Last updated: Sept 20, 2012

MULTIVARIATE NORMAL DISTRIBUTION

J. Elder

Linear Algebra

\square Tutorial this Wed 3:00-4:30 in Bethune 228
\square Linear Algebra Reviews:
\square Kolter, Z., avail at
http://cs229.stanford.edu/section/cs229-linalg.pdf
\square Prince, Appendix C (up to and including C.7.1)
\square Bishop, Appendix C
\square Roweis, S., avail at
http://www.cs.nyu.edu/~roweis/notes/matrixid.pdf

Credits

\square Some of these slides were sourced and/or modified from:
\square Christopher Bishop, Microsoft UK
\square Simon Prince, University College London
\square Sergios Theodoridis, University of Athens \& Konstantinos Koutroumbas, National Observatory of Athens

The Multivariate Normal Distribution: Topics

The Multivariate Normal Distribution
2. Decision Boundaries in Higher Dimensions
3. Parameter Estimation

1. Maximum Likelihood Parameter Estimation
2. Bayesian Parameter Estimation

The Multivariate Normal Distribution: Topics

1. The Multivariate Normal Distribution
2. Decision Boundaries in Higher Dimensions
3. Parameter Estimation
4. Maximum Likelihood Parameter Estimation
5. Bayesian Parameter Estimation

The Multivariate Gaussian

$\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{D / 2}} \frac{1}{|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$

Orthonormal Form

$\Delta^{2}=(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu}) \quad$ where $\Delta \equiv$ Mahalanobis distance from μ to x MATLAB Statistics Toolbox Function: mahal(x, y)

Let $A \in \mathbb{R}^{D \times D}$. λ is an eigenvalue and u is an eigenvector of A if $A u=\lambda u$. MATLAB Functions:
[$\mathrm{V}, \mathrm{D}]=\mathrm{eig}(\mathrm{A})$
[V, D]= eigs(A, k)

Let u_{i} and λ_{i} represent the $i^{\text {th }}$ eigenvector/eigenvalue pair of $\Sigma: \Sigma u_{i}=\lambda_{i} u_{i}$

See Linear Algebra Review Resources on Moodle site for a review of eigenvectors.

Orthonormal Form

Since it is used in a quadratic form, we can assume that Σ^{-1} is symmetric.
This means that all of its eigenvalues and eigenvectors are real.

We are also implicitly assuming that Σ, and hence Σ^{-1}, are invertible (of full rank).

Thus Σ can be represented in orthonormal form: $\Sigma=U \Lambda U^{t}$, where the columns of U are the eigenvectors u_{i} of Σ, and
Λ is the diagonal matrix with entries $\Lambda_{i i}=\lambda_{i}$ equal to the corresponding eigenvalues of Σ.

Thus the Mahalanobis distance Δ^{2} can be represented as:
$\Delta^{2}=(x-\mu)^{t} \Sigma^{-1}(x-\mu)=(x-\mu)^{t} U \Lambda^{-1} U^{t}(x-\mu)$.

Let $y=U^{t}(x-\mu)$. Then we have,
$\Delta^{2}=y^{t} \Lambda^{-1} y=\sum_{i j} y_{i} \Lambda_{i j}^{-1} y_{j}=\sum_{i} \lambda_{i}^{-1} y_{i}^{2}$,
where $y_{i}=u_{i}^{t}(x-\mu)$.

YORK

Geometry of the Multivariate Gaussian

$\Delta^{2}=(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu}) \quad \Delta=$ Mahalanobis distance from μ to x $\boldsymbol{\Sigma}^{-1}=\sum_{i=1}^{D} \frac{1}{\lambda_{i}} \mathbf{u}_{i} \mathbf{u}_{i}^{\mathrm{T}} \quad$ where $\left(\mathbf{u}_{i}, \lambda_{i}\right)$ are the i ith eigenvector and eigenvalue of $\boldsymbol{\Sigma}$.
$\Delta^{2}=\sum_{i=1}^{D} \frac{y_{i}^{2}}{\lambda_{i}}$
$y_{i}=\mathbf{u}_{i}^{\mathrm{T}}(\mathbf{x}-\boldsymbol{\mu})$
or $\mathrm{y}=\mathrm{U}(\mathrm{x}-\mu)$

