
RAPL-3
Language Reference Guide

UMI-R3-210

ii RAPL-3 Reference Guide

RAPL-3 Language Reference Guide
Revision Revision History Date

001 Initial release as UMI-R3-210 for C500C.
CROS 1.16.

99-05

001a CROS 2.0.1080. Recent revision information is in the release notes on
the diskettes.

99-09

001b Replaced references to the Application Development Guide with
references to the Robot System Software Documentation Guide.

00-11

Copyright © 2000 CRS Robotics Corporation

RAPL-3 and RAPL are trademarks of CRS Robotics Corporation and may be used to describe only CRS
Robotics products.

All brand names and product names used in this guide are trademarks, registered trademarks, or trade names
of their respective holders.

The information in this document is subject to change without notice.

CRS Robotics Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. CRS Robotics Corporation
assumes no responsibility for any errors that may appear in this document. CRS Robotics Corporation makes
no commitment to update nor to keep current the information contained in this document.

CRS Robotics Corporation software products shall remain the property of CRS Robotics Corporation.

Questions about the RAPL-3 programming language can be directed to the Customer Support Department.

RAPL-3 and robot training courses are offered at CRS Robotics in Burlington, Ontario, Canada, or can be
conducted at your facility. For additional information contact the Customer Support Department.

Additional copies of this guide, or other CRS Robotics literature, may be obtained from the Sales Department
or from your distributor.

CRS Robotics Corporation

Mail/Shipping:
 5344 John Lucas Drive, Burlington, Ontario L7L 6A6, Canada
Telephone:
 1-905-332-2000
Telephone (toll free in Canada and United States):
 1-800-365-7587
Facsimile:
 1-905-332-1114
E-Mail (General):
 info@crsrobotics.com
E-Mail (Customer Support):
 support@crsrobotics.com
Web:
 www.crsrobotics.com

RAPL-3 Reference Guide iii

CRS Licence Agreement
IMPORTANT! – READ CAREFULLY BEFORE OPENING SOFTWARE PACKET(S)
By opening the sealed packet(s) containing the software, you indicate your
acceptance of the following CRS Licence Agreement.

A. CRS LICENCE AGREEMENT
This is a legal binding agreement between you, the end user, (either an individual
or an entity) and CRS Robotics Corporation (“CRS”). By opening the sealed
software packages and/or by using the SOFTWARE program you agree to be
bound by the terms of this Agreement. If you do not agree to the terms of this
Agreement, promptly return the unopened software and the accompanying items
(including printed materials and binders or other containers) to CRS for a full
refund.

If you are acting on behalf of a corporation, you represent to CRS that you are
authorized to act on behalf of such organization and that your assent to the
terms of this Agreement creates a legally enforceable obligation on your
organization. As used herein, “you” and “your” refers to you and any
organization on behalf of which you are acting.

This Agreement together with any applicable CRS Agreement embodies the entire
understanding between the parties with respect to, and supersedes any prior
understanding or agreement, oral or written, relating to the SOFTWARE.

B. CRS ROBOTICS CORPORATION (“CRS”) SOFTWARE
LICENCE
1. GRANT OF LICENCE: This Licence Agreement permits you to use one copy of
the enclosed CRS “POLARA” software program (“SOFTWARE”) on a single
computer. The SOFTWARE is in “use” on a computer when it is loaded into
temporary memory (ie. RAM) or installed into permanent memory (e.g. hard disk,
CD-ROM, or other storage device) of that computer. However, installation on a
network for the sole purpose of internal distribution shall not constitute “use” for
which a separate licence is required, provided you have a separate licence for
each computer which the SOFTWARE is distributed. In no event may the total
number of users on a network exceed the number of licences acquired for a
network.

If you make additional copies of the SOFTWARE or its accompanying
documentation contrary to this Agreement, or if the number of users is greater
than that for which you have paid a licence fee, CRS may require that you
immediately make payment to CRS for such copies and/or such use at the
current list price. This remedy is in addition to any other remedies that CRS may
have against you.

2. UPGRADES: Upgrades to SOFTWARE may be provided by CRS at a 20%
annual cost of the original price of the software. If the SOFTWARE is an upgrade
from another software product licensed to you, whether a CRS product or a third-
party product, the SOFTWARE must be used and transferred in conjunction with
the upgraded product, unless you destroy the upgraded product. You are
authorized to use the SOFTWARE only if you are an authorized user of a
qualifying product as determined by CRS.

3. COPYRIGHT: The SOFTWARE (including any images, photographs,
animations, video, audio, music and text incorporated into the SOFTWARE is
owned by CRS and is protected by copyright laws and international treaty
provisions. Therefore, you must treat the SOFTWARE like any other copyrighted

iv RAPL-3 Reference Guide

material except that you may make up to two archival copies of the SOFTWARE
for the sole purpose of protecting your investment from loss. You may not copy
the documentation accompanying the SOFTWARE.

4. OTHER RESTRICTIONS: You may not rent or lease the SOFTWARE. You may
not reverse engineer, decompile, or disassemble the SOFTWARE. This licence
does not grant you any right to any enhancement or update to the SOFTWARE.
Any enhancements and updates, if available, may be obtained from CRS at
current pricing, terms and conditions.

5. TERMINATION: The licence will terminate automatically if you fail to comply
with the limitations described herein.

6. GOVERNING LAWS: If you acquired this product in Canada, this Agreement
is governed by the laws of the Province of Ontario. Each of the parties hereto
irrevocably attorns to the jurisdiction of the courts of Ontario and further agrees
to commence any litigation which may arise hereunder in the courts located in
the Judicial District of York, Province of Ontario.

If you acquired this product in the United States, this Agreement is governed by
the laws of the state of Washington.

U.S. Government Restricted Rights. Use, duplication or disclosure by the
Government is subject to restrictions set forth in subparagraphs (a) through (d) of
the Commercial Computer-Restricted Rights clause at FAR 52.227-10 when
applicable, or in paragraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013, and in similar clauses in the NASA FAR
Supplement. Contract/manufacturer is CRS Robotics Corporation, 5344 John
Lucas Dr. Burlington, ON Canada L7L 6 A6.

C. LIMITED WARRANTY
LIMITED WARRANTY: CRS warrants that the SOFTWARE will perform
substantially in accordance with the accompanying materials for a period of 60
days. The liability of CRS and your exclusive remedy shall be limited to the
amount paid by you for the SOFTWARE and its accompanying documentation.

NO OTHER WARRANTIES: The SOFTWARE is provided on an “as is” basis. To
the maximum extent permitted by applicable law. CRS disclaims all other
warranties, express or implied, including, but not limited to, implied warranties
of merchantability and fitness for a particular purpose, with regard to the
SOFTWARE and the accompanying printed materials.

The entire risk as to the results and performance of the SOFTWARE is assumed
by you. In particular, CRS does not accept any responsibility for any portions of
the SOFTWARE which have been modified by you or on your behalf.

NO LIABILITY FOR CONSEQUENTIAL DAMAGES: In no event shall CRS or its
distributors be liable for any damages whatsoever (including but not limited to
damages for loss of business profits, business interruption, loss of business
information or other pecuniary loss) arising out of the use or inability to use the
SOFTWARE or its accompanying documentation, even if CRS has been advised of
the possibility of such damages. The entire liability of CRS under this Agreement
with respect to the SOFTWARE shall be limited to the amount paid by you for the
SOFTWARE and its accompanying documentation.

RAPL-3 Reference Guide v

External Copyright Notices
CROS and RAPL-3 contain portions of code that are copyrighted by other
organizations. CRS Robotics Corp. acknowledges the following copyrights.

The Regents of the University of California

Copyright (c) 1993 The Regents of the University of California.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must
display the following acknowledgement:
This product includes software developed by the University of California,
Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Sun Microsystems, Inc.

Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.

Developed at SunPro, a Sun Microsystems, Inc. business.

Permission to use, copy, modify, and distribute this software is freely granted,
provided that this notice is preserved.

Carnegie Mellon University

Mach Operating System

Copyright (c) 1992, 1991 Carnegie Mellon University

All Rights Reserved.

Permission to use, copy, modify and distribute this software and its
documentation is hereby granted, provided that both the copyright notice and
this permission notice appear in all copies of the software, derivative works or
modified versions, and any portions thereof, and that both notices appear in
supporting documentation.

vi RAPL-3 Reference Guide

CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS
SOFTWARE.

Winning Strategies, Inc.

Copyright (c) 1993

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must
display the following acknowledgement:
This product includes software developed by Winning Strategies, Inc.

4. The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

RAPL-3 Reference Guide vii

Contents at a Glance
Preface ... 1

Chapter 1

General Program Format... 5

Chapter 2

Data Types and Variables ... 13

Chapter 3

Expressions, Assignment, and Operators 35

Chapter 4

Constants .. 41

Chapter 5

Control Flow... 47

Chapter 6

Subroutines, Functions and Commands 57

Chapter 7

Preprocessor Directives... 69

Chapter 8

Structured Exception Handling... 77

Chapter 9

Library Subprograms.. 81
Subprograms: Category Listing ... 91
Subprograms: Alphabetical Listing.. 139

APPENDICES

Signals... 341

viii RAPL-3 Reference Guide

RAPL-3 Reference Guide ix

Contents

Preface ... 1
Documentation Conventions ... 2

Text and Programming Code .. 2
Commands and Keywords.. 3
name_of_command/keyword ... 3

Related Resources... 4

Chapter 1

General Program Format... 5
Example 1: Basic Program in RAPL-II Style 6
Example 2: Basic Program in Preferred RAPL-3 Style...... 7

The Main Program... 8
main ... 8

Lines of a Program .. 9
Comments .. 10
Labels... 11
Keywords.. 12

Chapter 2

Data Types and Variables ... 13
Basic Data Types .. 14

int... 14
float .. 14
string .. 14
cloc... 14
ploc... 14
void... 15

Identifiers ... 16
Character Set .. 16
Case ... 16
Length .. 16
Examples .. 16

Declarations ... 17
Explicit Declarations ... 17
Implicit Declarations ... 17
Implicit with Explicit ... 18
Identifiers.. 18

Strings ... 19
String[number] .. 19
String[] .. 19
Notes: ... 19
Termination .. 20
Concatenation... 20

Arrays .. 21
Teachables.. 23

Use ... 23
Variable (v3) File.. 23
Declarations.. 23
Limitations.. 24
Defaults and Unteachables .. 25

User-Defined Types ... 26
Pointers .. 27

Dereferencing.. 27
Address-of Operator .. 27

x RAPL-3 Reference Guide

Enumerated Types...28
Record Structures ...29
Unions ..30
Initializers ...31
Named Constants ..32
Sizeof() Function..33

sizeof() ...33
Dimof() Function..34

dimof() ...34

Chapter 3

Expressions, Assignment, and Operators35
Variable References ...36
Assignment statements..37
Operators ..38
Type Casts ..40

Chapter 4

Constants ...41
Numeric Constants..42

Integer Constants ..42
Alphanumeric Constants..42
Floating Point Constants ..42

String Constants ...43
Location Constants..45

Chapter 5

Control Flow ...47
break...48
case...48
continue ..49
do..50
for ...50
goto ...51
if ...52
loop ...54
while ...54

Chapter 6

Subroutines, Functions and Commands57
Subprograms...58
Kinds of Subprograms ...59

subs ..59
funcs ...59
commands ...60

Parameters..62
Restrictions on Parameters...62

Func, Sub, and Command Prototypes64
Libraries..65
Variable and Subprogram Scope ..66

A Scope Example ...66
Relevant Statements..67

with...67
return..67

RAPL-3 Reference Guide xi

Chapter 7

Preprocessor Directives... 69
File Inclusion.. 70

Macro Substitution.. 71
Conditional Compilation .. 72

Preprocessor Directives in General 73
The Preprocessor Directives... 74

.define... 74

.error .. 74

.ifdef ... 74

.ifndef ... 74

.include... 75

.number “filename” .. 75

.undef ... 75
Using the Compiler from the Command Line...................... 76

Chapter 8

Structured Exception Handling... 77
try-except Construct ... 78

Syntax .. 78
Related Keywords and Subprograms.................................. 80

Chapter 9

Library Subprograms.. 81
General... 82

Libraries ... 82
Return Values and Errors.. 82
Subprogram Names... 82

RAPL-II to RAPL-3... 84

Subprograms: Category Listing ... 91
Analog Input... 94
Calibration ... 95
Configuration File Handling .. 96
Date and Time .. 97
Device Input and Output... 98
Digital Input and Output... 99
Environment Variables.. 100
Error Message Handling.. 101
File Input and Output ... 105

Flags... 105
Field width .. 105
.precision .. 105
x or X.. 105
Unformatted Input .. 105
Formatted Input .. 106
Unformatted Output.. 106
Formatted Output ... 106

