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Linear Algebra 

¨  Tutorial this Wed 3:00 – 4:30 in Bethune 228 
¨  Linear Algebra Reviews: 

¤ Kolter, Z., avail at 
http://cs229.stanford.edu/section/cs229-linalg.pdf 

¤ Prince, Appendix C (up to and including C.7.1) 
¤ Bishop, Appendix C 
¤ Roweis, S., avail at 

http://www.cs.nyu.edu/~roweis/notes/matrixid.pdf 
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Credits 

¨  Some of these slides were sourced and/or modified 
from: 
¤ Christopher Bishop, Microsoft UK 
¤ Simon Prince, University College London 
¤ Sergios Theodoridis, University of Athens & Konstantinos 

Koutroumbas, National Observatory of Athens 
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The Multivariate Normal Distribution:  Topics 

1.  The Multivariate Normal Distribution 
2.  Decision Boundaries in Higher Dimensions 
3.  Parameter Estimation 

1.  Maximum Likelihood Parameter Estimation 
2.  Bayesian Parameter Estimation 
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The Multivariate Gaussian 

MATLAB Statistics Toolbox Function:   
mvnpdf(x,mu,sigma) 
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Orthonormal Form 

  
where Δ ≡ Mahalanobis distance from µ  to x

See Linear Algebra Review Resources on Moodle site  
for a review of eigenvectors. 

  Let ui  and λi  represent the ith  eigenvector/eigenvalue pair of Σ :  Σui = λiui

MATLAB Statistics Toolbox Function:   
mahal(x,y) 

MATLAB Functions:   
[V, D]= eig(A) 
[V, D]= eigs(A, k) 

   Let A∈D×D .  λ  is an eigenvalue and u is an eigenvector of A if Au = λu.
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Orthonormal Form 

 

Since it is used in a quadratic form, we can assume that Σ−1 is symmetric.
This means that all of its eigenvalues and eigenvectors are real.

 We are also implicitly assuming that Σ, and hence Σ−1, are invertible (of full rank).

  

Thus Σ can be represented in orthonormal form:  Σ =UΛUt ,
where the columns of U  are the eigenvectors ui  of Σ, and 

Λ is the diagonal matrix with entries Λ ii = λi  equal to the corresponding eigenvalues of Σ. 

  

Thus the Mahalanobis distance Δ2  can be represented as:

Δ2 = x − µ( )t Σ−1 x − µ( ) = x − µ( )t UΛ−1Ut x − µ( ).

  

Let y =Ut x − µ( ). Then we have,

Δ2 = y tΛ−1y = yiΛ ij
−1y j

ij
∑ = λi

−1yi
2

i
∑ , 

where yi = ui
t x − µ( ).
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Geometry of the Multivariate Gaussian 

  
Δ = Mahalanobis distance from µ  to x

   
where (u

i
,λ

i
) are the ith eigenvector and eigenvalue of Σ.

   or y = U(x - µ)
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Moments of the Multivariate Gaussian  

thanks to anti-symmetry of z  
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Moments of the Multivariate Gaussian  



5.1 Application:  Face Detection 
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Model # 1: Gaussian, uniform covariance 

Pixel 1 

Pi
xe

l 2
 

m face m non-face 

Fit model using maximum likelihood criterion 

s  Face 

59.1 

s  non-face 

69.1 
Face ‘template’ 

 1/ 2
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Model 1 Results 
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Pr
(H

it)
 

Pr(False Alarm) 

Results based on 200 cropped faces and 200 non-faces from 
the same database.  

How does this work with a 
real image? 

Receiver-Operator Characteristic (ROC) 
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Model # 2: Gaussian, diagonal covariance 

Pixel 1 

Pi
xe

l 2
 

m face m non-face 
Fit model using maximum likelihood criterion 

s  Face 
 

s  non-face 

 1/ 2
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1

Model 2 Results 
Pr

(H
it)

 

Pr(False Alarm) 

Results based on 200 cropped faces and 200 non-faces from 
the same database.  

Diagonal 
Uniform 

More sophisticated 
model unsurprisingly 
classifies new faces 
and non-faces better. 
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Model # 3: Gaussian, full covariance 

Pixel 1 

Pi
xe

l 2
 

Fit model using maximum 
likelihood criterion 

PROBLEM:  we cannot fit this model.  We 
don’t have enough data to estimate the full 
covariance matrix. 
 