Moments of the Multivariate Gaussian

$$
\begin{aligned}
\mathbb{E}[\mathbf{x}] & =\frac{1}{(2 \pi)^{D / 2}} \frac{1}{|\boldsymbol{\Sigma}|^{1 / 2}} \int \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\} \mathbf{x} \mathrm{d} \mathbf{x} \\
& =\frac{1}{(2 \pi)^{D / 2}} \frac{1}{|\boldsymbol{\Sigma}|^{1 / 2}} \int \exp \left\{-\frac{1}{2} \mathbf{z}^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} \mathbf{z}\right\}(\mathbf{z}+\boldsymbol{\mu}) \mathrm{d} \mathbf{z}
\end{aligned}
$$

thanks to anti-symmetry of Z

$$
\mathbb{E}[\mathbf{x}]=\boldsymbol{\mu}
$$

Moments of the Multivariate Gaussian

$$
\begin{gathered}
\mathbb{E}\left[\mathbf{x} \mathbf{x}^{\mathrm{T}}\right]=\boldsymbol{\mu} \boldsymbol{\mu}^{\mathrm{T}}+\boldsymbol{\Sigma} \\
\operatorname{cov}[\mathbf{x}]=\mathbb{E}\left[(\mathbf{x}-\mathbb{E}[\mathbf{x}])(\mathbf{x}-\mathbb{E}[\mathbf{x}])^{\mathrm{T}}\right]=\boldsymbol{\Sigma}
\end{gathered}
$$

(a)

(b)

(c)

5.1 Application: Face Detection

Model \# 1: Gaussian, uniform covariance

$$
\operatorname{Pr}(\mathbf{x} \mid \text { face })=\frac{1}{(2 \pi)^{d / 2}|\Sigma|^{1 / 2}} \exp \left\{-0.5(\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)\right\}
$$

Fit model using maximum likelihood criterion

m face

s Face 59.1
m non-face
s non-face
69.1

Model 1 Results

Results based on 200 cropped faces and 200 non-faces from the same database.

Model \# 2: Gaussian, diagonal covariance

$$
\operatorname{Pr}(\mathbf{x} \mid \text { face })=\frac{1}{(2 \pi)^{d / 2}|\Sigma|^{1 / 2}} \exp \left\{-0.5(\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)\right\}
$$

Fit model using maximum likelihood criterion
m face

m non-face

J. Elder

Model 2 Results

Results based on 200 cropped faces and 200 non-faces from the same database.

Model \# 3: Gaussian, full covariance

$$
\operatorname{Pr}(\mathbf{x} \mid \text { face })=\frac{1}{(2 \pi)^{d / 2}|\Sigma|^{1 / 2}} \exp \left\{-0.5(\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)\right\}
$$

Fit model using maximum
likelihood criterion

PROBLEM: we cannot fit this model. We don't have enough data to estimate the full covariance matrix.
$\mathrm{N}=400$ training images
$D=10800$ dimensions

Total number of measured numbers $=$ $N D=400 \times 10,800=4,320,000$

Total number of parameters in cov matrix $=$ $(D+1) D / 2=(10,800+1) \times 10,800 / 2=$ 58,325,400

The Multivariate Normal Distribution: Topics

The Multivariate Normal Distribution
Decision Boundaries in Higher Dimensions
Parameter Estimation
Maximum Likelihood Parameter Estimation
2. Bayesian Parameter Estimation

Decision Surfaces

\square If decision regions \underline{R}_{i} and R_{j} are contiguous, define

$$
g(x) \equiv P\left(\omega_{i} \mid x\right)-P\left(\omega_{j} \mid x\right)
$$

\square Then the decision surface

$$
g(x)=0
$$

separates the two decision regions. $g(x)$ is positive on

$$
R_{R_{j}: P\left(\omega_{i} \mid \mathbf{x}\right)>P\left(\omega_{j} \mid x\right)}^{P\left(\omega_{j} \mid \mathbf{x}\right)>P\left(\omega_{i} \mid \mathbf{x}\right)}
$$

 one side and negative on the other.