File and Device System Management 107
Front Panel... 109

Status Window.. 109
Panel Button Subprograms.. 110

Gripper... 111
Home.. 112
Location ... 113

Kinematic Conversion.. 113
Data Manipulation .. 113

xii RAPL-3 Reference Guide

Flags ...113
Math ...114
Memory...115
Motion...116
Pendant...118

Pendant Library Commands118
Pointer Conversion and Function pointers........................120
Robot Configuration...121
Signals ..124
Stance...125
Status ...126
String Manipulation...127
System Process Control ...129

Single and Multiple Processes.....................................129
Operating System Management130
Point of Control and Observation................................130

Tool Transform and Base Offset131
v3 Files ...132

Background ...132
Architecture for v3 Subprograms................................133
Parameters ..133
Subs, Funcs, and Commands.....................................134

Win 32 ..136
Win 32 Commands...136
Types Used With Win 32 Commands136

Subprograms: Alphabetical Listing ..139
Reading Subprogram Entries......................................140
Using Subprograms ...141
abort ...142
accel_get ..142
accel_set ..142
accels_get ..143
accels_set ..143
access..144
acos...145
addr_decode...145
addr_to_file ..146
addr_to_line ...146
align ..146
analogs_get ..147
app_close...148
app_open ...148
appro...149
appros ...149
argc ...150
argv ...150
armpower ..151
asin ...151
atan2...152
axes_get...152
axes_set...153
axis_status ..153
base_get...154
base_set...154
boardtemp_get ...155
build_cloc ..155
build_ploc ..156
calibrate ..156

RAPL-3 Reference Guide xiii

call_ifunc .. 156
calrdy ... 157
calzc ... 157
cfg_load... 158
cfg_load_fd .. 159
cfg_save .. 160
cfg_save_fd.. 160
chdir ... 161
chmod... 161
chr_is_lower .. 162
chr_is_upper ... 162
chr_to_lower.. 162
chr_to_upper ... 163
clear_error .. 163
close ... 164
closenp ... 164
conf_get .. 165
confirm_menu ... 165
connectnp ... 166
cos.. 166
cpath .. 166
ctl_get ... 167
ctl_give.. 167
ctl_rel.. 168
ctpath ... 168
ctpath_go .. 169
deg.. 169
delay... 170
depart ... 170
departs ... 171
disconnectnp... 172
dup... 172
dup2... 172
environ ... 173
err_compare .. 174
err_compose.. 175
err_get_b1 ... 176
err_get_b2 ... 176
err_get_code .. 177
err_get_subsys .. 177
error_addr... 178
error_code ... 178
error_line .. 179
error_file ... 179
execl ... 179
execv... 180
exit ... 182
fabs .. 182
finish .. 183
flock.. 183
fprint .. 184
fprintf ... 185
freadline.. 186
fstat .. 187
ftime ... 188
gains_get... 188
gains_set... 189
get_ps ... 189
getenv ... 191

xiv RAPL-3 Reference Guide

getopt ..191
getpid ..193
getppid ..193
grip..193
grip_cal..194
grip_close...194
grip_finish ...195
grip_open...195
gripdist_get ..196
gripdist_set ..196
gripisfinished ...197
gripper_stop...197
griptype_get ...198
griptype_set ...198
halt ...199
heap_set ..199
heap_size ...200
heap_space ..200
here...201
home ...201
homezc ..201
hsw_offset_get..202
iabs ...202
input ...203
inputs..203
ioctl ...204
jog_t ..205
jog_ts...207
jog_w ...208
jog_ws..209
joint...210
joint_to_motor..210
joint_to_world ..211
jointlim_get..211
jointlim_set ..212
limp...212
linacc_get...213
linacc_set...213
link..214
linklen_get ...214
linklen_set ...215
linspd_get ..215
linspd_set ..215
ln ..216
loc_cdata_get ...216
loc_cdata_set ...217
loc_check...217
loc_class_get ..217
loc_class_set ..218
loc_flags_get...218
loc_flags_set...219
loc_machtype_get ...219
loc_machtype_set ...220
loc_pdata_get ...220
loc_pdata_set ...220
loc_re_check ..221
lock ...221
log ...221
MAJOR..222

RAPL-3 Reference Guide xv

malarm ... 222
maxvel_get .. 223
maxvel_set .. 223
maxvels_get... 224
maxvels_set... 224
mem_alloc... 225
mem_free .. 225
memcopy .. 226
memset ... 226
memstat.. 227
MINOR.. 227
mkdir.. 227
mknod .. 228
module_name_get.. 228
motor.. 229
motor_to_joint ... 229
motor_to_world.. 230
mount... 230
move... 231
moves ... 232
msleep .. 232
mtime ... 233
net_in_get ... 233
net_ins_get.. 234
net_out_set ... 234
net_outs_get.. 234
net_outs_set.. 235
nolimp .. 235
obs_get.. 235
obs_rel .. 236
onbutton... 236
online ... 237
open ... 238
opennp.. 240
output... 240
output_get... 241
output_pulse ... 242
output_set... 242
outputs ... 242
outputs_get ... 243
outputs_set ... 244
panel_button... 244
panel_button_wait ... 244
panel_buttons ... 245
panel_light_get .. 246
panel_light_set .. 246
panel_lights_get... 247
panel_lights_set... 247
panel_status.. 247
pdp_get ... 248
pdp_set ... 248
pendant_bell ... 248
pendant_chr_get.. 249
pendant_close ... 249
pendant_cursor_pos_set .. 250
pendant_cursor_set ... 250
pendant_flush ... 250
pendant_home... 251
pendant_home_clear.. 251

xvi RAPL-3 Reference Guide

pendant_open ..251
pendant_write ..252
pipe ...252
pitch..253
pitchs ..254
pos_axis_set...255
pos_get ..255
pos_set ..256
pow ...256
print ..256
printf ...257
rad ..258
rand ..259
rand_in..259
rcv...260
read...261
readdir...262
readline ...263
reads ...263
readsa ...264
ready ...265
rmdir ...265
robot_abort ..265
robot_cfg_save..266
robot_error_get...266
robot_flag_enable ...267
robot_info ..267
robot_mode_get ..267
robot_move ..268
robot_odo...268
robot_servo_stat...269
robot_type_get..269
robotisdone..269
robotisfinished ...270
robotishomed...270
robotislistening ..271
robotispowered...271
roll ..271
rolls...272
rotacc_get ..273
rotacc_set ..273
rotspd_get..274
rotspd_set..274
seek...274
select_menu...275
sem_acquire...276
sem_release ...276
sem_test ..277
send ..277
server_get ..278
server_info ...279
server_protocol...279
server_set ..280
server_version..280
setenv..280
setprio ...281
shift_t ..282
shift_w...283
shutdown ..284

RAPL-3 Reference Guide xvii

sig_arm_set ... 284
sig_mask_set ... 285
sigfifo.. 285
sigmask .. 286
signal.. 286
sigsend ... 287
sin .. 287
size_to_bytes ... 287
sizeof .. 288
snprint.. 288
snprintf... 289
socketpair ... 289
speed .. 290
speed_get .. 290
speed_set .. 291
split .. 291
sqrt... 292
srand .. 293
stance_get ... 293
stance_set ... 294
startup.. 295
stat ... 295
statfs .. 296
statusnp ... 297
str_append.. 298
str_chr_find... 298
str_chr_get .. 299
str_chr_rfind ... 299
str_chr_set .. 300
str_cksum... 300
str_dup ... 300
str_edit ... 301
str_error.. 301
str_len .. 302
str_len_set... 302
str_limit .. 303
str_limit_set .. 303
str_scanf ... 304
str_signal .. 305
str_sizeof... 305
str_substr ... 306
str_subsys... 306
str_to_float .. 306
str_to_int .. 307
str_to_lower... 307
str_to_upper.. 308
sync.. 308
sysconf.. 308
sysid_string... 309
tan.. 309
teach_menu .. 310
time .. 310
time_set .. 310
time_to_str .. 311
tool_get ... 311
tool_set ... 312
tx.. 313
txs .. 313
ty.. 314

xviii RAPL-3 Reference Guide

tys ...315
tz...316
tzs ...316
units_get..317
units_set..318
unlink ...318
unlock ...319
unmount ...319
unsetenv..319
utime...320
v3_save_on_exit ...320
v3_vars_save..321
va_arg_get..321
va_arg_type..322
var_teach...323
vars_save...323
verstring_get ..323
waitpid ..324
WEXITSTATUS...325
WIFEXITED ...325
WIFSIGNALED...325
world_to_joint ..326
world_to_motor ..326
write ..327
writeread ...327
writes ..328
WTERMSIG..328
wx ...329
wxs..329
wy ...330
wys..330
wz ...331
wzs..331
xpulses_get ..332
xpulses_set ..332
xratio_get...333
xratio_set...333
xrot ...333
xrots..334
yaw..335
yaws..335
yrot ...336
yrots..337
zero ...338
zrot..338
zrots ..339

APPENDICES

Signals..341

Preface

This guide is a reference manual to the RAPL-3 programming language. It
contains a comprehensive description of the language including subroutines,
functions, and commands in the standard libraries.

This guide is for users who have a basic understanding of RAPL-3 or a good
understanding of programming concepts.

2 Preface

Documentation Conventions
This guide uses the following documentation conventions.

Text and Programming Code
Example Description Explanation

ready()
grip_close()
finish()

evenly
spaced
computer
font

Programming code. In syntax
sections, required characters that
must be included.

gripdist_set(distance)
motor(axis,pulses,c)
if expression

italics User supplied item. Can be simple
(integer, variable) or complex
(expression, statements)

align_X|align_Y
M_READ|M_WRITE
X|Y|Z

vertical pipe
or bar

A choice between two or more
items. One must be chosen unless
it is optional (in square brackets).

place[3]
message[2,2]
data[10,4,7]

square
brackets
in arrays

Required characters of array
syntax. Must be included.

grip_close([force])
home([axis][,axis])
...[flags] [x|X]...

square
brackets
in any other
part of code

Optional items in code. Can be
included or omitted depending on
the needs of the program.

lock(7)
...
unlock(7)

three dots
on one line
or
on three
lines

Omitted code of the example. A
place for additional material which
is not specified.

\ (backslash)
_ (underscore)
" (double quote)

character(s)
with
description(s)
in
parentheses.

Characters referred to in the text
which need to be clearly identified.

use with
to end
when here

bold Names of commands, functions,
keywords, etc. used in the text
which could be confused.

RAPL-3 Reference Guide 3

Commands and Keywords
The following documentation conventions are used for

• all subroutines, functions, and commands in libraries

• all flow control statements

• other keywords (main, return, comment, sizeof)

 name_of_command/keyword
 Description A description of the functionality of this subroutine, function, command, control

statement, or keyword.

 Details of usage.

 Caution Any characteristics that could create a problem.

 Syntax Required characters are in non-italic monospace font. Programmer-
supplied identifiers and constructs are in italics. Optional items are in [square
brackets]. Long lines may carry over onto a second line on the printed page, but
in a program must be written either on one line or with a \ (backslash) line
continuation character.

 Subroutines, functions, and commands are given in declaration form.

 Parameters
Arguments

 A list with explanations and types.

 Where a parameter is a standard-library defined enum or struct, the members
are listed.

 Returns The return value of the function or command which also indicates success or
error.

 Example An example of use in a program.

 Result The example's result, if applicable.

 See Also Any related RAPL-3 commands, functions, subroutines, statements, keywords, or
topics, described in this Reference Guide.

 System Shell
Application Shell

 An equivalent command in the CROS/RAPL-3 system shell or application shell,
described in the Robot Systems Sof.tware Documentation Guide.

 RAPL-II Any similar RAPL-II commands.

 Category The category of this and related commands which are listed in the category
section.

4 Preface

 Related Resources
 Related material can be found in these documents.

• Release notes on the diskettes.

• Robot Systems Software Documentation Guide
A guide for developing your robotic application using all components of your
robot system: arm, controller, teach pendant, personal computer, Robcomm3,
RAPL-3 programs, application shell, and system shell.

• F3 Robot System Installation Guide

• A465 Arm and C500 Controller User Guides

• A255 Arm and C500 Controller User Guides

 C H A P T E R 1

 General Program Format

All RAPL-3 programs follow the same general format. Some elements are
required. Other elements are optional depending on the complexity of the
program.

