
CSE 3401 3.0 Functional and Logic Prog/Intro to AI and LP Dept. of Computer Science & Eng
Fall 2012 York University

Assignment 2
Total marks: 50.

Out: October 21
Due: November 12 at noon

Note: Your report for this assignment should be the result of your own individual work.
Take care to avoid plagiarism (“copying”). You may discuss the problems with other stu-
dents, but do not take written notes during these discussions, and do not share your written
solutions.

1. [20 points] This exercise involves transforming a polynomial into a list of terms in
normal form. We assume a polynomial is given as a sum and/or difference of

• terms, each of which is either

– a coefficient or
– a variable raised to a power or
– a coefficient * a variable raised to a power.

• A coefficient is a constant expression.

• A constant expression is

– a numerical constant or
– a symbolic constant or
– an algebraic expression involving no variables.

• A variable raised to a power is

– a variable or
– a variable ** non-negative integer.

Expressions are parenthesized if necessary, following the usual rules for operator
precedence (* has higher precedence than +, etc.).

The same power may occur in two different terms and there is no restriction on the
order of the terms. Here are three examples of polynomials in the variable x which
illustrate all the cases above:

2
-100 + x*a - 2*x**7
x**3 - (a+b) - 0.5 * x**3 + x

1

The examples above show that, in the usual mathematical notation, polynomials
don’t have a completely regular structure: some terms have an exponent, some in-
clude a variable and some don’t, etc. But programs which do symbolic algebra typ-
ically operate on algebraic expressions expressed in a normal form with a uniform
structure, in order to simplify the calculations. This exercise asks you to define and
test Prolog predicates to transform a polynomial into a normal form in which

• each term in the polynomial sum has a coefficient, variable and a non-negative
integer exponent, with the coefficient preceding the variable;

• the polynomial itself is presented not as a sum or difference but as a list of terms
which are understood to be summed;

• the terms are listed in descending order by exponent;

• terms with the same exponent are regrouped into a single term in the normal
form.

For this purpose, define two Prolog predicates transformed/3 and
transformedTerms/3 as follows:

• transformed(Term, Variable, Result) computes or tests a Result
term which is algebraically equal to the Term, but is of the form

Coefficient*Variable**Power

For example, transformed(-5, z, -5*z**0) should succeed.

• transformedTerms(Polynomial, Variable, Result) computes
a list of the terms in Polynomial with each term transformed into normal
form. As an example,

transformTerms(-100 + x*a - 2*x**7, x,
[-2*x**7, a*x**1, -100*x**0])

should succeed.

Most of the work will go into the transformed predicate. In order to get a better
feel for declarative programming, avoid introducing unnecessary variables into the
clauses. For example,

transformed(-Var, Var, (-1)*Var**1).

is much better than the equivalent

transformed(Term, Var, Result):- Term = -Var,
Result = (-1)*Var**1.

2

You may wish to reduce your programming by using built-in predicates, for exam-
ple, sort/2. To learn about built-in predicates and the SWI-Prolog library, you can
download the SWI reference manual available at http://www.swi-prolog.org.
You can also get some information from the help/1 and apropos/1 predicates
in SWI-Prolog. For example,

?- apropos(sort).
sort/2 Sort elements in a list
msort/2 Sort, do not remove duplicates
keysort/2 Sort, using a key
predsort/3 Sort, using a predicate to determine the order
merge/3 Merge two sorted lists
merge_set/3 Merge two sorted sets

Yes

?- help(sort/2).
sort(+List, -Sorted)

Succeeds if Sorted can be unified with a list holding the elements
of List, sorted to the standard order of terms (see section 4.6).
Duplicates are removed. The implementation is in C, using natural
merge sort.

Submit both your Prolog code in file q1.pl and your test results in the file q1tests.txt.
Provide enough tests to convince yourself and the reader that your implementation is
correct. Document your code appropriately.

2. [30 points] In this exercise, we use Prolog to implement a subset of an abstract pro-
cess algebra which can be used to analyze concurrent processes. Expressions in the
algebra describe the structure of a process constructed from primitive actions that
can be carried out in a particular system. An expression in a process algebra can be
tested to see if the process described by the expression has a particular property, for
example, whether the process can be proved to eventually terminate. Each primitive
action A in the process/system must be declared by asserting primAction(A).

