Relational Algebra

Chapter 4, Part A

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

Relational Query Languages %V

< Query languages: Allow manipulation and retrieval
of data from a database.
+ Relational model supports simple, powerful QLs:
= Strong formal foundation based on logic.
= Allows for much optimization.
% Query Languages != programming languages!
= QLs not expected to be “Turing complete”.
= QLs not intended to be used for complex calculations.
= QLs support easy, efficient access to large data sets.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Formal Relational Query Languagew

< Two mathematical Query Languages form
the basis for “real” languages (e.g. SQL), and
for implementation:

= Relational Algebra: More operational, very useful
for representing execution plans.

Relational Calculus: Lets users describe what they
want, rather than how to compute it. (Non-
operational, declarative.)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

QQD\
Preliminaries %V

< A query is applied to relation instances, and the
result of a query is also a relation instance.

= Schemas of input relations for a query are fixed (but
query will run regardless of instance!)

* The schema for the result of a given query is also
fixed! Determined by definition of query language
constructs.

+ Positional vs. named-field notation:

= Positional notation easier for formal definitions,
named-field notation more readable.

= Both used in SQL

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

R1 sid bid = day
Example Instances 22 101 10/10
58 |103 | 11/12/96

% “Sailors” and “Reserves” - -
relations for our examples. S1 sid snarpe rating age

+ We'll use positional or 22 \dustir | 7 45.C

named field notation, 31 |lubbel 8 55.E

assume that names of fields 58 |rusty 10 35.C

in query results are
Enlhf%ted’ from e of g5 sig 'snami |ratinc age

ields in query inpu

relationsf] e 28 |yuppy 9 35.C

31 |lubbel 8 55.F

44 |guppy | 5 [35(

58 |rusty 10 |35.C

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Relational Algebra %V

+ Basic operations:
Selection (O) Selects a subset of rows from relation.

Projection (71) Deletes unwanted columns from relation.
Cross-product (X) Allows us to combine two relations.
Set-difference (—) Tuples in reln. 1, but not in reln. 2.
Union (U) Tuples in reln. 1 and in reln. 2.

< Additional operations:
= Intersection, join, division, renaming: Not essential, but
(very!) useful.
% Since each operation returns a relation, operations
can be composed! (Algebra is “closed”.)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

. . sname rating @
Projection yuppy |9
)) lubber |8
]::Zl;t;i at;?:)utes that are not in guppy |5
projection fst. rusty |10
« Schema of result contains exactly 7 ()
the fields in the projection list, ;
with the same names that they snamegrating
had in the (only) input relation.
« Projection operator has to
eliminate duplicates! (Why??) age
= Note: real systems typically 35.0
don’t do duplicate elimination 55.5
unless the user explicitly asks
for it. (Why not?) ﬂage(SZ)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

<
=
=

7
. sid |sname rating age
Selection 2% lyuppy 9 20
58 |rusty |10 35.0
« Selects rows that satisfy
selection condition. ag . (52)
« No duplicates in result! rating>8
(Why?)
% Schema of result
identical to schema of sname rating
(only) input relation. W
% Result relation can be rusty 10
the input for another s =
relational algebra
operation! (gOpemtor nsn ame rati ng(ar ating> 8(52))

composition.)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Union, Intersection, Set-szferencv%V

sid sname rating age
% All of these operations take |22 |dustin |7 45.0
two input relations, which |31 /lubber |8 55.5
must be union-conpatible: 58 |rusty |10 35.0
= Same number of fields. 44 |guppy |5 35.0
= “Corresponding’ fields 28 |yuppy |9 35.0
have the same type. Q1082
« What is the schema of result?
sid sname rating age
sid sname rating age 31 |lubber 8 55.5
22 dustin |7 45.0 58 |rusty 10 35.0
S1-82 Sln &2

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Cross-Product
< Each row of S1 is paired with each row of R1.

<« Result schema has one field per field of S1 and R1,
with field names “inherited” if possible.

» Conflict: Both S1 and R1 have a field called sid.
(sid) |sname |rating |age |(sid) bid day
22 |dustin 7 450 | 22 101 10/10/96
22 |dustin 7 450 | 58 103 11/12/96
31 |lubber 8 555 | 22 101 10/10/96
31 |lubber 8 555 | 58 103 11/12/96
58 |rusty 10 |35.0 | 22 101 10/10/96
58 |rusty 10 |35.0 | 58 103 11/12/96

= Renaming operator: o (C(1- sidL,5 - sid2), SLxR1)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

<
=
=

<
=
=

Joins
+ Condition Join: R>< € = 0 . (Rx9)
(sid) sname rating age |(sid) bid day
22 dustin |7 45.0 |58 103 [11/12/96
31 lubber |8 55.5 |58 103 [11/12/96
g sd<risd

% Result schema same as that of cross-product.