6 General Program Format

Example 1: Basic Program in RAPL-II Style
 A basic program can contain

• only a main function

 and follow a style similar to RAPL-II

• implicit declarations of variables

• familiar RAPL-II command names

 main function main ;; begin program

fast = 50 ;; implicitly declare and initialize integers
slow = 25
z = 1

speed(fast) ;; set speed
move(_safe) ;; move and implicitly declare cartesian location

do ;; begin do loop

appro(_a,5) ;; pick from location a, implicitly declare location
grip_open(100)
grip_finish()
move(_a)
finish()
grip_close(100)
grip_finish()
depart(5)

move(_safe) ;; move to safe location between pick and place

appro(_b,5) ;; place at location b, implicitly declare location
move(_b)
finish()
grip_open(100)
grip_finish()
depart(5)

move(_safe) ;; move to safe location between place and pick
z = z + 1 ;; increment counter in loop

until z == 10 ;; condition to end do loop

end main ;; end program

RAPL-3 Reference Guide 7

 Example 2: Basic Program in Preferred RAPL-3 Style
 A basic program can contain

• a main function

• a subroutine

 and follow the preferred style of RAPL-3

• explicit declarations of variables, including teachables

 subroutine

main function

 sub io(int out_channel, int out_state, int in_channel)
int in_state
output(out_channel, out_state)
do

delay(250)
input(in_channel, in_state)

until (in_state) == 1
end sub

main

int i ;; explicitly declare variables
teachable int fast, slow, cycles ;; explicitly declare teachable variables
teachable cloc safe, a, b ;; explicitly declare teachable locations

move(safe)
speed(fast)

for i = 1 to cycles ;; use a for loop
;; cycles is teachable, set outside

appro(a,5)
grip_open(100)
io(1,1,2)
speed(slow)
move(a)
grip_close(100)
depart(5)

speed(fast)
move(safe)

appro(b,5)
io(3,1,4)
speed(slow)
move(b)
grip_open(100)
depart(5)

speed(fast)
move(safe)

end for

end main

8 General Program Format

 The Main Program
 Every RAPL-3 program contains a main function.

 main
 Description A required function for each program. Requires main and end main to indicate

the beginning and the end of the main function.

 main is the place in the program where execution begins.

 The main function may not call itself.

 Syntax main
statement(s)

end main

 Returns Main does not have to explicitly return a value. By default, 0 (zero) is returned.
Any integer could be returned.

 Example main
teachable cloc pick, place
move(pick)
grip_close()
move(place)
grip_open()

end main

 RAPL-II RAPL-II did not have a function or structure similar to main. RAPL-II's STOP
command had a purpose similar to end main.

RAPL-3 Reference Guide 9

 Lines of a Program
 A RAPL-3 program consists of a number of lines of ASCII text. Statements and
declarations are terminated by the line end.

 Line Continuation

 To continue on the next line, end a line with the \ (backslash) character. For
example

 a = b + c + d \
+ e + f

 is read as one statement.

 Without the continuation character
 a = b + c + d

+ e + f

 the first part of the statement ends at the end of the first line and is read as a
statement. The second part is a fragment which causes a syntax error when
compiling.

 Lines that end with , (a comma) are automatically considered to be continued.
For example,
 printf(“The coordinates are {}, {}, {}\n”,

x, y, z)

10 General Program Format

 Comments
 A comment starts with ;; (two semicolons) and extends to the end of the line. A
comment can start at the beginning of a line or after some program code. For
example:

 ;; calculate the position error:

 x_error = x_pos - desired_x_pos ;; for the x-axis
y_error = y_pos - desired_y_pos ;; for the y-axis
z_error = z_pos - desired_z_pos ;; for the z axis

RAPL-3 Reference Guide 11

Labels
 A statement can be marked with a special identifier called a label. The label has ::
(two colons) after the identifier. A labels is used as the target of a goto statement.

 Syntax
 label_identifier:: statement

 where
label_identifier is the name of the label and follows the rules for identifiers,

and
statement is the statement line being labelled.

 The statement can be an empty line.

 Examples
 my_label:: current_location = num

start_again::

12 General Program Format

 Keywords
 The following identifiers are keywords of RAPL-3. They are reserved for the RAPL-
3 language and cannot be redefined. In particular, the following keywords
cannot be used as the name of any variable, subroutine, function, or command:

and

break

_builtin

case

cloc

command

comment

const

continue

do

else

elseif

end

enum

except

export

float

for

func

global

gloc

goto

if

ignore

import

int

libversion

loop

main

mod

not

of

or

ploc

private

proto

raise

resume

return

retry

sizeof

static

step

string

struct

sub

teachable

then

to

try

typedef

union

unteachable

until

var

void

volatile

while

with

 C H A P T E R 2

 Data Types and Variables

 RAPL-3 programs can work with many different types of data and also permits
user-defined data types. This chapter presents the basic data types supported by
RAPL-3, and goes on to look at the kinds of user-defined types that can be
constructed.

14 Data Types and Variables

 Basic Data Types
 RAPL-3 supports the following basic data types.

 Name Description Size (bytes)

 int 32-bit signed integer
(Range: -2147483648 to +2147483647)

 4

 float IEEE single precision floating point
(Range: ±1.7 x 10±38)

 4

 string variable length string
(Range: 0 to 65535 8-bit characters)

 4 + number of
characters

 cloc cartesian location 36

 ploc precision location 36

 void used for forming generic pointers —

 int
 An int, or integer, is a signed number without any decimal or fractional part.
Examples: 0, 1, 23, 456, -7, -89

 float
 A float, or floating point number, is a number with a decimal or fractional part
and an optional exponent. A float has up to seven significant digits.
Examples: 4.75, -99.99, 1.0, 3.141593, 1.0e10

 string
 A string is a set of characters: uppercase or lowercase letters, digits,
punctuation and other graphic characters, and the blank space. In a string, a
digit is a character and does not have numeric value as it does in a number (int
or float). RAPL-3 does not have a character data type.

 cloc
 A cloc, or cartesian location, represents a point in the robot arm workspace
defined by cartesian co-ordinates. Coordinates have three translational elements
(along axes) x, y, and z, and three rotational elements (around axes) z, y, and x.
The values of a cloc are independent of arm position and arm type.

 ploc
 A ploc, or precision location, represents a point in the robot arm workspace
defined by increments of rotational movement, specifically encoder counts, of
each joint of the arm and any additional axes (j1, j2, j3, j4, j5, j6, j7, j8). The
values of a ploc are dependent on the robot.

RAPL-3 Reference Guide 15

gloc [Not for general user]
 void
 The void type is used to form void pointers (pointers that can point to any type).

void@ x
Void pointers are assignment compatible with all other types of pointers.

16 Data Types and Variables

 Identifiers
 An identifier is used for the name of a variable, type, subroutine, function, or
command.

 Character Set
 An identifier begins with a letter. This may be followed by zero or more letters,
digits, or _ (underscore) characters.

 a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9
_

 Case
 Letters may be either uppercase (ABCDE), lowercase (abcde), or mixed (AbCdE).
RAPL-3 is case-sensitive with identifiers. For example, the following are all
different identifiers.

 x ;; lowercase
X ;; uppercase
symbol ;; lowercase
SYMBOL ;; uppercase
sYmBoL ;; mixed
SyMbOl ;; mixed

 Length
 An identifier may be any length, but only the first 32 characters are significant.
For example, the following are not different identifiers.

 location_sensor_data_collection_1
location_sensor_data_collection_2

 Examples
 There are many possibilities of valid identifiers.

 Valid
 a ;; a single letter
num ;; several letters
my_symbol ;; letters with underscore
MySymbol ;; letters of different cases
x3 ;; letter with digit
rack_loc_12 ;; letters, underscores, digits

 Invalid
 3a ;; begins with a digit, not a letter
my$symbol ;; uses a character not in the valid character set
&num ;; uses a character not in the valid character set

;; and does not begin with a letter

RAPL-3 Reference Guide 17

 Declarations
 This section details the declaration of: int, float, string, cloc, and ploc. For the
declaration of arrays of these types, see the Arrays section. For const, see the
Initializers section.

 Each variable must be declared as one specific type of variable (int, float, string,
cloc, ploc, const). A declaration states the type of variable and the name of the
variable.

 You can declare a variable explicitly or implicitly. It is good programming practice
to explicitly declare all variables.

 Explicit Declarations
 When you declare a variable explicitly, you list it in a declaration statement
before you use it in the program.

 Variables being declared as the same type can be listed in the same declaration,
separated by commas.

 Syntax

 type identifier
type identifier, identifier, identifier ...

 where
type is the data type, and
identifier is the name of the variable and follows the rules for identifiers.

 Examples

 Type Example Description

 int int i i is an integer

 float float a,b a and b are floats

 string string[10] message message is a string that can hold 10 or fewer
characters

 cloc cloc pick_1,
place_1

 pick_1 and place_1 are cartesian locations

 ploc ploc pick_2,
place_2

 pick_2 and place_2 are precision locations

 Implicit Declarations
 When you declare a variable implicitly, you indicate the variable's type with a
prefix before its name when you use it in the program for the first time.

 If a variable is used without having been explicitly declared, the compiler looks
for an implicit declaration prefix character on the variable name to determine the
type of variable. If there is no prefix character, the compiler defines the variable
as the default type, an int, and issues a warning.

 In general, implicit declarations should be avoided. You should always explicitly
declare variables.

18 Data Types and Variables

 Syntax

 [prefix_character]identifier

 where
prefix_character is the character indicating the data type, and
identifier is the name of the variable and follows the rules for identifiers.

 Implicit Declaration Prefix Characters

 Prefix Character Type Example

 none int a = 2

 % percent sign float %b = 10.25

 $ dollar sign string[64] $m = "Robot working.\n"

 _ underscore cloc here _z

 # number sign ploc here #y

 Examples

 Type Example Description

 int e = c + d e is defined as an int, if it has not been seen before.

 float %h = f * g h is defined as a float.

 string $notice9 =
"stop"

 notice9 is defined as a string[64].

 cloc here(_place22) place22 is defined as a cloc.

 ploc here(#material3
3)

 material33 is defined as a ploc.

 Implicit with Explicit
 If an implicit declaration prefix is used in an explicit declaration statement, the
implicit prefix is ignored by the compiler. For example,

 float %b ;; the variable b is declared as a float
float $c ;; the variable c is declared as a float
float #d ;; the variable d is declared as a float

 Identifiers
 The prefix character indicates the type of declaration. It is not part of the
identifier, the variable's name. For example, if _m was used in a statement, a cloc
with the name m was defined. A later statement with #m causes an error, the
same way that cloc m followed by ploc m causes an error.

 Scope

 Two variables with the same scope cannot have the same name. For definitions of
scope, see the Scope section of the Subprogram chapter.

 Teachables

 Teachable variables that are declared inside a sub, func, or command must not
have the same name as any teachable outer-frame variable.

RAPL-3 Reference Guide 19

 Strings
 The string type is essentially a character array with a fixed size.

 The string type must always have a subscript, indicated by [] (square brackets).

 String[number]
 Usually, the subscript contains a number to specify the maximum length of
string that can be stored in it, such as string[10] or string[64].

 Syntax
 string[number] identifier

 where
string and the square brackets are required,
number is the character size of the string, and
identifier is the name of the variable and follows the rules for identifiers.

 String[]
 In some circumstances, the subscript can be empty.

 string[]
 This undimensioned string declaration can be used only in the following
circumstances.

• A simple single string being initialized. When string[] is used, the compiler
determines the size of the string. In this example, the compiler makes notice9
a string[18].
 string[] notice9 = “End of work cycle.”

• A function formal parameter or var parameter.
 func int strlen(string[])
sub str_append(var string[] dst, string[] src)

• The target of a pointer.
 string[]@ sptr

 For a table of pointers to strings of unknown length, use
 string[]@[5] greek = {“alpha”, “beta”, “gamma”, “delta”,
“epsilon”}

Notes:
A RAPL-3 string is actually stored as a length, a limit, and an array of

characters. The length value indicates how many characters are actually valid.
Strings can be created with at most space for 65,532 characters. The limit value
indicates how many characters there is actually room for. For example, if we
have a variable:

string[10] s
then s is initially created with its length set to 0 (no characters; the empty string)
and its limit set to 12. The limit is 12 because RAPL-3 always allocates storage in
units of 1 word (or 4 characters); string[10] actually needs 1 word for the length
and limit, and an additional 3 words for the characters (which actually is 3 * 4 or
12 characters in size.) After this statement:

s = “hello!”

20 Data Types and Variables

the length of s is set to 6, and the characters ‘h’, ‘e’, ‘l’, ‘l’, ‘o’ and ‘!’ have been
stored in the character part of the string.

 Termination
 RAPL-3 does not use any string termination character. The variable is declared
and the string of characters is packed into the variable.

 Concatenation
 To concatenate (link together to form a longer string), use the str_append
subroutine with string variables. The + (plus) operator can be used to
concatenate string constants.

RAPL-3 Reference Guide 21

 Arrays
 An array is a collection of data objects where all are the same data type and all
use the same identifier but each has a unique subscript.

 Syntax
 base_type[subscript_list] identifier

 where
base_type is the data type of each element in the array,
subscript_list is a comma-separated list of one or more constant expressions

defining each dimension, and
identifier is the name of the variable and follows the rules for identifiers.

 A subscript must be a constant expression, such as a simple integer constant.
The compiler must be able to compute the value of each constant expression at
compile time.

 Types

 You can have an array of any type or an arrays of arrays.

 Dimensions
 There is no limit on the number of dimensions allowed, except for teachable
arrays. See Teachables.