A process is then defined as one of the following:

• 0 (the empty process – nothing left to do), a primitive action,

• A > P: a sequence of a primitive action A followed by a process P,

• P1 ? P2: a non-deterministic branching that either does process P1 or pro-
cess P2,

3

• P1 | P2: interleaved concurrent execution of process P1 and P2.

• P1 $ P2: synchronized concurrent execution of processeses P1 and P2.

• ProcName: a call to the procedure named ProcName.

Procedures are defined by asserting defproc(ProcName,Body)where ProcName
is a symbol that is the procedure’s name and Body is a process expression that is the
procedure’s body. When the procedure’s name occurs in a process expression, it can
be replaced by procedure’s body. Procedures can be recursive, for example:

defproc(iterDoSomething, doSomething > iterDoSomething ? 0).

which performs the primitive action doSomething 0 or more times.

We impose the following restrictions on recursive procedure definitions: their body
cannot contain the concurrent execution constructs; and they must always perform at
least one primitive action before making a recursive call.

Among the process composition operators we assume that sequence > has highest
precedence, followed by nondeterministic branch ?, then interleaved concurrency |,
and finally synchronous concurrency $. Parentheses can be used to override this.
You can obtain the right precendence in Prolog by using the following declarations:

:- op(700,xfy,>).
:- op(800,xfy,?).
% | is predefined as xfy with precedence 1100
:- op(1120,xfy,$).

The execution of processes can be defined in terms of transitions. Let P1-A-P2
mean that process P1 can do a single step by performing action A leaving process P2
remaining to be executed. We can define this relation as follows:

• 0 - A - P is always false.

• A - A - 0 holds (where A is a primitive action), i. e., an action that has
completed leaves nothing more to be done.

• (A > P) - A - P (where A is a primitive action), i.e., doing a step of a
sequence (A > P) involves doing the initial action A leaving P to be done
afterwards.

• (P1 ? P2) - A - P holds if either P1 - A - P holds or
P2 - A - P holds.

• (P1 | P2) - A - P holds if either P1 - A - P11 holds and
P = (P11 | P2), or P2 - A - P21 holds and P = (P1 | P21)

4

• (P1 $ P2) - A - P holds if both P1 - A - P11 holds and
P2 - A - P21 holds and P = (P11 | P21)

• ProcName - A - P holds if ProcName is the name of a procedure that
has body B and B - A - P holds.

We can define this in Prolog as follows:

A-A-0 :- primAct(A).
(A > P)-A-P :- primAct(A).
(P1 ? P2)-A-PR :- P1-A-PR ; P2-A-PR.
(P1 | P2)-A-(P1R | P2) :- P1-A-P1R.
(P1 | P2)-A-(P1 | P2R) :- P2-A-P2R.
(P1 $ P2)-A-(P1R $ P2R) :- P1-A-P1R, P2-A-P2R.
PN-A-PR :- defproc(PN,PB), PB-A-PR.

We can also define a predicate final(P) that holds when process P may legally
terminate. The definition in Prolog is as follows:

final(0).
final(P1 ? P2):- final(P1); final(P2).
final(P1 | P2):- final(P1), final(P2).
final(P1 $ P2):- final(P1), final(P2).
final(P):- defproc(P,B), final(B).

An execution of a process is a sequence of transitions, which we will represent by a
list [P1, A1, P2, A2, ...], such that for all i > 0, Pi - Ai - Pi+1.
A complete execution is an execution where the last process is final or cannot
make any further transitions.

Let’s look at a few simple examples:

• (a1 > a2 > a3) has only one complete execution: [(a1 > a2 > a3),
a1, (a2 > a3), a2, a3, a3, 0]

• ((a1 > a2) | a3) has 3 complete executions:
[((a1 > a2) | a3), a1, (a2 | a3), a2, (0 | a3), a3, (0
| 0)],
[((a1 > a2) | a3), a1, (a2 | a3), a3, (a2 | 0), a2, (0
| 0)], and
[((a1 > a2) | a3), a3, ((a1 > a2) | 0), a1, (a2 | 0),
a2, (0 | 0)];
interleaved concurrency interleaves the actions of the component processes.

5

• (a1 $ a1) has one complete execution: [(a1 $ a1), a1, (0 $ 0)];
when we use synchronous concurrency, both component processes advance.

• (a1 $ a2) has no executions; synchronous concurrent processes can only
advance if they perform the same action.

• p1 where defproc(p1, a1 > p1) has the infinite execution [p1, a1,
p1, a1, ...].

