
1 CSE 3401 F 2012

flow of control, negation,
cut, 2nd order programming,
tail recursion

Yves Lespérance
Adapted from Peter Roosen-Runge

2 CSE 3401 F 2012

simplicity hides complexity

  simple and/or composition of goals
hides complex control patterns

  not easily represented by traditional
flowcharts

  may not be a bad thing
  want important aspects of logic and

algorithm to be clearly represented and
irrelevant details to be left out

3 CSE 3401 F 2012

procedural and declarative
semantics

  Prolog programs have both a
declarative/logical semantics and a
procedural semantics

  declarative semantics: query holds if it
is a logical consequence of the program

  procedural semantics: query succeeds if
a matching fact or rule succeeds, etc.
-  defines order in which goals are attempted,

what happens when they fail, etc.

4 CSE 3401 F 2012

and & or

  Prolog’s and (,) & or (; and alternative
facts and rules that match a goal) are
not purely logical operations

  often important to consider the order in
which goals are attempted
-  left to right for “,” and “;”
-  top to bottom for alternative facts/rules

5 CSE 3401 F 2012

and is not always
commutative, e.g.

  sublistV1(S, L):- append(_, L1, L),
 append(S, _, L1).

 i.e. S is a sublist of L if L1 is any suffix of L
and S is a prefix of L1

  sublistV2(S, L):- append(S, _, L1),
 append(_, L1 ,L).

 i.e. S is a sublist of L if S is a prefix of some
list L1 and L1 is any suffix of L

6 CSE 3401 F 2012

and is not always
commutative, e.g.

  ?- sublistV1([c,b], [a, b, c, d]).
false.

  sublistV2([c,b], [a, b, c, d]).
ERROR: Out of global stack
why?

7 CSE 3401 F 2012

uses of or (;)

  or “;” can be used to regroup several
rules with the same head

  e.g.
 parent(X,Y):- mother(X,Y); father(X,Y).

  can improve efficiency by avoiding
redoing unification

  “;” has lower precedence than “,”

8 CSE 3401 F 2012

Prolog negation

  Prolog uses “\+”, “not provable” or
negation as failure

  different from logical negation
  ?- \+ goal. succeeds if ?- goal. fails
  interpreting \+ as negation amounts to

making the closed-world assumption

9 CSE 3401 F 2012

example

  Given program:
 human(ulysses). human(penelope).
 mortal(X):- human(X).

  ?- \+ human(jason).
 Yes

  In logic, the axioms corresponding to
the program don’t entail
¬Human(Jason).

10 CSE 3401 F 2012

semantics of free variables in
\+ is “funny”

  normally, variables in a query are
existentially quantified from outside
 e.g. ?- p(X), q(X). represents “there
exists x such that P(x) & Q(x)”

  but ?- \+ (p(X), q(X)). represents “it is
not the case that there exists x such
that P(x) & Q(x)”

11 CSE 3401 F 2012

To avoid this problem

  \+ works correctly if its argument is
instantiated

  so for example in
 intersect([X|L], Y, I):-
 \+ member(X,Y), intersect(L,Y,I).
 X and Y should be instantiated

12 CSE 3401 F 2012

example

  Given program:
 animal(cat). vegetable(turnip).

  ?- \+ animal(X), vegetable(X).
 No why?

  ?- vegetable(X),\+ animal(X).
 X = turnip why?

13 CSE 3401 F 2012

guarding the “else”

  can’t rely on implicit negation in
predicates that can be redone

  in predicates with alternative rules,
each rule should be logically valid (if
backtracking can occur)

  safest thing is repeating the condition
with negation

14 CSE 3401 F 2012

e.g. intersect

  intersect([], _, []).
 intersect([X|L], Y, [X|I]):-
 member(X,Y), intersect(L, Y, I).
 intersect([X|L], Y, I):-
 \+ member(X,Y), intersect(L, Y, I).
 is OK.

15 CSE 3401 F 2012

e.g. intersect

  intersect([], _, []).
 intersect([X|L], Y, [X|I]):-
 member(X,Y), intersect(L, Y, I).
 intersect([_|L], Y, I):-intersect(L, Y, I).
 is buggy.
 ?- intersect([a], [b, a], []). succeeds.
 why?

16 CSE 3401 F 2012

inhibiting backtracking

  the cut operator “!” is used to control
backtracking

  If the goal G unifies with H in program
 H :- ….
 H :- G1,…,Gi, !, Gj,…, Gk.
 H :- … .
 and gets past the !, and Gj,…, Gk fails,
 then the parent goal G immediately fails. G1,…,
Gi won’t be retried and the subsequent
matching rules won’t be attempted.