N=400 training images 
D=10800 dimensions 
 
Total number of measured numbers =  
ND = 400x10,800 = 4,320,000   
 
Total number of parameters in cov matrix = 
(D+1)D/2	  	  =	  (10,800+1)x10,800/2 = 
58,325,400  

 1/ 2
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The Multivariate Normal Distribution:  Topics 

1.  The Multivariate Normal Distribution 
2.  Decision Boundaries in Higher Dimensions 

3.  Parameter Estimation 
1.  Maximum Likelihood Parameter Estimation 
2.  Bayesian Parameter Estimation 
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Decision Surfaces 

¨  If decision regions Ri and Rj 
are contiguous, define�

¨  Then the decision surface �

separates the two decision 
regions.  g(x) is positive on 
one side and negative on the 
other.�

�

   

Ri :  P ω i | x( ) > P ω j | x( )

Rj :   P ω j | x( ) > P ω i | x( )

   g(x) ≡ P(ω i | x) − P(ω j | x)

+ 
 -   g(x) = 0   g(x) = 0
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Discriminant Functions 

20 ¨  If f (.) monotonic, the rule remains the same if we use: 

 

¨                is a discriminant function 

¨  In general, discriminant functions can be defined in other ways, 
independent of Bayes.   

¨  In theory this will lead to a suboptimal solution 

¨  However, non-Bayesian classifiers can have significant advantages: 

¤  Often a full Bayesian treatment is intractable or computationally prohibitive. 

¤  Approximations made in a Bayesian treatment may lead to errors avoided 
by non-Bayesian methods. 

	  

  x → ω i  if:  f (P (ω i x )) > f (P (ω j x))  ∀ i ≠ j

   gi (x) ≡ f (P (ω i | x))
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Multivariate Normal Likelihoods 

21 ¨  Multivariate Gaussian pdf 

  

p(x ω i ) =
1

(2π )
D
2 Σi

1
2
exp − 1

2 (x − µ i )
Τ Σi

−1 (x − µ i )
⎛

⎝⎜
⎞

⎠⎟

µ i = E x ω i
⎡
⎣

⎤
⎦

Σi = E (x − µ i )(x − µ i )
Τ ω i

⎡
⎣

⎤
⎦  
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Logarithmic Discriminant Function 

22 

¨        is monotonic.  Define:  ln(⋅)

  gi (x) = ln p x | ω i( )P ω i( )( ) = ln p x | ω i( ) + lnP (ω i )

  

= − 1
2 (x − µ i )

T Σi
−1 (x − µ i ) + lnP (ω i ) + Ci

where
Ci = − D

2 ln2π − 1
2 ln Σi

  

p(x ω i ) =
1

(2π )
D
2 Σi

1
2
exp − 1

2 (x − µ i )
Τ Σi

−1 (x − µ i )
⎛

⎝⎜
⎞

⎠⎟
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Quadratic Classifiers 

¨  Thus the decision surface has a quadratic form. 
¨  For a 2D input space, the decision curves are quadrics (ellipses, 

parabolas, hyperbolas or, in degenerate cases, lines). 

  
gi (x) = − 1

2 (x − µ i )
T Σi

−1 (x − µ i ) + lnP (ω i ) + Ci
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Example:  Isotropic Likelihoods 

24 

¨  Suppose that the two likelihoods are both isotropic, but with different means and 
variances.  Then 

 

¨  And    will be a quadratic equation in 2 variables. 
   
gi (x) = − 1

2σ i
2 (x1

2 + x2
2) + 1

σ i
2 (µi 1x1 + µi2x2) −

1
2σ i

2 (µi 1
2 + µi2

2 ) + ln P ω i( )( ) + Ci

  gi (x) − gj (x) = 0

  
gi (x) = − 1

2 (x − µ i )
T Σi

−1 (x − µ i ) + lnP (ω i ) + Ci
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Equal Covariances 

¨  The quadratic term of the decision boundary is 
given by 

¨  Thus if the covariance matrices of the two 
likelihoods are identical, the decision boundary is 
linear. 

  
gi (x) = − 1

2 (x − µ i )
T Σi

−1 (x − µ i ) + lnP (ω i ) + Ci

   
1
2 xT Σ j

−1 − Σi
−1( )x
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Linear Classifier 

¨  In this case, we can drop the quadratic terms and express the 
discriminant function in linear form: 

  
gi (x) = − 1

2 (x − µ i )
T Σ−1 (x − µ i ) + lnP (ω i ) + Ci

  

gi (x) = w i
T x +wio

w i = Σ−1µ i

wi 0 = lnP (ω i ) −
1
2 µ

T
iΣ

−1µ i
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Example 1: Isotropic, Identical Variance 

  

Σ = σ 2I.  Then the decision surface 
has the form
wT (x − xo ) = 0,  where
w = µ i − µ j ,  and

xo = 1
2 (µ i + µ j ) − σ 2 ln P (ω i )

