not already in use and operation is allowed

##

26#

14	

27

The encapsulation of a File…!

##
  provides services to ask whether the file is writable!
  this tells you whether the permissions and other conditions are

favourable#
  the File class does not provide the means to write to the file object #
  for this, you need the services of FileWriter!
  a FileWriter object encapsulates all of the working of writing content

to a File object#
  defer this aspect for the time being#

27#

28

Another way to interface with the file
system !

##
  Use the services of the Swing package, which has a class called
JFileChooser

  let the user specify one for you#
  FileChooser_Example01

28#

15	

29

the JFileChooser class 
#

29#

java::swing::JFileChooser!

+APPROVE_OPTION: int!
+CANCEL_OPTION: int!

JFileChooser()!
⋮!
+showOpenDialog(null): int!
+getSelectedFile(): File!
⋮ !

JFileChooser encapsulates information about and
operations on a file choice dialogue.#

getSelectedFile() will
always return something, #
even before the dialog is
even opened#