17 CSE 3401 F 2012

Using ! e.g. intersect

  cut can be used to improve efficiency,
e.g.
 intersect([], _, []).
 intersect([X|L], Y, [X|I]):-
 member(X,Y), intersect(L, Y, I).
 intersect(([X|L], Y, I):-
 \+ member(X,Y), intersect(L, Y, I).
 retests member(X,Y) twice

18 CSE 3401 F 2012

e.g. intersect

  using cut, we can avoid this
 intersect([], _, []).
 intersect([X|L], Y, [X|I]):-
 member(X,Y), !, intersect(L, Y, I).
 intersect([_|L], Y, I):-intersect(L, Y, I).

  means that the last 2 rules are a
conditional branch

19 CSE 3401 F 2012

cut can be used to define
useful features

  If goal G should be false when C1,…, Cn
holds, can write
 G :- C1,…, Cn, !, fail.

  not provable can be defined using cut
 \+ G :- G, !, fail.
 \+ G.

20 CSE 3401 F 2012

control predicates

  true (really success), e.g.
 G :- Cond1; Cond2; true.

  fail (opposite of true)
  repeat (always succeeds, infinite

number of choice points)
 loopUntilNoMore:- repeat, doStuff,

 checkNoMore.
 but tail recursion is cleaner, e.g.
 loop :- doStuff, (checkNoMore; loop).

21 CSE 3401 F 2012

forcing all solutions

test :- member(X, [1, 2, 3]),
 nl, print(X),
 fail.

% no alternative sols for print(X) and nl
% but member has alternative sols
?- test.
1
2
3
No

22 CSE 3401 F 2012

2nd order features: bagof &
setof

  ?- bagof(T,G,L). instantiates L to the list
of all instances of T such for which G
succeeds, e.g.
 ?- bagof(X,(member(X,[2,5,7,3,5],X >= 3),L).
 X = _G172
 L = [5, 7, 3, 5]
 Yes

23 CSE 3401 F 2012

2nd order features: bagof &
setof

  setof is similar to bagof except that it removes
duplicates from the list, e.g.
 ?- setof(X,(member(X,[2,5,7,3,5],X >= 3),L).
 X = _G172
 L = [3, 5, 7]
 Yes

  can collect values of several variables, e.g.
 ?- bagof(pair(X,Y),(member(X,[a,b]),member(Y,[c,d])),
 L).
 X = _G157
 Y = _G158
 L = [pair(a, c), pair(a, d), pair(b, c), pair(b, d)]
 Yes

24 CSE 3401 F 2012

2nd order features

  setof and bagof are called 2nd order
features because they are queries about
the value of a set or relation

  in logic, this is quantification over a set
or relation

  not allowed in first order logic, but can
be done in 2nd order logic

25 CSE 3401 F 2012

entering and leaving

  Trace steps are labelled:
Call: enter the procedure
Exit: exit successfully with bindings for

variable
Fail: exit unsuccessfully
Redo: look for an alternative solution

  4 ports model

26 CSE 3401 F 2012

Tail recursion optimization in
Prolog

  suppose have goal A and rule A’ :- B1,
B2, …, Bn-1, Bn. and A unifies with A’
and B2, …, Bn-1 succeed

  if there are no alternatives left for A and
for B2, …, Bn-1 then can simply replace A
by Bn on execution stack

  in such cases the predicate A is tail
recursive

  nothing left to do in A when Bn succeeds
or fails/backtracks, so we can replace
call stack frame for A by Bn’s; recursion
can be as space efficient as iteration

27 CSE 3401 F 2012

e.g. factorial

  simple implementation:
 fact(0,1).
 fact(N,F):- N > 0, N1 is N – 1,
 fact(N1,F1), F is N * F1.

  close to mathematical definition
  cut not tail-recursive
  requires O(N) in stack space

28 CSE 3401 F 2012

e.g. factorial

  better implementation:
 fact(N,F):- fact1(N,1,F).
 fact1(0,F,F).
 fact1(N,T,F):- N > 0, T1 is T * N,
 N1 is N – 1, fact1(N1,T1,F).

  uses accumulator
  is tail-recursive and each call can

replace the previous call
  can prove correctness

29 CSE 3401 F 2012

e.g. append

  append([],L,L).
 append([X|R],L,[X|RL]):-
 append(R,L,RL).

  append is tail recursive if first argument is
fully instantiated

  Prolog must detect the fact that there are no
alternatives left; may depend on clause
indexing mechanism used

  use of unification means more relations are tail
recursive in Prolog than in other languages

30 CSE 3401 F 2012

split

split([],[],[]).
split([X],[X],[]).
split([X1,X2|R],[X1|R1],[X2|R2]):-
 split(R,R1,R2).

Tail recursive!

31 CSE 3401 F 2012

merge

merge([],L,L).
merge(L,[],L).
merge([X1|R1],[X2|R2],[X1|R]):-

 order(X1,X2), merge(R1,[X2|R2],R).
merge([X1|R1],[X2|R2],[X2|R]):-

 not order(X1,X2), merge([X1|R1],R2,R).

Tail recursive, but lack of alternatives may be

hard to detect (can use cut to simplify).

32 CSE 3401 F 2012

merge sort

mergesort([],[]).
mergesort([X],[X]).
mergesort(L,S):- split(L,L1,L2),
 mergesort(L1,S1),
 mergesort(L2,S2),
 merge(S1,S2,S).

33 CSE 3401 F 2012

for more on tail recursion

  see Sterling & Shapiro The Art of Prolog
Sec. 11.2

