
1	

1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

CSE1710
Week 04, Lecture 08

Fall 2013  Thurs, Oct 3, 2013

2

Big Picture
The assigned reading was for today:

•  The Client View; sec 2.2.2, pp. 60-64

•  Post-Compilation Errors; sec 2.2.3, pp. 64-65

•  Java Standard Library; sec 2.2.4, pp. 66-68

•  Readymade I/O; sec 2.2.5, pp. 68-70

2	

3

Big Picture
The assigned reading for next lecture is:

•  Software Engineering sec 2.3

•  Risk Mitigation Early Exposure; sec 2.3.1, pp. 71

•  Handling Constants; sec 2.3.2, pp. 71-72

• Contracts; sec 2.2.4, pp. 73-77

4

Big Picture
What are we are reinforcing with the exercises this lecture?

  Key Concepts 2.11-2.20

  Ability to complete review questions 2.19-2.29

  Ability to complete Exercises 2.1-2.12

3	

5

Checklist (for Lecture 09)
What you should be doing to prepare for what comes next…

  review sections 2.1-2.3

  review Ch 2 KC’s 1-25

  review answers to Ch 2 RQ’s 1-35

  review answers to Ch 2 Ex’s 2.1-2.22

6

What is this?

4	

7

What is this?

8

What is this?

 Concept of a
class

bytecode (partial)

source code (partial)

UML Class Diagram

API

5	

9

What Services Does A Class Offer?

Name two possible formats that are used in software
practice to convey the service that a particular class offers.

For instance, take the ToolBox class.

1. ____ ____ ____

2. ____ ____ ____

Hint: Both of the for-ats
are 3-­‐le3er acrony-s

10

API for ToolBox

http://www.eecs.yorku.ca/teaching/docs/type-api/

6	

11

UML Class Diagram for ToolBox

Differences in:

•  notation, stereotype (all methods static vs short-

hand “utility” stereotype)

•  constructor (shown with red square vs not

shown at all)

•  completeness (all methods vs only one)

Example of auto-generated UML  
(ObjectAid plugin)

« utility »
type::lib::ToolBox

getBMI(int, String): double

Example of hand-crafted UML  
(partial – not all methods shown)

12

Other formats for ToolBox

Bytecode (partial)

source code (partial)

7	

13

Exercise 2.4, 2.5
Are there any compile-time errors in the fragments below?
Assume the class Orbit has been properly imported.

//fragment#2.4
double amount = 2500;
int period = 4;
double pay = Orbit.payBack(amount, period);

//fragment#2.5
int amount = 2500;
int period = 4;
double pay = Orbit.payBack(amount, period);

« utility »
jba::Orbit

payBack(double, int): double

14

Exercise 2.6, 2.7
Are there any compile-time errors in the fragments below?
Assume the class Orbit has been properly imported.

//fragment#2.6
float amount = 2500;
int period = 4;
double pay = Orbit.payBack(amount, period);

//fragment#2.7
double amount = 2500;
long period = 4;
double pay = Orbit.payBack(amount, period);

« utility »
jba::Orbit

payBack(double, int): double

8	

15

Exercise 2.8
Are there any compile-time errors in the fragment below?
Assume the class Orbit has been properly imported.

//fragment#2.8
double amount = 2500;
int period = 4;
int pay = Orbit.payBack(amount, period);

« utility »
jba::Orbit

payBack(double, int): double

16

Exercise 2.9

Are there any compile-time errors in the fragment below?
Assume the class Bond has been properly imported.

PrintStream output = System.out;

Bond.rating = 'C';
Bond.rate = 0.12;
double x = Bond.estimate();
output.println(Bond.inflate());

« utility »
jba::Bond

rating: char
rate: double

estimate(): double
inflate(): void

9	

17

Exercise 2.10

Are there any compile-time errors in the fragment below?
Assume the class Bond has been properly imported.

Bond.rating = 'C';
Bond.rate = 0.12;
double x = Bond.estimate();
Bond.inflate();

« utility »
jba::Bond

rating: char
rate: double

estimate(): double
inflate(): void

18

Q. Explain the difference between a class diagram and an
object diagram.
Explain in terms of notation, the objects & relationships
shown, and the contexts.

10	

19

RQ2.17. Show that a UML object diagram does not
duplicate information present in its class diagram

Discuss: How to approach answering this question

20

RQ2.18. How is an app different from an application?

RQ2.22. (riff) Driving a car requires knowing how to put
the key in and turn on the ignition. Does this knowledge
break the encapsulation?

11	

21

Exercise2.12: Consider the following code.
Identify the compile-time error, the run-time error, and a
logic error.

// this code should compute the arithmetic
mean of the variables x, y, z
int x = 6 / 2;
int y = 12 / (x – 3);
int z = -3;
double mean = x + y + z) / 3;

22

RQ2.26. Explain the difference between correcting a
compile-time error and debugging.

12	

23

Q. What is the definition of a utility class?
Is it a class that contains only static methods?
Is it a class that cannot be instantiated?

Background Q’s:

Can a class the contains only static methods be instantiated?

Can a class that cannot be instantiated contain non-static
methods?

24

Ready-Made I/O (sec 2.2.5)

PrintStream output = System.out;
output.println(“hi”);

Scanner input = new Scanner(System.in);
int value = input.nextInt();

13	

25

Q. Can a client make use of the services of a class even
before the class is implemented?

Suprisingly, YES! (at partially)
Here is an example:

PrintStream output = System.out;
List peopleToPhone; // need to import java.util.List
peopleToPhone = null; // need to instantiate a list object!!!
peopleToPhone.add(“Charles Oakley”);
peopleToPhone.add(“Joffrey Baratheon”);
peopleToPhone.add(“Boromir”);
output.print(“# of people who I need to call is:”);
output.println(peopleToPhone.size());