Discriminant Functions

\square If $f($.$) monotonic, the rule remains the same if we use:$

$$
\underline{x} \rightarrow \omega_{i} \text { if: } \quad f\left(P\left(\omega_{i} \mid \underline{x}\right)\right)>f\left(P\left(\omega_{j} \mid \underline{x}\right)\right) \quad \forall i \neq j
$$

$\square \quad g_{i}(x) \equiv f\left(P\left(\omega_{i} \mid x\right)\right) \quad$ is a discriminant function
\square In general, discriminant functions can be defined in other ways, independent of Bayes.
\square In theory this will lead to a suboptimal solution
\square However, non-Bayesian classifiers can have significant advantages:

- Often a full Bayesian treatment is intractable or computationally prohibitive.
- Approximations made in a Bayesian treatment may lead to errors avoided by non-Bayesian methods.

Multivariate Normal Likelihoods

\square Multivariate Gaussian pdf

$$
\begin{aligned}
& p\left(\underline{x} \mid \omega_{i}\right)=\frac{1}{(2 \pi)^{\frac{D}{2}}\left|\Sigma_{i}\right|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}\left(\underline{x}-\underline{\mu}_{i}\right)^{\mathrm{T}} \Sigma_{i}^{-1}\left(\underline{x}-\underline{\mu}_{i}\right)\right) \\
& \underline{\mu}_{i}=E\left[\underline{x} \mid \omega_{i}\right] \\
& \Sigma_{i}=E\left[\left(\underline{x}-\underline{\mu}_{i}\right)\left(\underline{x}-\underline{\mu}_{i}\right)^{\mathrm{T}} \mid \omega_{i}\right]
\end{aligned}
$$

Logarithmic Discriminant Function

$$
p\left(\underline{x} \mid \omega_{i}\right)=\frac{1}{(2 \pi)^{\frac{D}{2}}\left|\Sigma_{i}\right|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}\left(\underline{x}-\underline{\mu}_{i}\right)^{\mathrm{T}} \Sigma_{i}^{-1}\left(\underline{x}-\underline{\mu}_{i}\right)\right)
$$

$\square \ln (\cdot)$ is monotonic. Define:

$$
\begin{aligned}
g_{i}(\underline{x}) & =\ln \left(p\left(\underline{x} \mid \omega_{i}\right) P\left(\omega_{i}\right)\right)=\ln p\left(\underline{x} \mid \omega_{i}\right)+\ln P\left(\omega_{i}\right) \\
& =-\frac{1}{2}\left(\underline{x}-\underline{\mu}_{i}\right)^{T} \Sigma_{i}^{-1}\left(\underline{x}-\underline{\mu}_{i}\right)+\ln P\left(\omega_{i}\right)+C_{i} \\
& \text { where }
\end{aligned}
$$

$$
C_{i}=-\frac{D}{2} \ln 2 \pi-\frac{1}{2} \ln \left|\Sigma_{i}\right|
$$

Quadratic Classifiers

$$
g_{i}(\underline{x})=-\frac{1}{2}\left(\underline{x}-\underline{\mu}_{i}\right)^{T} \Sigma_{i}^{-1}\left(\underline{x}-\underline{\mu}_{i}\right)+\ln P\left(\omega_{i}\right)+C_{i}
$$

\square Thus the decision surface has a quadratic form.
\square For a 2D input space, the decision curves are quadrics (ellipses, parabolas, hyperbolas or, in degenerate cases, lines).

Example: Isotropic Likelihoods

$$
g_{i}(\underline{x})=-\frac{1}{2}\left(\underline{x}-\underline{\mu}_{i}\right)^{T} \Sigma_{i}^{-1}\left(\underline{x}-\underline{\mu}_{i}\right)+\ln P\left(\omega_{i}\right)+C_{i}
$$

\square Suppose that the two likelihoods are both isotropic, but with different means and variances. Then

$$
g_{i}(x)=-\frac{1}{2 \sigma_{i}^{2}}\left(x_{1}^{2}+x_{2}^{2}\right)+\frac{1}{\sigma_{i}^{2}}\left(\mu_{i 1} x_{1}+\mu_{i 2} x_{2}\right)-\frac{1}{2 \sigma_{i}^{2}}\left(\mu_{i 1}^{2}+\mu_{i 2}^{2}\right)+\ln \left(P\left(\omega_{i}\right)\right)+C_{i}
$$

- And $g_{i}(\underline{x})-g_{j}(\underline{x})=0$ will be a quadratic equation in 2 variables.