 Numbering

 In RAPL-3, numbering begins with 0.

 Declaration Number of
Elements

 Numbering

 int[4] a 4 a[0], a[1], a[2], a[3]

 int[10] a 10 a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8], a[9]

 int[20] a 20 a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8], a[9],
a[10], a[11], a[12], a[13], a[14], a[15], a[16], a[17], a[18], a[19]

 int[100]
a

 100 a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8], a[9],
through to
a[90], a[91], a[92], a[93], a[94], a[95], a[96], a[97], a[98], a[99]

 Review of Strings

 Example Description

 string[30] z a string that can hold 30 or fewer characters

 One Dimensional Arrays

 Example Description

 int[5] a an array of 5 integers
 a[0], a[1], a[2], a[3], a[4]

 float[10] b an array of 10 floats
 b[0], b[1], b[2], ... b[9]

 ploc[20] c an array of 20 precision locations
 c[0], c[1], c[2], ... c[19]

 string[30] [10] d an array of 10 strings
 d[0], d[1], d[2], ... d[9]
 each can hold 30 or fewer characters

22 Data Types and Variables

 Two Dimensional Arrays

 Example Description
 int[5,10] e a 2-dimensional array of 50 integers

 e[0,0] ... e[0,9]

 e[4,0] ... e[4,9]

 float[10,20] f a 2-dimensional array of 200 floats
 f[0,0] ... f[0,19]

 f[9,0] ... f[9,19]

 ploc[5,10] g a 2-dimensional array of 50 precision locations
 g[0,0] ... g[0,9]

 g[4,0] ... g[4,9]

 string[20][5,10]
h

 a 2-dimensional array of 50 strings
 h[0,0] ... h[0,9]

 h[4,0] ... h[4,9]
 each can hold 20 or fewer characters

 int[10] [5] i a 2-dimensional array of 50 integers
 same as int[5,10] e
 brackets are applied from left to right

 float[20][10] j a 2-dimensional array of 200 floats
 same as float[10,20] f
 brackets are applied from left to right

 string[20] [10]
[5] k

 a 2-dimensional array of 50 strings
 same as string[20] [5,10] h

 string[50][23 +
7] m

 an array of 30 strings,
 each can hold 50 or fewer characters

 Multi Dimensional Arrays

 Example Description
 int[2,2,2] n a 3-dimensional array of integers

 n[0,0,0], n[0,0,1],
 n[0,1,0], n[0,1,1],

 n[1,0,0], n[1,0,1],
 n[1,1,0], n[1,1,1]

 float[5,5,5,5] p a 4-dimensional array of integers
 p[0,0,0,0] to p[4,4,4,4]

 Declarations

 You cannot implicitly declare an array.

 However, if you use the implicit declaration syntax in a statement with an array,
you will not cause a problem, if the array is previously declared and the implicit
declaration character matches the base type of the array. For example,

 ploc[16,16] a
...
here(#a[1,1])

RAPL-3 Reference Guide 23

Teachables
 A variable that is teachable is accessible from outside the program.

 Use
 Teachables provide an easy way, outside the program, to modify a value for a
variable, store that value, and use the value in a program. Using this feature
avoids writing (hard-coding) values in the program and having to re-write the
program to change the values. It also avoids storing the values in a custom user-
designed file and having to carefully edit the file to change values and include a
routine in the program to read that custom data file.

 Data about teachable variables and their values are stored in the variable file.
When you run a program, the operating system takes the program’s variable file
and uses its values to initialize the variables in the program just before running.

 Variable (v3) File
 Data about teachable variables are stored in the variable file (also known as a v3
file). You modify data, or “teach” locations and other variables, using the teach
pendant or the application shell.

You can create a variable file in a number of ways.

• Refreshing from the Program. When your program file is in a CROS directory
(in CROS-500 or CROSnt), ash’s refresh command reviews the program and
adds any teachable variables of the program to ash’s database. After
assigning values (including teaching locations) to the teachables in the
database, this new data is saved to the variable file. This method is used if
you write your program before teaching your locations.

• Building Independently. You can build a variable file completely in a CROS
directory (in CROS-500 or CROSnt) using ash or the teach pendant. With
ash’s or the teach pendant’s database, you create variables and assign values
to them. When you are finished this data is saved to in the variable file. This
method is used if you teach your locations before writing your program.

See the Robot System Software Documentation Guide chapters on the application
shell.

 Declarations
 You make a variable teachable by adding the keyword “teachable” before the data
type at declaration. Teachables are not initialized.

 Syntax

 teachable type identifier
teachable type identifier, identifier, identifier ...

 where
teachable is a necessary keyword
type is the data type, and
identifier is the name of the variable and follows the rules for identifiers.

24 Data Types and Variables

 Examples

 Example Description

 teachable int cycles cycles is an teachable integer

 teachable float a, b, c a, b, and c are teachable floats

 teachable string[10] note note is a teachable string that can hold 10 or fewer
characters

 teachable cloc pick_1,
place_1

 pick_1 and place_1 are teachable cartesian
locations

 teachable ploc pick_2,
place_2

 pick_2 and place_2 are teachable precision
locations

 teachable int[3] step step is a teachable array of 3 integers: step[0],
step[1], step[2]

 teachable float[5,5]
delta

 delta is a teachable two-dimensional array of
floats: delta[0,0] ... delta[4,4]

 teachable ploc[2,10] spot spot is a teachable two-dimensional array of
precision locations: spot[0,0] . . . spot[1,9]

 Limitations
 Data Types

 There are limits on which data types are teachable. Simple, scalar variables can
be teachable. One-dimensional arrays of variables can be teachable. Two-
dimensional arrays, except string[n], can be teachable. Three-dimensional and
higher dimensional arrays cannot be teachable. The void type cannot be
teachable.

 � = can be teachable

� = cannot be teachable

 int float string[n] cloc ploc gloc void

 simple � � � � � � �

 one-dimensional
array

 � � � � � � �

 two-dimensional
array

 � � � � � � �

 three-dimensional
or higher array

 � � � � � � �

 Not Initialized

 A variable cannot be both teachable and initialized. You cannot write
 teachable int a = 5
teachable string[64] message_12 = “Error recovery underway.“.

RAPL-3 Reference Guide 25

 Storage Class: Static

 Variables which are declared as teachable are static. They should not be used in
recursive routines except as read only.

 Defaults and Unteachables
 Scope and Declaration Defaults

 The following variables are teachable by default.

 Local (within a subprogram or main) and Implicitly Declared

• clocs, and plocs
sub
...

here(_point)
end sub

main
...

here(_place)
end main

 Outer-Frame (outside all subprograms and main) and Explicitly Declared

• clocs, and plocs

• 1-dimensional and 2-dimensional arrays of clocs, and plocs
ploc start_point
cloc[10] point

sub
...
end sub

main
...
end main

All other variable types are unteachable by default.

Unteachable Declaration

A variable can be declared as unteachable with the unteachable keyword. This
can be used to make an outer frame location that is not teachable, for example

unteachable cloc[10] point

sub
...
end sub

main
...
end main

26 Data Types and Variables

User-Defined Types
A type can be called by a user-specified name. Typedefs can only be global,
imported, or outer-frame. There are no local typedefs. Typedefs within a
subprogram are available to sections outside of that subprogram.

Syntax

typedef identifier type
where

typedef is required,
identifier is the name of the type and follows the rules for identifiers, and
type is the keyword indicating the data type.

Examples

Example Description

typedef alpha
int[10]
...
alpha a,b,c
.
.
.
alpha[3] x

alpha is an array of 10 ints

a, b and c are all int arrays
 a[0], a[1], a[2],...a[9]
 b[0], b[1], b[2],...b[9]
 c[0], c[1], c[2],...c[9]
x is an array of 3 alphas
 x[0,0], x[0,1], x[0,2],...x[0,9]
 x[1,0], x[1,1], x[1,2],...x[1,9]
 x[2,0], x[2,1], x[2,2],...x[1,9]

RAPL-3 Reference Guide 27

Pointers
A pointer is a variable that holds the address of another variable. A pointer is
declared to point to a specific data type.

Syntax

basetype@ identifier

where
basetype is the keyword indicating the data type.
@ is required and immediately follows the basetype, and
identifier is the name of the type and follows the rules for identifiers.

Examples

Example Description

int@ a a is a pointer to an int

float@ b, c b and c are pointers to floats

string[20]@ d d is a pointer to a 20 character string

cloc@ e e is a pointer to a cloc

int[10]@ f f is a pointer to an array of 10 ints

int[3,2]@[4] g g is an array of 4 pointers, each of which points to a two-
dimensional array of ints

Note that in all cases, complex declarations are applied from left to right.

Dereferencing
Pointers can be dereferenced with the @ operator. For example, if the variable xp
is of type int@, then xp@ refers to the value that the pointer xp points to.

Address-of Operator
A pointer to a data object can be constructed using the ‘&’ (address-of) operator.
For example, if x is an integer, then &x is an int@ which points to the value of x.

28 Data Types and Variables

Enumerated Types
It is often convenient to refer to the values of a variable by name, rather than by
number. For example, when referring to the colour of a test-tube, we can define:
enum

red,
orange,
yellow,
green,
blue

end enum colour_type

This defines type colour_type as type int, and creates the special constants red,
orange, yellow, green and blue, which will have values 0, 1, 2, 3, and 4,
respectively. These constants can be used anywhere a numerical constant would
be appropriate.

This allows a particular value to be associated with an identifier in the list.

Syntax
enum

item_list
end enum enum_identifier

where
enum and end enum are required,

 enum_identifier is the name of the enum,
and

item_list is a comma-separated list of items, where each item can be a simple
identifier
 identifier
or a statement

identifier = constant_expression

Examples

Example Description

enum
num_a,
num_b,
num_c

end enum x

x is an int
num_a is the constant 0
num_b is the constant 1
num_c is the constant 2

enum
bit_0 = 1,
bit_1 = 2,
bit_3 = 4

end enum y

y is an int
bit_0 is the constant 1
bit_1 is the constant 2
bit_3 is the constant 4

enum
x,
y,
z

end enum letters

This is illegal after the previous two declarations. The
constant identifiers must be unique within the same
scope.

RAPL-3 Reference Guide 29

Record Structures
Records structures (like structs in C) are declared as:

struct

field_list
end struct

Where field_list is a list of 1 or more entries of the following form. Struct
fieldnames can be anything except a type name.

type identifier_list

For example:
typedef Colour struct

float red, green, blue

end struct ;; declares a type called

;; Colour with fields called

;; red, green and blue

typedef my_record struct

int i ;; values in a linked list

my_record@ next ;; a pointer to this structure

;; itself, for creating a

;; linked list

end struct

30 Data Types and Variables

Unions
Unions (like unions in C) are possible.

union

field_list
end union

Where field_list is a list of declarations which can include int, float, string[], cloc,
ploc, or a complex type like struct or union.

union
int a
float b

end union xxx

typedef omega union
int a
float b

end union

Unions are referenced like structures, but have one important difference. All of
the fields of a structure are located in distinct locations in memory, allowing all
fields of a structure to hold values at the same time. However, in unions, all
fields are located at the same memory location. Hence in variable xxx above,
writing into field a of the union also alters the value of field b. Unions are
typically used where a block of information may hold more than one kind of data.

RAPL-3 Reference Guide 31

Initializers
You can declare RAPL-3 variables and initialize their values at the same time.
Initialization is useful for building tables of data needed by a program during its
execution.

The general format of a declaration with an initializer is:

type identifier = initializer_expression

For simple variables, initializer_expression is a simple constant expression.

More complex variables can also be initialized, as shown in the examples below.
Array and structure initializers are delimited by { } (braces). Note the use of { }
(braces) for constructing each dimension of an array and the contents of each
structure. Initializers must exactly match the size of the variable being initialized.

int a = 3 ;; a is an int
;; with initial value 3

int a = 3, b = 4, c = 5 ;; a, b, and c are ints
;; with initial values 3, 4, and 5
;; respectively

float d = 2.0 ;; d is a float
;; with initial value 2.0

int[2] e = { 0, 1 } ;; e is an array of ints

;; e[0] = 0 and e[1] = 1

string[16][3] f_string = { \

“No error(s)”,

“Warning error(s)”,

“Fatal errors(s)” \

} ;; f_string is an array of 3 strings
;; f_string[0] contains No error(s)
;; f_string[1] contains Warning error(s)
;; f_string[2] contains Fatal error(s)

struct

int a

float b

end struct stv = { 1, 2.7182 }

;; stv is an initialized struct

float[2,3] fa = { \

{ 1.0, 2.0, 3.0 },

{ 2.0, 3.0, 4.0 } \

} ;; two dimensional array initialization

The compiler accepts initializers like:
string[]@[2] list = { “yes”, “no” }

and correctly generates the required data structures, but does not accept:
int@[2] list2 = { 1, 2 }

For initializing clocs and plocs with cloc{} and ploc{}, see the Location Constant
section of the Constants chapter.