Let’s now look at some more interesting examples.

Example 1:
This is a simple example of processes that can deadlock; the processes try to acquire
two locks in different orders.

Actions: acquireLock1, acquireLock2, releaseLock1, releaseLock2,
doSomething

Process definitions:

defproc(deadlockingSystem, user1 | user2 $
lock1s0 | lock2s0 | iterDoSomething).

defproc(user1, acquireLock1 > acquireLock2 > doSomething >
releaseLock2 > releaseLock1).

defproc(user2, acquireLock2 > acquireLock1 > doSomething >
releaseLock1 > releaseLock2).

defproc(lock1s0, acquireLock1 > lock1s1 ? 0).
defproc(lock1s1, releaseLock1 > lock1s0).
defproc(lock2s0, acquireLock2 > lock2s1 ? 0).
defproc(lock2s1,releaseLock2 > lock2s0).
defproc(iterDoSomething, doSomething > iterDoSomething ? 0).
defproc(oneUserSystem, user1 $ lock1s0 | lock2s0 | iterDoSomething).

The process deadlockingSystemmay deadlock. The single user version oneUserSystem
cannot deadlock.

Example 2:
In this example, there is producer process that generates data and a consumer process
that consumes it. The data is stored in a buffer can handle up to 3 items. The buffer
can overflow and underflow. One can use synchronization actions to avoid this.

Actions: produce, consume, underflow, overflow, notFull, notEmpty

Process definitions:

6

defproc(producerConsumerSyst,
producer | consumer | faults $ bufferS0).

defproc(producer, notFull > produce > producer).
defproc(consumer, notEmpty > consume > consumer).
defproc(faults, underflow ? overflow).
defproc(bufferUF, notFull > produce > bufferUF ?

produce > bufferUF ?
consume > bufferUF).

defproc(bufferS0, notFull > produce > bufferS1 ?
produce > bufferS1 ?
consume > underflow > bufferUF).

defproc(bufferS1, notFull > produce > bufferS2 ?
produce > bufferS2 ?
consume > bufferS0 ?
notEmpty > consume > bufferS0).

defproc(bufferS2, notFull > produce > bufferS3 ?
produce > bufferS3 ?
consume > bufferS1 ?
notEmpty > consume > bufferS1).

defproc(bufferS3, produce > overflow > bufferOF ?
consume > bufferS2 ?
notEmpty > consume > bufferS2).

defproc(bufferOF, produce > bufferOF ?
consume > bufferOF ?
notEmpty > consume > bufferOF).

defproc(producerConsumerSystBuggy,
producerB | consumerB | faults $ bufferS0).

defproc(producerB, produce > producerB).
defproc(consumerB, consume > consumerB).

a) Define a Prolog predicate run(P,R) that holds iff R is a complete execution of
process P. Also define a print run(R) predicate that prints executions in a
readable way. Test this (at least) on the oneUserSystem and deadlockingSystem
examples.

b) Define a Prolog predicate has infinite run(P) that holds iff process P has
an infinite run (this happens only if there is a there is a cycle in the configuration
graph). Test this (at least) on the examples above.

c) Define a Prolog predicate deadlock free(P) that holds iff process P cannot
reach a deadlocked configuration, i.e., a configuration where the process is not
final but cannot make any further transition. Test this (at least) on all the
examples above.

7

d) Define a Prolog predicate cannot occur(S,A) that holds iff there is no ex-
ecution of process P where action A occurs (an instance of checking a safety
property). Test (at least) cannot occur(P,overflow) on the two ver-
sions of the producer-consumer example.

e) Define a Prolog predicate whenever eventually(S,A1,A2) that holds iff
in all executions of process P, whenever action A1 occurs, action A2 occurs
afterwards (a instance of checking a liveness property). Test (at least)
whenever eventually(P,produce,consume) on the two versions of
the producer-consumer example.

For all the parts of the question, provide enough tests to convince yourself and the
reader that your implementation is correct. The tests can involve very simple pro-
cesses where it is easy to see what should happen. Submit both your Prolog code in
file q2.pl and your test results in the file q2tests.txt. Document your code
appropriately.

To hand in your report for this assignment, put all the required files in a directory a2answers
and submit it electronically by the deadline. To submit electronically, use the following
Prism lab command:

submit 3401 a2 a2answers

Your Prolog code should work correctly on Prism.

8