(a)

(b)

Equal Covariances

$g_{i}(\underline{x})=-\frac{1}{2}\left(\underline{x}-\underline{\mu}_{i}\right)^{T} \Sigma_{i}^{-1}\left(\underline{x}-\underline{\mu}_{i}\right)+\ln P\left(\omega_{i}\right)+C_{i}$
\square The quadratic term of the decision boundary is given by

$$
\frac{1}{2} \mathbf{x}^{T}\left(\Sigma_{j}^{-1}-\Sigma_{i}^{-1}\right) \mathbf{x}
$$

\square Thus if the covariance matrices of the two likelihoods are identical, the decision boundary is linear.

Linear Classifier

$$
g_{i}(\underline{x})=-\frac{1}{2}\left(\underline{x}-\underline{\mu}_{i}\right)^{T} \Sigma^{-1}\left(\underline{x}-\underline{\mu}_{i}\right)+\ln P\left(\omega_{i}\right)+C_{i}
$$

\square In this case, we can drop the quadratic terms and express the discriminant function in linear form:

$$
\begin{aligned}
& g_{i}(\underline{x})=\underline{w}_{i}^{\top} \underline{x}+w_{i o} \\
& \underline{w}_{i}=\Sigma^{-1} \underline{\mu}_{i} \\
& w_{i 0}=\ln P\left(\omega_{i}\right)-\frac{1}{2} \underline{\mu}_{i}^{\top} \Sigma^{-1} \underline{\mu}_{i}
\end{aligned}
$$

Example 1: Isotropic, Identical Variance

$$
\begin{aligned}
& g_{i}(\underline{x})=\underline{w}_{i}^{\top} \underline{x}+w_{i o} \\
& \underline{w}_{i}=\Sigma^{-1} \underline{\mu}_{i} \\
& w_{i 0}=\ln P\left(\omega_{i}\right)-\frac{1}{2} \underline{\mu}_{i}^{\top} \Sigma^{-1} \underline{\mu}_{i}
\end{aligned}
$$

$\Sigma=\sigma^{2} I$. Then the decision surface has the form

$$
\underline{w}^{\top}\left(\underline{x}-\underline{x}_{0}\right)=0 \text {, where }
$$

$$
\underline{w}=\underline{\mu}_{i}-\underline{\mu}_{j^{\prime}} \text { and }
$$

$$
\underline{x}_{o}=\frac{1}{2}\left(\underline{\mu}_{i}+\underline{\mu}_{j}\right)-\sigma^{2} \ln \frac{P\left(\omega_{i}\right)}{P\left(\omega_{j}\right)} \frac{\underline{\mu}_{i}-\underline{\mu}_{j}}{\left\|\underline{\mu}_{i}-\underline{\mu}_{j}\right\|^{2}}
$$

Example 2: Equal Covariance

$$
\begin{aligned}
& g_{i}(\underline{x})=\underline{w}_{i}^{\top} \underline{x}+w_{i o} \\
& \underline{w}_{i}=\Sigma^{-1} \underline{\mu}_{i} \\
& w_{i 0}=\ln P\left(\omega_{i}\right)-\frac{1}{2} \underline{\mu}_{i}^{\top} \Sigma^{-1} \underline{\mu}_{i}
\end{aligned}
$$

$$
g_{i j}(\underline{x})=\underline{w}^{\top}\left(\underline{x}-\underline{x}_{0}\right)=0 \text { where }
$$

$$
\underline{w}=\Sigma^{-1}\left(\underline{\mu}_{i}-\underline{\mu}_{j}\right)
$$

$$
\underline{x}_{0}=\frac{1}{2}\left(\underline{\mu}_{i}+\underline{\mu}_{j}\right)-\ln \left(\frac{P\left(\omega_{i}\right)}{P\left(\omega_{j}\right)}\right) \frac{\underline{\mu}_{i}-\underline{\mu}_{j}}{\left\|\underline{\mu}_{i}-\underline{\mu}_{j}\right\|_{\Sigma^{-1}}^{2}}
$$

and

$$
\|\underline{x}\|_{\Sigma^{-1}} \equiv\left(\underline{x}^{\top} \Sigma^{-1} \underline{x}\right)^{\frac{1}{2}}
$$