An initialized entity cannot be teachable.

32 Data Types and Variables

Named Constants
It is frequently useful to be able to define a named constant in a program.
RAPL-3 provides a const keyword for this purpose. The format of a constant
definition is:

const identifier = value

Note that it is not necessary to specify a type for a const definition; the compiler
is able to deduce what type you are referring to by looking at the specified value.
Examples of const definitions are:

const x = 123 ;; an integer constant

const y = 10.3 ;; a floating point constant

const z = “hello” ;; a string constant

Only integer, floating point and string constants may be defined in this way. You
may use a named constant anywhere it would be legal to use the actual constant
itself. For example, if the following definitions are in your program, then this
section of code:

print(“hello”, 123, 10.3)

is exactly the same as this section of code:
print(z, x, y)

Typically, named constants are used for setting configurable values in a program.
For example, if a robot program rinses a dispense head some number of times in
between operations, one might have a const definition like this at the top of the
program:

const NUMBER_OF_RINSES = 3

This way the behaviour of the program can be changed by just changing the
constant, and code that refers to this number can use NUMBER_OF_RINSES,
which is much more obvious than just ‘3’.

RAPL-3 Reference Guide 33

Sizeof() Function
The sizeof() function determines the size of a type or a variable. The size of any
type (even complex types) can be determined. As a built-in, sizeof is a keyword.

sizeof()
Description Returns the number of words that the type or variable occupies.

(Note that 1 word = 4 bytes = 32 bits.)

Used to determine the size of a type or variable.

Syntax sizeof(type)

sizeof(variable)

Parameters
Arguments

type a data type
variable any variable

Returns Returns an integer of the number of words occupied.

Example int ia = 1, ib = 9999
string[] sa = "a", sb = "Characters in this string are 32"
struct

float red, orange, yellow
int green, blue, violet
string[50] brown, black

end struct color
print("int size is ", sizeof(int), "\n")
print("ia size is ", sizeof(ia), "\n")
print("ib size is ", sizeof(ib), "\n")
print("string[] size is ", sizeof(string[]), "\n")
print("sa size is ", sizeof(sa), "\n")
print("sb size is ", sizeof(sb), "\n")
print("color size is ", sizeof(color), "\n")

Result int size is 1
ia size is 1
ib size is 1
string[] size is 1
sa size is 2
sb size is 9
color size is 34

See Also sizeof_str number of words to store a string
str_len number of characters in a string

34 Data Types and Variables

Dimof() Function

dimof()
Description Returns the dimensionality of an array.

Syntax dimof(array)

Parameters
Arguments

array name of array

Example int [20] x
int [5,10] z
print (“dimensionality of x is ”, dimof(x), “\n”)
print (“dimensionality of z is ”, dimof(z), “\n”)
print (“dimensionality of z[3] is ”, dimof(z[3]), “\n”)

Result dimensionality of x is 20
dimensionality of z is 5
dimensionality of z[3] is 10

C H A P T E R 3

Expressions, Assignment, and
Operators

Consider the following short RAPL-3 program:
[1] main

[2] int x

[3] x = 1

[4] while (x <= 10)

[5] printf(“x = {}\n“, x)

[6] x = x + 1

[7] end while

[8] end main

This program counts from 1 to 10, printing out the value of x each time through
the while loop (see chapter 5 for more information about while loops.)

This short example has 4 expressions, 5 variable references and 2 assignment
statements.

An expression is a part of a program statement that calculates a value. The
following are the expressions in the above example:

1

x <= 10

x

x + 1

A variable reference is just a point in the program that refers to the value of a
variable or stores a value in a variable. In the above program, there are 2 places
where the value of x is modified or assigned (lines 3 and 6) and 3 places where
the value of x is used (lines 4, 5 and 6).

An assignment statement is one that changes the value of a variable. Once
again, this happens at lines 3 (where the value of x is set to 1) and 6 (where the
value of x is incremented.)

This chapter presents the basic form of a variable reference, looks at how
assignment statements are constructed and discusses the operators (like +. -,
etc.) that are available for constructing expressions.

36 Expressions, Assignments and Operators

Variable References
Variable references have the form:

variable_name [modifiers]

Valid modifiers are:

Symbol Operation

[index-list] array indexing

.fieldname struct element selection

@ pointer de-referencing

Variable references are read strictly from left-to-right, and modifiers are applied
in that order.

;; declarations for these examples

int i,j ;; an integer

float[10,10] a ;; 2-dimensional array of floats

int@[100] api ;; a 100-element array of pointers to ints

int[100]@ bpi ;; a pointer to a 100-element array of ints

struct ;; st is a simple struct

int a

string[] s

end struct st

;; variable references

... j ... ;; the variable j

... a[i,j] ... ;; element [i,j] of array a

... api[j]@ ... ;; what is pointed to by
;; the jth pointer in the array api

... bpi@[i] ;; the ith integer in the array that
;; is pointed to by bpi

... st.s ... ;; the string part of struct st

Note that because variable modifiers are applied strictly from right to left, the use
of a variable resembles the reverse of its declaration; for example, bpi is declared
as “int[100]@ bpi” and is used as “bpi@[whatever]”.

RAPL-3 Reference Guide 37

Assignment statements
An assignment statement allows the value of a variable to be modified and has
the form:

variable = expression
or

variable simple-op = expression
Where simple-op is a simple binary operator like +, -, *, etc. This second form of
an assignment statement is interpreted to mean:

variable = variable simple-op expression

This allows statements like “a = a + 5” to be written more compactly, as “a += 5”.

In addition, the special operators
++
--

can be used as assignment operators to increment and decrement the value of a
variable. For example,

x++
is a shorthand way of saying

x = x + 1

The ++ and -- operators may not be used inside an expression. Constructs like
a = b++

are not allowed.

You can assign an integer variable a floating-point value. For example
int i
i = 1.6

In this case, the value is truncated back to an integer, and i is assigned the value
1. The compiler warns of float to int truncation (unless warnings are disabled).

Void pointers are assignment compatible with all other kinds of pointers.

All other types (string, ploc, cloc, arrays and structs) must match exactly for an
assignment statement to be legal. For example:

int i,j ;; some variable definitions

int @ip

float a,b

float@ fp

int[100] x,y

string name1,name2

void @vp

...

i = j ;; these are all legal

a = b

a = i

i = a

x = y

name1 = name2

vp = ip

fp = vp

x = name1 ;; these are not legal

y = i

fp = ip

38 Expressions, Assignments and Operators

Operators
The following operators are supported, and are listed in order of increasing
precedence. Within one level of precedence, operators are left-associative.

In the table, the Form column indicates whether the operator is a binary operator
("a op b") or a unary operator ("op a"). The Accepts column lists the type of
arguments the operator accepts (I = integer, F = float, S = string, P = ploc, C =
cloc, @ = pointer), and the Yields column lists the type of result the operator
produces. Note that the special character T denotes a value that is either integer
0 or 1, and L denotes anything which can reasonably appear on the left-hand-
side of an assignment statement.

In cases where a binary operator has operands of different types, RAPL-3 will at
most promote an int operand to float. If the types still do not match, the
compiler will signal a type mismatch error. The one exception to this rule is that
pointers may be compared for equality with zero.

Care must be taken in the use of mixed types. For example:
int i ;; variable declarations

float f

... i/2 ... ;; gives an integer result

... f/2 ... ;; gives a floating point result

... i/f ... ;; gives a floating point result

... f/i ... ;; gives a floating point result

Sub, func, and command parameters are also checked for type match. As for
expressions, arguments can be automatically converted from int to float. Also,
cloc and ploc parameters can be automatically converted to glocs.

It is legal to compare pointers to 0 (NULL). It is also legal to compare pointers of
the same type, and pointers of any type to void pointers.

RAPL-3 Reference Guide 39

Symbol Form Accepts Yields Definition

||, or binary IF@ T logical OR

&&, and binary IF@ T logical AND

| binary I I bitwise boolean OR

^ binary I I bitwise boolean exclusive-OR

& binary I I bitwise boolean AND

== binary IFS@ T is equal to

!= binary IFS@ T is not equal to

> binary IFS T greater than

>= binary IFS T greater than or equal to

< binary IFS T less than

<= binary IFS T less than or equal to

<< binary I I logical shift left

>> binary I I logical shift right

+ binary IFS same addition,
string concatenation of constant strings

- binary IF same subtraction

* binary IF same multiplication

/ binary IF same division

mod binary I I remainder

~ unary I I bitwise boolean NOT

!, not unary IF@ T logical NOT

- unary IF same negation

& unary L @ address of

(expr) - - - parenthesized expression

func_id(args) - - - function call

40 Expressions, Assignments and Operators

Type Casts
Type casts explicitly force the compiler to convert an expression of one type into
another type, and take the form

< type > expression

For example, if we have
int a

and
float b

then
a = <int> b

does not give a truncation warning, since we have told the compiler explicitly to
convert b to an integer.

Note that not all type casts are possible. For example, the compiler cannot be
forced to convert a cartesian location into an integer. In general, you can cast:

From To

an int or a float an int or a float

any pointer type any other pointer type

any location type a generic location (gloc)

a generic location (gloc) any location type

C H A P T E R 4

Constants

For the most part, constants in RAPL-3 expressions are represented very
straightforwardly. For example, the number 123 can be written exactly as it
looks in the code of a RAPL-3 program. However, RAPL-3 also allows
hexadecimal integer constants, exponential notion for floating point constants,
string constants and location constants. This chapter presents the way in which
these various kinds of constants are constructed.

42 Control Flow

Numeric Constants

Integer Constants
Any number that has neither a decimal point nor an exponent is an integer
constant by default. Integer constants must lie in the range -2147483648 to
+2147483647. Examples:

0

1000001

32768

Hexadecimal notation is also permitted. This consists of 0x followed by a
sequence of digits (0 through 9, or a through f). Examples:

0x7fffffff ;; +2147483647

0x1000 ;; 4096

0xffffffff ;; -1

Binary Notation is also permitted. This consists of 0b followed by a sequence of
binary digits (0 or 1).

Alphanumeric Constants
Alphanumeric constants are really just another form of integer constant. They
permit the value of an ASCII code to be used in an expression by enclosing the
character with the ' (single quote) characters. For example, in

x = 'Z'

x is assigned the ASCII value for uppercase Z which is 90 (or 0x5a).

Floating Point Constants
A floating point numeric constant takes the form:

mantissa [E|e [+|-] exponent]

The mantissa is a set of digits which may contain a decimal point. The base and
exponent are optional. The base may be uppercase or lowercase (E or e). If not
defined, the exponent is zero by default. The exponent is 1 or 2 digits. The sign,
+ or –, is optional. If not defined, the sign is + (positive) by default.

Examples:
0.0

1.

.2

1231.232

1e10

1E-5

.2e+6

1.5e+38

RAPL-3 Reference Guide 43

String Constants
String constants begin and end with the " (double quote) character and can be
any length.

Within the string, the \ (backslash) character is used to form a sequence to
represent the " character and other special ASCII codes. The following \ escape
sequences are defined:

Sequence Represents

\” " the double quote character

\\ \ the backslash character itself

\a BELL ASCII BELL (bell, character 7).

\b BS ASCII BS (backspace, character 8)

\e ESC ASCII ESC (escape, character 27)

\f FF ASCII FF (form feed, character 12)

\n LF the end-of-line character. RAPL-3 uses the ASCII LF
(linefeed, character 10) as the end of line character. For
character output this is usually automatically converted into a
CR-LF (carriage return – line feed) sequence.

\r CR ASCII CR (carriage return, character 13)

\t TAB ASCII TAB (horizontal tab, character 9)

\v VT ASCII VT (vertical tab, character 11)

\ddd the ASCII code represented by the three decimal digits ddd

Examples:
"This is a test. \n"

A string with a LF at the end, which causes the cursor to move to the next line at
the beginning.

"This is \007 a test."

A string with a BELL character (ASCII code 7) in the middle which causes the
terminal emulator to beep.

"\\He said, \"The robot moves!\""

A string with the backslash sequence and two double quote sequences which
prints as: \He said "The robot moves!"

String constants can be concatenated (linked together to form a longer string)
with the + (plus) operator. Note that the + operator only works on string
constants and cannot be used to concatenate string variables.

“Data” + “Test”

is the same as
“DataTest”

44 Control Flow

String constants can also be used as actual parameters of subprograms. If an
attempt is made to use a string constant as a var parameter to a subprogram,
the compiler will generate a warning (since it is surely wrong to allow writing to a
string constant.)

RAPL-3 Reference Guide 45

Location Constants
You can initialize cloc and ploc variables. The RAPL-3 compiler has built-in
functions: cloc{} for generating cloc constants, and ploc{} for generating ploc
constants. All of the arguments to cloc{} or ploc{} must be constant expressions
and the result is a constant expression that can be used in a variable
initialization.