P (ω j )
µ i − µ j

µ i − µ j

2

  

gi (x) = w i
T x +wio

w i = Σ−1µ i

wi 0 = lnP (ω i ) −
1
2 µ

T
iΣ

−1µ i

Decision  
Boundary 
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Example 2: Equal Covariance 

  

gi (x) = w i
T x +wio

w i = Σ−1µ i

wi 0 = lnP (ω i ) −
1
2 µ

T
iΣ

−1µ i

  gij (x) = wT (x − x 0) = 0

  w = Σ−1 (µ i − µ j ),

  

x 0 = 1
2 (µ i + µ j ) − ln P (ω i )

P (ω j )
⎛

⎝
⎜

⎞

⎠
⎟

µ i − µ j

µ i − µ j

2

Σ−1

,

and

x
Σ−1 ≡ (xT

Σ−1x)
1
2

where 
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Minimum Distance Classifiers 

¨  If the two likelihoods have identical covariance AND 
the two classes are equiprobable, the discrimination 
function simplifies: 

  
gi (x) = − 1

2 (x − µ i )
T Σi

−1 (x − µ i ) + lnP (ω i ) + Ci

  
gi (x) = − 1

2 (x − µ i )
T Σ−1 (x − µ i )
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Isotropic Case 

¨  In the isotropic case, 

¨  Thus the Bayesian classifier simply assigns the class 
that minimizes the Euclidean distance de between the 
observed feature vector and the class mean. 

  
gi (x) = − 1

2 (x − µ i )
T Σ−1 (x − µ i ) = − 1

2σ 2 x − µ i
2

 de = x − µ i
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General Case:  Mahalanobis Distance 

¨  To deal with anisotropic distributions, we simply classify according 
to the Mahalanobis distance, defined as�

  Δ = gi (x) = (x − µ i )
T Σ−1 (x − µ i )( )1/2

  

Let y =Ut x − µ( ). Then we have,

Δ2 = y tΛ−1y = yiΛ ij
−1y j

ij
∑ = λi

−1yi
2

i
∑ , 

where yi = ui
t x − µ( ).
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General Case:  Mahalanobis Distance 

  
Thus the curves of constant 
Mahalanobis distance c  have ellipsoidal form.

  

Let y =Ut x − µ( ). Then we have,

Δ2 = y tΛ−1y = yiΛ ij
−1y j

ij
∑ = λi

−1yi
2

i
∑ , 

where yi = ui
t x − µ( ).



Probability & Bayesian Inference 

J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition 

33 

  

Given ω 1 , ω2 :   P (ω 1 ) = P(ω2 ) and p(x ω 1 ) = N(µ1 ,  Σ), p(x ω2 ) = N(µ2 ,  Σ),

µ1 =
0
0

⎡

⎣
⎢

⎤

⎦
⎥ ,   µ2 = 3

3
⎡

⎣
⎢

⎤

⎦
⎥ ,   Σ = 1.1 0.3

0.3 1.9
⎡

⎣
⎢

⎤

⎦
⎥

classify the vector x = 1.0
2.2

⎡

⎣
⎢

⎤

⎦
⎥ using Bayesian classification: 

 
•  Σ-1 = 0.95 −0.15

−0.15 0.55
⎡

⎣
⎢

⎤

⎦
⎥

  

•  Compute Mahalanobis dm  from µ1 , µ2 :

d2
m,1 = 1.0, 2.2⎡⎣ ⎤⎦ Σ

−1 1.0
2.2

⎡

⎣
⎢

⎤

⎦
⎥ = 2.952, d2

m,2 = −2.0, −0.8⎡⎣ ⎤⎦ Σ−1 −2.0
−0.8

⎡

⎣
⎢

⎤

⎦
⎥ = 3.672

  •   Classify  x → ω 1.  Observe that dE ,2 < dE ,1

Example: 
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The Multivariate Normal Distribution:  Topics 

1.  The Multivariate Normal Distribution 
2.  Decision Boundaries in Higher Dimensions 
3.  Parameter Estimation 

1.  Maximum Likelihood Parameter Estimation 
2.  Bayesian Parameter Estimation 
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Maximum Likelihood Parameter Estimation 

35 

  

Suppose we believe input vectors x  are distributed as

p(x) ≡ p(x;θ ),  where θ  is an unknown parameter.

Given independent training input vectors X = x1,x2 , ...xN{ }
we want to compute the maximum likelihood estimate θML  for θ.