Minimum Distance Classifiers

\square If the two likelihoods have identical covariance AND the two classes are equiprobable, the discrimination function simplifies:

$$
\begin{gathered}
g_{i}(\underline{x})=-\frac{1}{2}\left(\underline{x}-\underline{\mu}_{i}\right)^{\top} \Sigma_{i}^{-1}\left(\underline{x}-\underline{\mu}_{i}\right)+\ln P\left(\omega_{i}\right)+C_{i} \\
g_{i}(\underline{x})=-\frac{1}{2}\left(\underline{x}-\underline{\mu}_{i}\right)^{\top} \Sigma^{-1}\left(\underline{x}-\underline{\mu}_{i}\right)
\end{gathered}
$$

Isotropic Case

\square In the isotropic case,

$$
g_{i}(\underline{x})=-\frac{1}{2}\left(\underline{x}-\underline{\mu}_{i}\right)^{\top} \Sigma^{-1}\left(\underline{x}-\underline{\mu}_{i}\right)=-\frac{1}{2 \sigma^{2}}\left\|\underline{x}-\underline{\mu}_{i}\right\|^{2}
$$

\square Thus the Bayesian classifier simply assigns the class that minimizes the Euclidean distance d_{e} between the observed feature vector and the class mean.

$$
d_{e}=\left\|\underline{x}-\underline{\mu}_{i}\right\|
$$

General Case: Mahalanobis Distance

\square To deal with anisotropic distributions, we simply classify according to the Mahalanobis distance, defined as

$$
\Delta=g_{i}(\underline{x})=\left(\left(\underline{x}-\underline{\mu}_{i}\right)^{T} \Sigma^{-1}\left(\underline{x}-\underline{\mu}_{i}\right)\right)^{1 / 2}
$$

Let $y=U^{t}(x-\mu)$. Then we have,
$\Delta^{2}=y^{t} \Lambda^{-1} y=\sum_{i j} y_{i} \Lambda_{i j}^{-1} y_{j}=\sum_{i} \lambda_{i}^{-1} y_{i}^{2}$,
where $y_{i}=u_{i}^{t}(x-\mu)$.

General Case: Mahalanobis Distance

Let $y=U^{t}(x-\mu)$. Then we have,
$\Delta^{2}=y^{t} \Lambda^{-1} y=\sum_{i j} y_{i} \Lambda_{i j}^{-1} y_{j}=\sum_{i} \lambda_{i}^{-1} y_{i}^{2}$,
where $y_{i}=u_{i}^{t}(x-\mu)$.

Thus the curves of constant
Mahalanobis distance chave ellipsoidal form.

Example:

Given $\omega_{1}, \omega_{2}: \quad P\left(\omega_{1}\right)=P\left(\omega_{2}\right)$ and $p\left(\underline{x} \mid \omega_{1}\right)=N\left(\underline{\mu}_{1}, \Sigma\right), \quad P\left(\underline{x} \mid \omega_{2}\right)=N\left(\underline{\mu}_{2}, \Sigma\right)$, $\underline{\mu}_{1}=\left[\begin{array}{l}0 \\ 0\end{array}\right], \quad \underline{\mu}_{2}=\left[\begin{array}{l}3 \\ 3\end{array}\right], \quad \Sigma=\left[\begin{array}{ll}1.1 & 0.3 \\ 0.3 & 1.9\end{array}\right]$ classify the vector $\underline{x}=\left[\begin{array}{l}1.0 \\ 2.2\end{array}\right]$ using Bayesian classification:

- $\Sigma^{-1}=\left[\begin{array}{cc}0.95 & -0.15 \\ -0.15 & 0.55\end{array}\right]$
- Compute Mahalanobis d_{m} from μ_{1}, μ_{2} :

$$
d_{m, 1}^{2}=\left[\begin{array}{ll}
1.0, & 2.2
\end{array}\right] \Sigma^{-1}\left[\begin{array}{l}
1.0 \\
2.2
\end{array}\right]=2.952, d_{m, 2}^{2}=\left[\begin{array}{ll}
-2.0, & -0.8
\end{array}\right] \Sigma^{-1}\left[\begin{array}{l}
-2.0 \\
-0.8
\end{array}\right]=3.672
$$