The format of cloc{} is:

cloc{ flags, x, y, z, zrot, yrot, xrot, e1, e2 }

Where flags specifies extra information about the location, x, y, and z are the
translational coordinates along the world axes, zrot, yrot, and xrot are
orientational coordinates around world axes, and e1 and e2 are the coordinates
for extra axes such as track. The argument flags must be an int constant
expression and all other arguments are float constants.

An example of cloc{} is the following definition:
cloc my_tool = cloc{0, 0.0, 0.0, 10.0, 0.0, 0.0, 0.0, 0.0, 0.0}

;; tool transform for use with the tool_set() command.

The format of ploc{} is:

ploc{ machtype, flags, a1, a2, a3, a4, a5, a6, a7, a8 }

Where machtype is the machine type (each type of machine, F3, A465, A255, ...,
has a different geometry and configuration resulting in different encoder counts
for a given location), flags specifies extra information about the location, and a1
to a8 specify the number of encoder pulses from zero of the desired position for
each axis. The arguments machtype, flags, and a1 to a8 are integer constant
expressions.

An example of ploc{} is:
ploc start_point = ploc{mc_a465, 0, 3500, 2800, 1000, 4000,
2500, 1500}

;; initialized precision location

A word of warning: initialized clocs are useful for specifying tool transforms and
related information. It is, however, very dangerous to hand-construct plocs and
command to robot to move to them. This is because the robot cannot physically
move to any arbitrary joint configuration, and may collide with itself or objects in
the workspace. If you must hand-construct locations, use extreme care.

46 Control Flow

C H A P T E R 5

Control Flow

When a program executes, generally the computer executes one line, then the
next, then the next. In order to make a program do useful things — for example,
to repeat a particular task 10 times — we must be able to alter the way in which
control passes from line to line of the program.

This section deals with statements that alter the sequence in which the
statements in a program execute, allowing loops and conditional statements.

48 Control Flow

break
Description Exit from a looping construct to the statement immediately following the looping

construct (the statement immediately following until, end while, end for, or end
loop).

Can be used to exit from the following looping constructs: do, while, for, or loop.

Often used with a condition such as an if or if-else statement.

If loops are nested, break exits from only the innermost do, while, for, or loop
statement that encloses the break.

Syntax break

Context while (expression_1)
...

if (expression_2)
break

end if
...
end while

Example A loop that counts to 10.
int i
i = 0
loop

if i == 10
break

end if
i++

end loop

Break exits from the loop when i equals 10.

See Also continue, do, for, loop, while

case
Description Executes one of several statements, depending on the value of an integer

expression. Note that you can implement any case statement with a series of if
statements; the case statement just provides a compact way to select between
several statements based on a value.

Syntax case expression
[of constant_1 :]

[statement(s)]
[of constant_2 to constant_3 :]

[statement(s)]
[of constant_4,constant_5 :]

[statement(s)]
...
[else

[statement(s)]]
end case

Example 1 An example with a single value, a list of values, a range of values, a mixed list,
and an else value.
int tracking
string[64] message_1
...
case tracking

of 1:

RAPL-3 Reference Guide 49

message_1 = "success"
of 2, 3, 5:

message_1 = "at maximum limits"
of 6 to 10:

message_1 = "beyond maximum limits"
of 10 to 15, 20 to 23, 99:

message_1 = "failure"
else

message_1 = "unknown"
end case

Example 2 When this code is executed, if z = 1, 2, 3, or 6, then $y is set to “hello”. If z is 4 or
5, then $y is set to “goodbye”. If z is 7, then $y is set to “right”. If z is not equal to
any of these values, then $y is set to “unknown”.
case z
of 1 to 3, 6:

$y[] = “hello”
of 4, 5:

$y[] = “goodbye”
of 7:

$y[] = “right”
else

$y[] = “unknown”
end case

RAPL-II No equivalent in RAPL-II.
See Also if

continue
Description By-passes the remainder of the body of a loop and goes to the next iteration of

the loop: the condition in do or while, the step increment in for, or the beginning
of the next iteration in loop.

Can be used to by-pass the body of the following looping constructs: do, while,
for, or loop.

Often used with a condition such as an if or if-else statement.

If loops are nested, continue by-passes the body of the innermost do, while, for,
or loop statement that encloses continue.

Syntax continue

Context while (expression_1)
...

if (expression_2)
continue

end if
...
end while

Example Print only odd numbers.
 for i= 1 to 10

if (i/2)*2==i ;; integer division
continue ;; it is even

end if
print i, “\n”

end for

Result 1
3
5
7
9

50 Control Flow

 See Also break, do, for, loop, while

do
Description A looping construct that tests a condition at the end of the loop.

Flow enters the loop and the statements are executed down to the just before the
until. The control expression following the until (a condition) is tested. If the
expression is true (non-zero), flow goes back to the first statement after do. If the
expression is false (zero), flow proceeds to the statement following the until.

Since the controlling expression is executed after the body of the loop, the loop
body is always executed at least once, even if the first test of the control
expression is false (zero).

A break can be used to exit a do loop and proceed to the line following the until.
A continue can be used to by-pass the remainder of the body of a do loop. A
goto can be used to jump to another position in the subprogram.

do statements can be nested.

Syntax do
statement(s)

until expression

Example A simple do loop.

i = 0
do

move #safe_path[i]
i = i + 1

until i > 4

The loop body executes 5 times, with i having the values 0, 1, 2, 3, and 4. On exit
from the loop, i has the value 5.

See Also while, for, loop, break, continue, goto

for
Description A looping construct that executes a loop for a defined number of times.

The for construct controls the number of times the loop is executed by using an
integer variable (a counter) with an initial value, a final value, and the size of step
(increment) from initial to final.

Defining the step is optional. If step is not specified, it is assumed to be +1.

Step can be negative for a decrementing counter. In any event, the specified step
must be a constant expression.

For executes in the following way. The counter variable is initialized to the value
of expression_1. The counter is then tested to see if it is greater than (if step
expression_3 is positive) or less than (if step expression_3 is negative)

RAPL-3 Reference Guide 51

expression_2. If so, execution proceeds at the first statement after the end of the
loop (after end for). The statements in the body of the loop are executed. At the
end of these statements the step (expression_3) is added into the counter.
Control then loops back to the condition test and we repeat.

One implication of the way in which the for loop is implemented is that it is
possible that the body of the loop might never be executed. Consider the
following for loop:

for x = 1 to 0
printf(“This is never printed\n”)

end for

The loop does nothing, since the test (is x > 0) is true initially, causing the body
of the loop to be skipped.

 Syntax for variable = expression_1 to expression_2 [step expression_3]
statement(s)

end for

Example With an increment of 1.

for x = 1 to 10
move #safe[x]

end for

Step is not specified and is assumed to be + 1. The function move is executed
10 times, with x = 1, 2, 3, ... 10. The arm moves from safe location 1 to 2 to 3 ...
to 10.

With a decrement of 1.

for x = 10 to 1 step -1
move #safe[x]

end for

Step is defined as – 1. The function move is executed 10 times, with x = 10, 9,
8, ... 1. The arm moves from safe location 10 to 9 to 8 ... to 1.

With an increment of 3.

for x = 1 to 11 step 3
move #safe[x]

end for

Step is defined as + 3. The function move is executed 4 times, with x = 1, 4, 7,
and 10. The arm moves from safe location 1 to 4 to 7 to 10. Note that even
though the limit expression_2 is 11, this value is never seen by the body of the
loop, since the next value after 10 (13) is in fact beyond the limit.

See Also do, while, loop

goto
Description Jumps to a statement marked with a label.

A label is named with an identifier and follows the rules for identifiers. The label
can be before or after the goto.

52 Control Flow

A goto can jump only to statements within the main program or within the
current subprogram (sub, func, or command). A goto can neither jump between
the main program and a subprogram, nor between subprograms.

Caution Gotos should be used with caution. Overuse of the goto statement can make
code extremely difficult to read and debug. Good use of conditionals, loops,
break, or continue can almost always eliminate the need for a goto.

Syntax The label identifier is followed by two colons. The immediately following statement
may be on the same line or the next line.

identifier:: statement
...

goto identifier

identifier::
statement

...
goto identifier

Example A simple goto.

...
label_1::
...
if(query_another_loc()==‘Y’)

goto label_1
end if
...

The earlier statement declares the label label_1. If the condition in the if
statement is true, the goto directs control to the statement following label_1.

See Also identifiers, break, continue

if
Description A conditional construct which causes a statement to be executed only if a specific

condition is true (non-zero). Optional else and elseif clauses allow 2-way or
multi-way branching.
Begins with if and ends with end if. The use of then is optional. Can be used
with else and with elseif.
You can use if with else, to execute one set of statements if the condition is true,
and execute a different set of statements if the condition is false. This
construction is a two-way branching (see syntax (b)). The elseif keyword allows
an if statement to evaluate several possible conditions in turn creating a multi-
way branch like a case statement (see syntax (c).)
If statements can be arbitrarily nested.

Syntax (a) a simple if statement:

if expression [then]
statement(s)

end if

RAPL-3 Reference Guide 53

(b) if with an else clause

 if expression [then]
statement(s)

else
statement(s)

end if

(c) if-elseif construction

if expression [then]
statement(s)

elseif expression
statement(s)

elseif expression
statement(s)

else
statement(s)

end if

Example (a) This is a simple if statement.

if (curr_locnum <= num_safe_path_locs) then
move #safe_path[curr_path_locnum]

end if

If the condition is true (curr_locnum is less than or equal to num_locs), the move
statement executes. If the condition is false, the program flow proceeds to the line
following end if.

 (b) This is an if and else construction.

if (curr_locnum <= num_locs)
move #safe_path[curr_locnum]

else
curr_locnum = curr_locnum - 1

end if

If the condition is true (curr_locnum is less than or equal to num_locs), the move
statement executes. If the condition is false, the statements following else
execute (curr_locnum is decremented by 1).

 (c) This is one example of nested statements. Inner statements must end before
outer statements.

if (num==num_locs+1)
print_msg_screen(“Teach new power loc.”)
teach(#power_loc[num])
num_locs++

if(num_locs<10)

if(query_another_power_loc()==‘Y’)
goto labl

else
num_locs=0

end if

end if

end if

54 Control Flow

 (d) An elseif construction.

if(t==123)

elseif(t<10)

elseif(t>200)

else

end if

See Also case

loop
Description A looping construct with no condition.

Begins with loop and ends with end loop.
Since there is no control expression, the loop continues forever until a break or
if necessary, a goto, causes flow to proceed out of the loop.
loop statements can be nested.

Syntax loop
statement(s)

end loop

Example In this example, the program prompts and gets a number to identify a location.
The prompting and getting continues indefinitely until the user enters a valid
number.

[1] loop
[2] printf(“Enter location number >”)
[3] readline($str, 10)
[4] if str_to_int(num, $str) < 0
[5] print(“Invalid number\n”)
[6] continue
[7] end if
[8] if((num<0)or(num>20))
[9] printf(“Number is out of range\n”)
[10] continue
[11] end if
[12] break ;; if we get here, we are DONE
[13] end loop

Line 2 displays a prompt asking the user to enter the number of the desired
location. Lines 3 to 7 read in a string typed by the user and try to convert the
string to an integer. If this fails, an error message is printed and a contine
sends control back to the start of the loop. Lines 8 to 11 verify that the number
is in the expected range, displaying an error message and sending control back to
the start of the look if it is not. Lastly, line 12, which is reached only if the
number is valid and in range, exits the loop.

See Also do, while, for, break, continue, goto

while
Description A looping construct that tests a condition at the beginning of the loop.

Begins with while and ends with end while.
The control expression (a condition) is tested. If the control expression is true
(non-zero), then flow enters the loop and the statements are executed. At the
end, flow goes back to the control expression for the next test. If the expression is

RAPL-3 Reference Guide 55

false (equals zero), flow proceeds to the statement following end while.

If the initial test is false (zero), flow never enters the body of the loop and the
statements are never executed.

If the control expression never evaluates to zero, or is a non-zero constant, for
example while(1), the loop continues indefinitely.

A break can be used to exit a while loop and proceed to the line following the end
while. A continue can be used to by-pass the remainder of the body of a while
loop. A goto can be used to jump to another position in the program.

While statements may be arbitrarily nested.
Syntax while expression

statement(s)
end while

Example A simple while statement.
i = 0
while i < 5

move #safe_path[i]
i = i + 1

end while

The loop body executes 5 times, with i having the values 0, 1, 2, 3, and 4. On exit
from the loop, i has the value 5.

See Also do, for, loop, break, continue, goto

56 Control Flow

C H A P T E R 6

Subroutines, Functions and
Commands

RAPL-3 has three distinct kinds of executable objects: subroutines (subs),
functions (funcs), and commands (commands). Collectively, subs, funcs, and
commands are referred to as subprograms. main itself is a special case of a
command subprogram.