Since the input vectors are independent, we have

p(X;θ ) ≡ p(x 1, x2 , ...xN;θ ) = Π
k=1

N

p(xk;θ )
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Maximum Likelihood Parameter Estimation 

36 

  
p(X;θ ) = Π

k=1

N

p(xk;θ )

  

Let L(θ ) ≡ ln p(X;θ ) = Σ
k=1

N

ln p(xk;θ )

The general method is to take the derivative of L

with respect to θ ,  set it to 0 and solve for θ :

θ̂ML :   
∂L(θ )

∂(θ )
=

∂ln p(xk;θ )

∂(θ )k=1

N

∑ = 0
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Properties of the Maximum Likelihood Estimator 

37 

  

Let θ 0  be the true value of the unknown parameter vector.
Then
θML  is asymptotically unbiased: lim

  N→∝
E[θML ] = θ 0

θML  is asymptotically consistent: lim
N→∞

E θ̂ML − θ 0
2
= 0
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Example: Univariate Normal 

Likelihood	  func6on	  
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Example:  Univariate Normal 
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Example:  Univariate Normal 

  Thus σML
 is biased (although asymptotically unbiased).
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Example:  Multivariate Normal 

¨  Given i.i.d. data                             , the log likeli-
hood function is given by 
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Maximum Likelihood for the Gaussian  

¨  Set the derivative of  the log likelihood function to zero, 

¨  and solve to obtain 

¨  One can also show that 

  

Recall:  If x and a  are vectors, then 
∂
∂x

x
t
a( ) =

∂
∂x

a
t
x( ) = a

⎛
⎝⎜

⎞
⎠⎟
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The Multivariate Normal Distribution:  Topics 

1.  The Multivariate Normal Distribution 
2.  Decision Boundaries in Higher Dimensions 
3.  Parameter Estimation 

1.  Maximum Likelihood Parameter Estimation 
2.  Bayesian Parameter Estimation 
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¨  Assume     is known. Given i.i.d. data 
                           , the likelihood function for 
   is given by 

¨  This has a Gaussian shape as a function of   (but it 
is not a distribution over  ). 

 σ
2

µ

µ

µ

Bayesian Inference for the Gaussian (Univariate Case) 
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Bayesian Inference for the Gaussian (Univariate Case) 

¨  Combined with a Gaussian prior over   , 

¨  this gives the posterior 

¨  Completing the square over   , we see that 

µ

µ
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Bayesian Inference for the Gaussian 

¨  … where 

¨  Note: 
  

Shortcut:  p µ | X( )  has the form C exp −Δ
2( ).

Get Δ2  in form aµ2
− 2bµ +c = a(µ −b / a)2 + const and identify

µ
N
= b / a

1

σ
N

2
= a



Probability & Bayesian Inference 

J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition 

47 

Bayesian Inference for the Gaussian 

¨  Example: 

 

µ
0
= 0

µ = 0.8

σ
2
= 0.1
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Maximum a Posteriori (MAP) Estimation 

  

In MAP estimation, we use the value of µ that maximizes

the posterior p µ | X( ) :
µ

MAP
= µ

N
.
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Full Bayesian Parameter Estimation 

¨  In both ML and MAP, we use the training data X to 
estimate a specific value for the unknown parameter 
vector θ, and then use that value for subsequent 
inference on new observations x:   

¨  These methods are suboptimal, because in fact we 
are always uncertain about the exact value of θ, 
and to be optimal we should take into account the 
possibility that θ assumes other values. 

   p x | θ( )
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Full Bayesian Parameter Estimation 

¨  In full Bayesian parameter estimation, we do not 
estimate a specific value for θ. 

¨  Instead, we compute the posterior over θ, and then 
integrate it out when computing   : 

   
p x | X( )

  

p(x X ) = p(x θ )p(θ X )dθ∫

p(θ X ) =
p(X θ )p(θ )

p(X )
=

p(X θ )p(θ )

p(X θ )p(θ )dθ∫

p(X θ ) = Π
k=1

N

p(xk θ )
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Example:  Univariate Normal with Unknown Mean 

    Consider again the case p(x µ) N µ,σ( )where σ  is known and µ  N µ0,σ 0( )
     We showed that p µ|X( )  N µN ,σ N

2( ) , where 

    In the MAP approach, we approximate p(x X )  N µN ,σ 2( )

  In the full Bayesian approach, we calculate p(x X ) = p(x | µ)p(µ X ) dµ∫

    which can be shown to yield p(x X )  N µN ,σ 2 + σ N
2( )
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Comparison:  MAP vs Full Bayesian Estimation 

¨  MAP: 

¨  Full Bayesian: 

¨  The higher (and more realistic) uncertainty in the full 
Bayesian approach reflects our posterior 
uncertainty about the exact value of the mean μ. 

    p(x X )  N µN ,σ 2( )

    p(x X )  N µN ,σ 2 + σ N
2( )