- Classify $\underline{x} \rightarrow \omega_{1}$. Observe that $d_{E, 2}<d_{E, 1}$

The Multivariate Normal Distribution: Topics

The Multivariate Normal Distribution
2. Decision Boundaries in Higher Dimensions
3. Parameter Estimation

1. Maximum Likelihood Parameter Estimation
2. Bayesian Parameter Estimation

Maximum Likelihood Parameter Estimation

Suppose we believe input vectors \underline{x} are distributed as $p(\underline{x}) \equiv p(\underline{x} ; \underline{\theta})$, where $\underline{\theta}$ is an unknown parameter. Given independent training input vectors $X=\left\{\underline{x}_{1}, \underline{x}_{2}, \ldots \underline{x}_{N}\right\}$ we want to compute the maximum likelihood estimate $\underline{\theta}_{M L}$ for $\underline{\theta}$. Since the input vectors are independent, we have
$p(X ; \underline{\theta}) \equiv p\left(\underline{x}_{1}, \underline{x}_{2}, \ldots \underline{x}_{N} ; \underline{\theta}\right)=\prod_{k=1}^{N} p\left(\underline{x}_{k} ; \underline{\theta}\right)$

Maximum Likelihood Parameter Estimation

$p(X ; \underline{\theta})=\prod_{k=1}^{N} p\left(\underline{x}_{k} ; \underline{\theta}\right)$
Let $L(\underline{\theta}) \equiv \ln p(X ; \underline{\theta})=\sum_{k=1}^{N} \ln p\left(\underline{x}_{k} ; \underline{\theta}\right)$
The general method is to take the derivative of L with respect to $\underline{\theta}$, set it to 0 and solve for $\underline{\theta}$:

$$
\hat{\theta}_{M L}: \quad \frac{\partial L(\underline{\theta})}{\partial(\underline{\theta})}=\sum_{k=1}^{N} \frac{\partial \ln p\left(\underline{x}_{k} ; \underline{\theta}\right)}{\partial(\underline{\theta})}=\underline{0}
$$

Properties of the Maximum Likelihood Estimator

Let $\underline{\theta}_{0}$ be the true value of the unknown parameter vector.
Then
$\underline{\theta}_{M L}$ is asymptotically unbiased: $\lim _{N \rightarrow \infty} E\left[\underline{\theta}_{M L}\right]=\underline{\theta}_{0}$
$\underline{\theta}_{M L}$ is asymptotically consistent: $\lim _{N \rightarrow \infty} E\left\|\hat{\hat{\theta}}_{M L}-\underline{\theta}_{0}\right\|^{2}=0$

Example: Univariate Normal

Example: Univariate Normal

$$
\begin{gathered}
\ln p\left(\mathbf{x} \mid \mu, \sigma^{2}\right)=-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}-\frac{N}{2} \ln \sigma^{2}-\frac{N}{2} \ln (2 \pi) \\
\mu_{\mathrm{ML}}=\frac{1}{N} \sum_{n=1}^{N} x_{n} \quad \sigma_{\mathrm{ML}}^{2}=\frac{1}{N} \sum_{n=1}^{N}\left(x_{n}-\mu_{\mathrm{ML}}\right)^{2}
\end{gathered}
$$

Example: Univariate Normal

$$
\begin{aligned}
& \mathbb{E}\left[\mu_{\mathrm{ML}}\right]=\mu \\
& \mathbb{E}\left[\sigma_{\mathrm{ML}}^{2}\right]=\left(\frac{N-1}{N}\right) \sigma^{2} \\
& \begin{aligned}
\widetilde{\sigma}^{2} & =\frac{N}{N-1} \sigma_{\mathrm{ML}}^{2} \\
& =\frac{1}{N-1} \sum_{n=1}^{N}\left(x_{n}-\mu_{\mathrm{ML}}\right)^{2}
\end{aligned}
\end{aligned}
$$

Thus $\sigma_{M L}$ is biased (although asymptotically unbiased).