< Fewer tuples than cross-product, might be
able to compute more efficiently

< Sometimes called a theta-join.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Joins

< Equi-Join: A special case of condition join where
the condition ¢ contains only equalities.
sid |sname |rating age bid |day
22 dustin |7 45.0 (101 |10/10/96
58 rusty |10 35.0 |103 [11/12/96
Sle< . RL
sid
% Result schema similar to cross-product, but only
one copy of fields for which equality is specified.

< Natural Join: Equijoin on all common fields.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

<
&
=

Division

+ Not supported as a primitive operator, but useful for
expressing queries like:
Find sailors who have reserved all boats.
+ Let A have 2 fields, x and y; B have only field y:
- AB= {(x]0(x,y)0A O(y) OB}
= i.e., A/B contains all x tuples (sailors) such that for every y
tuple (boat) in B, there is an xy tuple in A.
= Or: If the set of y values (boats) associated with an x value
(sailor) in A contains all y values in B, the x value is in A/B.
< In general, x and y can be any lists of fields; y is the
list of fields in B, and x L1y is the list of fields of A.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

Examples of Division A/B %V

sno | pno pno pno pno
sl |pl p2 p2 pl
sl |p2 B1 p4 p2
sl |p3 p4
B2 ==

sl |p4 B3
s2 |pl sno
s2 |p2 sl
s3 |p2 s2 sno
s4 |p2 s3 sl sno
s4 |p4 s4 s4 sl

A A/B1 A/B2 A/B3

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

Expressing A/B Using Basic Opefﬁ

<« Division is not essential op; just a useful shorthand.
= (Also true of joins, but joins are so common that systems
implement joins specially.)
% Idea: For A/B, compute all x values that are not
“disqualified’ by some y value in B.
= x value is disqualified if by attaching y value from B, we
obtain an xy tuple that is not in A.

Disqualified x values: 71 x ((n X(A) xB)-A)

A/B: 7l X(A) — all disqualified tuples

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

Find names of sailors who ve reserved boat M

% Solution 1: 775,1,,3‘%((0bi d=103Reserves) > Sailors)

+ Solution2: p (Templ, o Reserves)

bid=103
£ (Temp2, Templ< Sailors)

n shame (Teran)

+ Solution 3: gngme(@ bid= 103(Reserves><1 Sailors))

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

%Q;
Find names of sailors who've reserved a red b

+ Information about boat color only available in
Boats; so need an extra join:

7 sname{(9 o1 or = req BOALS) > Reserves« Sailors)

< A more efficient solution:

nmame(nsid((nbidacolorfred' Boats) >« Res)>< Sailors)

A query optimizer can find this, given the first solution!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

QQD\
Find sailors who ve reserved a red or a green bo

< Can identify all red or green boats, then find
sailors who've reserved one of these boats:

p (Tempboats, (o Boats))

color =red' Ocolor ='green’

7Tl gnamel Tempboats< Reserves>< Sailors)

< Can also define Tempboats using union! (How?)

+ What happens if U is replaced by U in this query?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18

QQD\
Find sailors who’ve reserved a ved and a green

+ Previous approach won’t work! Must identify
sailors who've reserved red boats, sailors
who've reserved green boats, then find the
intersection (note that sid is a key for Sailors):

£ (Tempred, nsid((a Boats) < Reserves))

color =red’

p (Tempgreen, ﬂs’d((acolorﬂgreen' Boat<)>< Reserves))

Nl gnamel(Tempred n Tempgreen)>< Sailors)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19

Find the names of sailors who ve reserved allﬁ

+ Uses division; schemas of the input relations
to / must be carefully chosen:

£ (Tempsids, (nsid,bidReserves) / (nbidBoaIs))

71 gname (TeMpsids>< Sailors)

« To find sailors who've reserved all ‘Interlake’ boats:

""" I 7549 bname= Interlake B2t

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20

Summary %V

< The relational model has rigorously defined
query languages that are simple and
powerful.

+ Relational algebra is more operational; useful
as internal representation for query
evaluation plans.

« Several ways of expressing a given query; a
query optimizer should choose the most
efficient version.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 21