58 Subroutines, Functions and Commands

Subprograms
One way to understand the concept of subprograms is to look at a brief example:

[1] sub sayhello()
[2] int x
[3] x = 0
[4] printf(“Hello!\n”)
[5] end sub
[6]
[7] sub say_n_plus_1(int n)
[8] printf(“n + 1 = {}\n”, n + 1)
[9] end sub
[10]
[11] func int a_plus_b(int a, int b)
[12] return a + b
[13] end func
[14]
[15] main
[16] int x, y
[17] x = 10
[18] sayhello()
[19] say_n_plus_1(x)
[20] y = a_plus_b(1, x)
[21] printf(“x + 1 = {}\n”, y)
[22] end main

This example defines two subs (called sayhello() and say_n_plus_1()) and one func
called a_plus_b().
Program execution starts in main. Line 16 declares two variables that belong only
to main (local variables) called x and y; in line 17, x is set to have the value 10.
When line 18 is reached, the subroutine sayhello() is executed. sayhello() has its
own local variable x, which it sets to have a value of 0 in line 3. sayhello() then
executes line 4 which prints a message out on the console. When the end of
sayhello() is reached, control returns to main to line 19.
The fact that sayhello() has set its variable x to be 0 does not change the value of
main’s variable x at all. Any variable declared inside a subprogram is local to
that subprogram and cannot be changed by any outside means. Variables that
are declared outside of any subprogram are accessible to all subprogram and are
called program scope or simply program variables. This concept of local and
program variables is part of variable scope.
After sayhello() is executed (called) by main, main calls the sub say_n_plus_1().
One difference between the call to sayhello() and the call to say_n_plus_1() is that
the latter has an expression (x) inside the brackets next to the sub name. This is
an argument (or actual parameter) to say_n_plus_1(). The value of x is given (or
passed) to the subprogram.
Subprogram say_n_plus_1() then executes with its variable n initially set to 10,
since that was the value passed to it by main. n is a special local variable of
say_n_plus_one() called a formal parameter. formal parameters get initial values
that are given by the caller of the subprogram, in this case, main.
At line 8, say_n_plus_one now prints out the value of n + 1, which is 11 in this
case. Control returns to main at line 20.
In line 20, main sets y equal to a_plus_b(1, x). This is an example of a function
call; the func a_plus_b() is called with the two arguments (1 and 10 (x)) just like a
sub is called. Line 12 is the only line in a_plus_b(), and is a return statement.
For a function, the return statement indicates that a value (in this case a + b or
11) is to be returned to the calling subprogram. The effect in this example is that
y gets set to the value that a_plus_b() returns, or 11.
This result is printed out at line 21, and the program ends. The rest of this
chapter explains in detail the elements of RAPL-3 that deal with subprograms.

RAPL-3 Reference Guide 59

Kinds of Subprograms

subs
A sub (subroutine) is the simplest kind of RAPL-3 subprogram. A sub can take
any number of arguments (including none), but does not return any value to the
calling subprogram. As a result, a sub cannot appear inside an expression.

Declaration Syntax

sub sub_identifier (parameter_list)

 [declarations and statements...]

end sub

Calling Syntax
sub_identifier(actual_parameter_list)

Note that the actual_parameter_list must match the parameter list in the sub
declaration. That is, there must be the same number of parameters as those
declared, and the types of the expressions must be compatible.

funcs
A func is similar to a sub in that it can accept any number of arguments.
However, a func returns a value to the calling subprogram. In RAPL-3, funcs
can return any int, float, cloc, ploc, gloc or pointer type of value (a func cannot
return a string or structure, but can return a pointer to a string or structure.)
For example, a = sin(x) + cos(y) calls the sin() function to compute the value
of the sine of variable x, calls the cos() function to compute the cosine of variable
y, adds the two and then stores the result in variable a.

Declaration Syntax

func type func_identifier (parameter_list)

 [declarations and statements...]

return value
end func

Note that there must be at least one return statement that returns the value of
the correct type somewhere in the body of the function. Functions can return
only int, float, location, or pointer types.

Calling Syntax

There are two ways to call a function. As part of an expression:

 ... func_identifier(actual_parameter_list)...

or by itself as a statement:

func_identifier(actual_parameter_list)

In the latter form, the compiler will warn that the return value of the function is
being ignored (unless warnings are disabled.)

Once again, the actual_parameter_list must match the parameter list in the func
declaration.

60 Subroutines, Functions and Commands

commands
A command is in many respects identical to a func int. Commands must return
an integer value, and can appear in expressions just like a func. The difference
lies in the way that a command behaves when it is called as a statement by
itself. In this case, the compiler generates code that checks the return value of
the command, and if that value is less than zero (negative) it causes an exception
to be raised with the error code equal to the returned value. This provides a
default way of handling errors; commands that fail should return a negative
number describing the error (and error descriptor). The system can then handle
the error, even if only by aborting the program and issuing an error message.

The section on structured exception handling deals with exceptions, and with how
to handle them, in more detail.

Note that this automatic error check is not performed when the command is used
as a function in an expression. This allows the code to look for and handle errors
explicitly.

Declaration Syntax

command cmd_identifier (parameter_list)

 [declarations and statements...]

return value
end command

Note that there must be at least one return statement that returns an integer in
the body of the command.

Calling Syntax

There are two ways to call a command. As part of an expression:

 ... cmd_identifier(actual_parameter_list)...

or by itself as a statement:

cmd_identifier(actual_parameter_list)

The latter form is the more usual. Unlike functions, the compiler does not warn
about the return value being ignored, since code is automatically generated to
check the return value and act upon it if it is negative.

Once again, the actual_parameter_list must match the parameter list in the
command declaration.

Example

Most of the robot and CROS operations are, in fact, commands. A program can
move the robot to a given location using the move() command like this:

move(#this_loc)

In this case the system handles any errors that move() reports (by means of its
return value.) In the following example, we examine and act on the error
explicitly:

r = move(#this_loc)

if (r < 0)

;; take action...

...

end if

RAPL-3 Reference Guide 61

Where main fits in

The main part of a RAPL-3 program is actually a special type of command. It
differs from a normal command in three respects:

(1) It is declared with main and end main
(2) It need not contain a return statement; the compiler automatically

inserts a “return 0” at the end of main. The user is free, however, to
return some other value instead.

(3) When the program is run, the main section is called by the startup code.

62 Subroutines, Functions and Commands

Parameters
In func, sub and command declarations, the parameter_list part is a comma
separated list of individual parameter_declarations, possibly empty. Each
parameter_ declaration takes the form:

[var] [type_declaration] identifier

If type_declaration is omitted then int is the default.

To the subprogram, the parameter looks like an ordinary local variable. However,
its value is set to the actual parameter value provided by the caller.

The special optional keyword var indicates whether or not changes to the
parameter value inside the subprogram change the value of the parameter in the
calling subprogram. The default (var keyword omitted) does not change the
variable outside the subprogram. For example:

sub this_routine(float x)

x = 2.71828 ;; will have no effect on the
;; calling subprogram

end sub

sub that_routine(var float y)

y = 1.0

end sub

... ;; in the calling subprogram

this_routine(t) ;; t is unchanged after this call

that_routine(t) ;; t is 1.0 after this call

Restrictions on Parameters
Function formal parameters (appearing in declarations) that are complex entities
like strings, arrays, or structs are treated by the compiler exactly as if they had
been declared var. (Internally, this is done by passing where the object is
instead of the passing the value of the object itself.)

If this kind of complex parameter is not actually declared var, then the compiler
will generate warnings about any code in the subprogram that modifies the
variable. This protects the programmer from inadvertently changing the
variable’s value in the calling routine.

The compiler also generates a warning if a string constant is used as the actual
parameter of a formal “var string[]” parameter.

Var parameters can be of any type, but non-var parameters may be only int,
float, cloc, ploc, gloc, or any pointer type. Furthermore, when calling a
subprogram, var actual parameters must be expressions that might reasonably
occur on the left-hand-side of an assignment. For example:

sub alpha(var float x) ;; note the var parameter
...

end sub

... ;; in another subprogram
alpha(a[j*i+1]) ;; this is OK
alpha(q) ;; this is OK
alpha(q+1) ;; but this is not OK
...

RAPL-3 Reference Guide 63

sub beta(int[10] a) ;; this is taken to be
... ;; var int[10] a

end sub

sub gamma(int[10]@ a) ;; this is OK
...

end sub

sub delta(var int[10] a) ;; this is OK
...

end sub

64 Subroutines, Functions and Commands

Func, Sub, and Command Prototypes
Funcs, subs and commands must always be defined before they are used in a
program. Since it is not always convenient to rearrange a program so that
definitions precede uses, a mechanism for prototyping subprograms has been
provided. A prototype takes the form:

proto func_sub_or_command_header

For example:
proto func int myfunc(int x, float y) ;; prototypes
proto command qq(int a)

x = myfunc(t,1.5) ;; use of myfunc
qq x ;; and qq

...

func int myfunc(int a, float b);; actual definition
... ;; of myfunc

end func

command qq(int i) ;; actual definition
... ;; of qq

end command

Note that the names of the arguments of myfunc and qq need not match the
names in their prototypes, but the number of arguments and their types must
match exactly.

RAPL-3 Reference Guide 65

Libraries
When a RAPL-3 source file (or set of source files) is compiled, the result is a
RAPL-3 module. If a module has a main section then it can be run as a program.
However, some modules do not have main sections, and instead serve as
libraries.

A library is a compiled RAPL-3 module that contains subprograms and variables
that can be accessed by other modules Many of the subprograms commonly
used in writing RAPL-3 programs are in fact contained in one of several libraries.
For example, the move() command is actually contained in the robot library
(robotlib.r), and the printf() command is actually defined in the system library
(syslib.r). Libraries are used whenever it is likely that a subprogram or variable
will be needed by many different programs. The calling programs need only know
the names and types of each element in the library in order to use it. This allows
details of how the library works to be hidden – which is actually good, since this
means that subroutines in the library can be revised and improved without
affecting the programs that use it.

The only differences between a library and a normal program are:

(1) the library usually has no main section, and is generally never run by
itself.

(2) the library makes some of its variables and/or subprograms visible to
other modules by declaring them as global or export. This will be
discussed in more detail in the next section.

To use a library with your program, there are three requirements:

(1) At compile time the compiler must be told which libraries you want to
use and must have access to the compiled libraries. See the –L option in
the compiler documentation. We say that your program was compiled
with reference to the library.

(2) the library must be installed where the runtime system can find it. It
must either be in the same directory as your program or must be in the
/lib directory.

66 Subroutines, Functions and Commands

Variable and Subprogram Scope

A Scope Example
Suppose we have the following declarations in two RAPL-3 programs.

In program1.r3: In program2.r3:
int test_value
...

int test_value
global int intglob
export int intexp

func int factorial(int n)
if n == 0 then

return 1
else

return factorial(n-1)*n
end if

end func

export func plusone(x)
;; default types are float

return x+1
end func

global sub do_something()
...

end func

... ;; more code

Any subprogram in program1 can use and modify the program variable test_value
in program1. Furthermore, any subprogram in program2 can use and modify the
program variable test_value in program2. These are, however, two separate
variables and the value of the one in program1 has no connection to the value of
the other in program2.

Any subprogram within program1 can call the factorial function. For example, a
subprogram of program1 might have:

a = factorial(10) ;; compute the factorial of 10

;; and store it in a

The factorial function is not visible to program2, and cannot be called from
program2.

Program2's variable intglob and sub do_something can be used by any other
program in the system, providing they are compiled with reference to program2.
For example, any subprogram in program1 can modify intglob and call
do_something, since these objects are both global.

Program1 can also access intexp and plusone(), provided that it specifies where
these functions are to be found. For example, in program1, one could execute the
following code:

a = program2:plusone(b)

program2:intexp = program2:intexp + 1

Alternatively, one can use the with statement to avoid having to specify which
program to find plusone and intexp in:

with program2

a = plusone(b)

intexp = intexp + 1

end with

RAPL-3 Reference Guide 67

Relevant Statements

with
Description The with construction allows the search path of the scanner to be changed to

search an imported module first, before normal processing.

with statements may not be nested.

Syntax with modulename
...statements...

end with

Example See the scope example.

return
Description The return statement causes control to return to the func, sub, or command that

called the current subprogram. Inside a sub, the return statement takes the
form:

return

Funcs and commands each return a value, which must be specified in the return
statement:

return value_expression

main can return an integer value. If it does not, a zero value is returned
automatically.

Syntax return ;; in a sub

return value ;; in a func or command

Example

68 Subroutines, Functions and Commands

C H A P T E R 7

Preprocessor Directives

When a RAPL-3 program is compiled, it actually goes through two distinct stages:

(1) Preprocessing
The source code is interpreted by the preprocessor, which produces a
temporary file for stage (2). This temporary file has had all comments
removed, all .include directives replaced by the included files, all macros
(defined by .define) replaced and all conditional compilation directives
(.ifdef and .ifndef) carried out.