Example: Multivariate Normal

\square Given i.i.d. data $\mathbf{X}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{N}\right)^{\mathrm{T}}$, the log likelihood function is given by

$$
\ln p(\mathbf{X} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=-\frac{N D}{2} \ln (2 \pi)-\frac{N}{2} \ln |\boldsymbol{\Sigma}|-\frac{1}{2} \sum_{n=1}^{N}\left(\mathbf{x}_{n}-\boldsymbol{\mu}\right)^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{n}-\boldsymbol{\mu}\right)
$$

Maximum Likelihood for the Gaussian

Set the derivative of the log likelihood function to zero,

$$
\frac{\partial}{\partial \boldsymbol{\mu}} \ln p(\mathbf{X} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\sum_{n=1}^{N} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{n}-\boldsymbol{\mu}\right)=0
$$

\square and solve to obtain

$$
\boldsymbol{\mu}_{\mathrm{ML}}=\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n} .
$$

\square One can also show that

$$
\boldsymbol{\Sigma}_{\mathrm{ML}}=\frac{1}{N} \sum_{n=1}^{N}\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{\mathrm{ML}}\right)\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{\mathrm{ML}}\right)^{\mathrm{T}} .
$$

(Recall: If \mathbf{x} and \mathbf{a} are vectors, then $\left.\frac{\partial}{\partial \mathbf{x}}\left(\mathbf{x}^{t} \mathbf{a}\right)=\frac{\partial}{\partial \mathbf{x}}\left(\mathbf{a}^{t} \mathbf{x}\right)=\mathbf{a}\right)$

The Multivariate Normal Distribution: Topics

The Multivariate Normal Distribution
2. Decision Boundaries in Higher Dimensions
3. Parameter Estimation

1. Maximum Likelihood Parameter Estimation
2. Bayesian Parameter Estimation

Bayesian Inference for the Gaussian (Univariate Case)

\square Assume σ^{2} is known. Given i.i.d. data
$\mathbf{x}=\left\{x_{1}, \ldots, x_{N}\right\}$, the likelihood function for μ is given by

$$
p(\mathbf{x} \mid \mu)=\prod_{n=1}^{N} p\left(x_{n} \mid \mu\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{N / 2}} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}\right\} .
$$

\square This has a Gaussian shape as a function of μ (but it is not a distribution over μ).

Bayesian Inference for the Gaussian (Univariate Case)

\square Combined with a Gaussian prior over μ,

$$
p(\mu)=\mathcal{N}\left(\mu \mid \mu_{0}, \sigma_{0}^{2}\right) .
$$

\square this gives the posterior

$$
p(\mu \mid \mathbf{x}) \propto p(\mathbf{x} \mid \mu) p(\mu)
$$

\square Completing the square over μ, we see that

$$
p(\mu \mid \mathbf{x})=\mathcal{N}\left(\mu \mid \mu_{N}, \sigma_{N}^{2}\right)
$$

Bayesian Inference for the Gaussian

\square... where

$$
\begin{aligned}
\mu_{N} & =\frac{\sigma^{2}}{N \sigma_{0}^{2}+\sigma^{2}} \mu_{0}+\frac{N \sigma_{0}^{2}}{N \sigma_{0}^{2}+\sigma^{2}} \mu_{\mathrm{ML}}, \quad \mu_{\mathrm{ML}}=\frac{1}{N} \sum_{n=1}^{N} x_{n} \\
\frac{1}{\sigma_{N}^{2}} & =\frac{1}{\sigma_{0}^{2}}+\frac{N}{\sigma^{2}}
\end{aligned}
$$

Shortcut: $p(\mu \mid X)$ has the form $C \exp \left(-\Delta^{2}\right)$.
Get Δ^{2} in form $a \mu^{2}-2 b \mu+c=a(\mu-b / a)^{2}+$ const and identify $\mu_{N}=b / a$

$$
\frac{1}{\sigma_{N}^{2}}=a
$$

\square Note: | | $N=0$ | $N \rightarrow \infty$ | |
| :---: | :---: | :---: | :---: |
| μ_{N} | μ_{0} | μ_{ML} | |
| | σ_{N}^{2} | σ_{0}^{2} | 0 |

Bayesian Inference for the Gaussian

\square Example: $p(\mu \mid \mathbf{x})=\mathcal{N}\left(\mu \mid \mu_{N}, \sigma_{N}^{2}\right)$

Maximum a Posteriori (MAP) Estimation

$p(\mu \mid \mathbf{x})=\mathcal{N}\left(\mu \mid \mu_{N}, \sigma_{N}^{2}\right)$
$\mu_{N}=\frac{\sigma^{2}}{N \sigma_{0}^{2}+\sigma^{2}} \mu_{0}+\frac{N \sigma_{0}^{2}}{N \sigma_{0}^{2}+\sigma^{2}} \mu_{\mathrm{ML}}, \quad \mu_{\mathrm{ML}}=\frac{1}{N} \sum_{n=1}^{N} x_{n}$
$\frac{1}{\sigma_{N}^{2}}=\frac{1}{\sigma_{0}^{2}}+\frac{N}{\sigma^{2}}$.
In MAP estimation, we use the value of μ that maximizes the posterior $p(\mu \mid X)$:
$\mu_{M A P}=\mu_{N}$.

Full Bayesian Parameter Estimation

$\square \ln$ both ML and MAP, we use the training data X to estimate a specific value for the unknown parameter vector $\underline{\theta}$, and then use that value for subsequent inference on new observations $\mathrm{x}: p(\mathbf{x} \mid \underline{\theta})$
\square These methods are suboptimal, because in fact we are always uncertain about the exact value of $\underline{\theta}$, and to be optimal we should take into account the possibility that $\underline{\theta}$ assumes other values.

Full Bayesian Parameter Estimation

\square In full Bayesian parameter estimation, we do not estimate a specific value for $\underline{\theta}$.
\square Instead, we compute the posterior over θ, and then integrate it out when computing $p(x \mid X)$:

$$
\begin{aligned}
& p(\underline{x} \mid X)=\int p(\underline{x} \mid \underline{\theta}) p(\underline{\theta} \mid X) d \underline{\theta} \\
& p(\underline{\theta} \mid X)=\frac{p(X \mid \underline{\theta}) p(\underline{\theta})}{p(X)}=\frac{p(X \mid \underline{\theta}) p(\underline{\theta})}{\int p(X \mid \underline{\theta}) p(\underline{\theta}) d \underline{\theta}} \\
& p(X \mid \underline{\theta})=\prod_{k=1}^{N} p\left(\underline{x}_{k} \mid \underline{\theta}\right)
\end{aligned}
$$

Example: Univariate Normal with Unknown Mean

Consider again the case $p(\underline{x} \mid \mu) \sim N(\mu, \sigma)$ where σ is known and $\mu \sim N\left(\mu_{0}, \sigma_{0}\right)$ We showed that $p(\mu \mid X) \sim N\left(\mu_{N}, \sigma_{N}^{2}\right)$, where

$$
\begin{aligned}
\mu_{N} & =\frac{\sigma^{2}}{N \sigma_{0}^{2}+\sigma^{2}} \mu_{0}+\frac{N \sigma_{0}^{2}}{N \sigma_{0}^{2}+\sigma^{2}} \mu_{\mathrm{ML}}, \quad \mu_{\mathrm{ML}}=\frac{1}{N} \sum_{n=1}^{N} x_{n} \\
\frac{1}{\sigma_{N}^{2}} & =\frac{1}{\sigma_{0}^{2}}+\frac{N}{\sigma^{2}} .
\end{aligned}
$$

In the MAP approach, we approximate $p(\underline{x} \mid \underline{X}) \sim N\left(\mu_{N}, \sigma^{2}\right)$

In the full Bayesian approach, we calculate $p(\underline{x} \mid X)=\int p(\underline{x} \mid \mu) p(\mu \mid X) d \mu$ which can be shown to yield $p(\underline{x} \mid X) \sim N\left(\mu_{N}, \sigma^{2}+\sigma_{N}^{2}\right)$

Comparison: MAP vs Full Bayesian Estimation

$$
p(\underline{x} \mid \underline{X}) \sim N\left(\mu_{N^{\prime}} \sigma^{2}\right)
$$

\square Full Bayesian: $p(\underline{x} \mid x) \sim N\left(\mu_{N}, \sigma^{2}+\sigma_{N}^{2}\right)$
\square The higher (and more realistic) uncertainty in the full Bayesian approach reflects our posterior uncertainty about the exact value of the mean μ.