(2) Translation
The actual compiler takes the temporary file prepared by stage (1) and
converts it into RAPL-3 object code.

Breaking the compilation into two stages allows a great deal of flexibility. These
are the kinds of operations that can be performed by taking advantage of the
preprocessing stage:

70 Preprocessor Directives

File Inclusion
It is often inconvenient for a program to be located entirely in one source file. For
example, it might make sense to break the program up into a section dealing with
moving the robot, a section dealing with the user interface and a section dealing
with communication to another machine. The .include directive makes this kind
of split very simple. For example consider the following 4 source files:

In file robot.r3:

;; These routines deal with moving the robot

...

;; end of robot.r3

In file user.r3:

;; These routines deal with the user interface

...

;; end of user.r3

In file comm.r3:

;; These routines deal with communications

...

;; end of comm.r3

In file main.r3:

;; Main program

.include “robot.r3”

.include “user.r3”

.include “comm.r3”

;; Main’s stuff goes here

...

;; end of main.r3

What the actual compiler sees, after the preprocessing step has been run, is this:
(we have left comments in for the purposes of this example; in reality, the
preprocessing step also deletes all comments.)

.1 “main.r3”

;; Main program

.1 “robot.r3”

;; These routines deal with moving the robot

...

;; end of robot.r3

.3 “main.r3”

.1 “user.r3”

;; These routines deal with the user interface

...

;; end of user.r3

.4 “main.r3”

.1 “comm.r3”

;; These routines deal with communications

...

;; end of comm.r3

.5 “main.r3”

;; Main’s stuff goes here

...

;; end of main.r3

RAPL-3 Reference Guide 71

What has happened is that every time a .include directive was encountered, the
.include was replaced by the entire file that was named in the .include
preprocessor directive. As far as the compiler is concerned, it sees only one input
file.

You will note the rather odd constructions on the 1st, 3rd, 7th, 8th, etc. lines which
are of the form:

.number “filename”

These are understood by the compiler to mean that the next line of text actually
comes from the given line of the given file. This allows error messages during
compilation to match up with the actual lines in your source files. Note that the
preprocessor generates these automatically for us.

Macro Substitution
The preprocessor provides a macro substitution facility that has a similar effect to
the named constant (const) capabilities of the language. However, preprocessor
macros work by direct string replacement, allowing a symbol to be replaced with
any arbitrary string. (RAPL-3 does not presently support macros with
parameters.) Consider this example:

.define NAME “Joe”

.define NUMBER 1234

.define WHICH func1

...

printf(“The name is {}, and the number is {}\n”, NAME, NUMBER)

WHICH(NUMBER)

...

After being run through the preprocessor, this sample looks like this to the
compiler:

...

printf(“The name is {}, and the number is {}\n”, “Joe”, 1234)

func1(1234)

...

The .define lines are replaced by blanks; the preprocessor strips them out of the
file. Since the symbol NAME has been defined to be the characters “Joe”
(including the quotes), everywhere NAME appears it gets replaced by this string.

Note that while something similar to the printf() in the 7th line could have been
done using name constants (via const), the call to func1() in the 8th line could
not.

Note also the symbols that were .defined are never seen by the translation part
of the compilation. As far as the RAPL-3 language is concerned, these symbols
do not exist; they are relevant only to the preprocessor.

72 Preprocessor Directives

Conditional Compilation
The preprocessor can be used to effect conditional compilation, allowing one set of
source code to produce several different versions of program. This is often useful,
particularly for debugging purposes. Consider this example:

;; Define this to enable debugging code:

.define DEBUG

...

main

.ifdef DEBUG

printf(“Debugging version\n”)

.else

printf(“Normal version\n”)

.endif

... lots of code here ...

.ifdef DEBUG

printf(“debug: result was {}\n”, n)

.endif

... more code here ...

After the preprocessing stage, this looks like this:

...

main

printf(“Debugging version\n”)

... lots of code here ...

printf(“debug: result was {}\n”, n)

... more code here ...

The .ifdef directive allows code to be selectively included in the output of the
preprocessor if a symbol is defined – that is, if there has been a .define for that
symbol before the .ifdef in the source code. Note that the first printf() was
included in the output because the symbol DEBUG had been defined in the 2nd

line. The second printf() is not included because it is in the .else clause of the
.ifdef DEBUG.

Using this technique it is possible to simply leave debugging code in your
program and turn it off (by commenting out the .define DEBUG, for example)
once the program has been debugged. If problems occur later with the program,
the debugging code is still there and can be easily turned back on.

RAPL-3 Reference Guide 73

Preprocessor Directives in General
Placement

Preprocessor directives can be interspersed with other parts of the program.

Syntax

.preprocessor_directive [arguments]

On a line, a preprocessor directive cannot be preceeded by anything except blank
spaces. Each preprocessor directive begins with a dot. The entire line is
processed by the preprocessor. Definitions may not extend over more than one
line.

Comments

Comments are stripped from the input file.

Strings

The preprocessor recognizes that “ and ” (double quotes) delimit strings. No
macro expansions will be performed on text within “ and ” .

Special Symbols

The following two macros are always defined by the preprocessor, and will be
replaced by their appropriate values:

__LINE__ the current line # in the current source file
__FILE__ the current source file as a quoted string

For example, if you place this in your program:
printf(“I am at line {} of file {}\n”, __LINE__, __FILE__)

the effect will be to have the program print out a message giving what source line
and source file the printf() was located on.

74 Preprocessor Directives

The Preprocessor Directives

.define
Description Creates a preprocessor symbol. If no value is specified for the symbol, the

preprocessor will set the value of the new symbol to be “1” (without the quotes.)
Syntax .define [symbol]

.define [symbol] [value]

Examples .define TRUE 1
.define DEBUG

.error
Description Forces the preprocessor to issue an error message
Syntax .error [message]
Example .ifndef IMPORTANT

.error The symbol IMPORTANT must be defined!

.endif
This can be used to make sure that a particular preprocessor symbol (like
IMPORTANT in the above example) is actually defined.

.ifdef
Description Conditionally includes source if symbol is defined.

Can be used with an.else clause.
Syntax .ifdef [symbol]

lines of source code to be included if symbol is defined
.endif
.ifdef [symbol]

lines of source code to be included if symbol is defined
.else

lines of source code to be include if symbol is not defined
.endif

Example See the introduction.

.ifndef
Description Conditionally includes source if [symbol] is not defined.

Can be used with .else clause.
Syntax .ifndef [symbol]

lines of source code to be included if symbol is not defined
.endif
.ifndef [symbol]

lines of source code to be included if symbol is not defined
.else

lines of source code to be include if symbol is defined
.endif

RAPL-3 Reference Guide 75

.include
Description The .include directive inserts text contained in one source file into the current

source file at compile time.

Around the filename “ ” (double quotes) are required. The filename is identified
by the programmer. When the program is compiled, the contents of the file
filename replace the .include line.

This form searches the current dir first.

Syntax .include “ filename ”

Example see the introduction

.number “filename”
Description Forces a line to be recognized as line number of file filename.

Syntax .number “filename”

Example see the introduction

.undef
Description Deletes a preprocessor symbol definition.

Syntax .undef [symbol]

76 Preprocessor Directives

Using the Compiler from the Command Line
It is often useful to be able to run the RAPL-3 compiler from a command line
instead of from ROBCOMM3. This is particularly useful for large projects with
many source files, where tools like make are used to build the project.

The compiler is typically located, for example, in “C:\Program Files\CRS
Robotics\RAPL-3\bin”, and is called r3c. (RAPL-3 Compiler.)

Command line syntax r3c [-options] input_file_name

Options -o output_file_name
send output to a particular file; the default is r.out

–e error_file_name
send all error messages to the specified file

-?
print a help message

–h
same as -?

–fstack=number
set the running stack size of the program to number words

–Wall
enable all reasonable warnings

–Wmax
enable even possibly unreasonable warnings

–Wnone
disable all warnings

–v
be verbose; print lots of information about what is happening

–Dsymbol
make the preprocessor act as if symbol had been .defined

–Dsymbol=value
make the preprocessor act as if symbol had been .defined

–O0
don’t perform any code optimization

–O1
perform basic optimizations (default)

–s
reduce compiled code size by stripping out any symbols

–x
exclude all symbols except global and export symbols

C H A P T E R 8

Structured Exception Handling

RAPL-3 commands provide a means of automatically handling errors. If a
command is called like this:

thecommand(x, y, z)

then the RAPL-3 compiler generates code that automatically checks the
command’s return value. If the value is negative (less than zero) an exception has
occurred.

When an exception occurs, the default way of handling it is for the program to
stop and an error message to be printed out. This message typically looks like:

Exception raised at line 123 of myprog.r3: file not found

Note that the system typically can report the source line and file where the
exception occurred. It also attempts to interpret the return code as an error
descriptor, and reports the error as the equivalent descriptive string.

One way of explicitly dealing with exceptions in a program is to simply check the
return value of all commands. For example:

t = thecommand(x, y, z)

if (t < 0)

...error recovery...

end if

This can be very tedious and can make the code quite difficult to read, as every
command will tend to have at least 3 extra lines of code after it to handle possible
errors.

78 Structured Error Handling

try-except Construct
Structured Exception Handling provides a much neater and simpler way of
handling exception in program execution. Consider this short example:

try

...

thecommand(x, y ,z)

thatcommand(z, y)

thiscommand()

...

except

...error recovery code...

end try

The try-except construct allows the way the system reacts to exceptions to be
changed in the region between the try and the except. If one of the commands
in this section fails (returning a –ve number) then control is immediately
transferred into the except part of the construct. The program can then find out
what the error code was and even where it happened, and can take corrective
action. (Note that the except part is only executed if an exception happens. If
the program reaches the end of the try section successfully, then execution
continues after the end try.)

There are, in fact, four things the except part of the try-except construct can do:

1. Simply do nothing, and allow control to pass to the statement following the
end try.

2. Force the program to go back and execute the entire try section from the
start, using the special retry keyword.

3. Force the program to execute the failing statement over again from its start
using the resume keyword. For example, if thatcommand() had failed, then
resume would go back and continue execution at thatcommand() again.

4. Force the program to continue execution at the statement following the one
that failed using the ignore keyword. For example, if thatcommand() had
failed, then ignore would force execution to continue from the next line, at
thiscommand().

Syntax
The syntax of a structured exception handling section is:

try

statements

except

exception_handling_statements

end try

On entry to the block, statements are executed in the usual way. If an exception
occurs (a command fails) then execution is transferred to the except section.

RAPL-3 Reference Guide 79

A subprogram can have at most one active try block at a time. That is, try
blocks cannot be nested within a subprogram, although from within a try block,
one subprogram can call another one which also uses try blocks.

Gotos are not allowed inside try-except blocks. You can, however, break,
continue, return or raise to get out of the block.

You cannot define a label inside a try-except block, consequently cannot goto
into the middle of the block.

If an exception occurs inside the except part of the try-except block, then the
exception is handled by the next level up of try-except block, or by the system
(aborting with an error message) if there is no next level up.

Within the except section, the following special keywords are valid:

retry
go back to the start of the try block and do the entire block over again.

resume
go back to the statement that caused the exception and continue execution.
This allows the offending statement to be re-executed.

ignore

go back to the statement following the one that caused the exception and
continue execution

80 Structured Error Handling

Related Keywords and Subprograms

The following keywords and subprograms are related to exception handling:

Keywords:

raise

Functions:

error_code(), error_addr(), error_line(), error_file()

addr_to_line(), addr_to_file()

Commands:

abort()

C H A P T E R 9

Library Subprograms

The libraries contain predefined subroutines, functions, and commands used to
perform common programming tasks.

This chapter contains

• General
general information about libraries, return values, and naming conventions

• RAPL-II to RAPL-3
a mapping of functionality from RAPL-II to RAPL-3 for users who are familiar
with RAPL-II

• Subprograms: Categories
a description of each category, material common to subprograms in that
category, and a list of each subprogram in that category

• Subprograms: Alphabetical
a detailed description of each subprogram, listed alphabetically

82 Library Subprograms

 General

 Libraries
 The subprograms are contained in several CRS-supplied libraries. Since these
subprograms have global scope, you do not have to explicitly include a CRS-
supplied library to use one of these subprograms, except for the teach pendant
library.

 Teach Pendant Library

 Subprograms in the teach pendant library have export scope. You must explicitly
name the teach pendant library when using a teach pendant subprogram. Details
are with those subprograms.

 Return Values and Errors
 Return values less than 0 indicate an error condition. Error codes are listed in
the Error Handling section.

 Subprogram Names
 Names of subroutines, functions, and commands follow these conventions.

 Naming Conventions

 The first component is the general family of item, such as string or location.

 The second component is the specific sub-family, often the object being dealt
with, such as character, length, limit, cartesian data, or precision data.

 The last component is the operation, such as get, set, find, or reverse find.

 The _ (underscore) character is used as a separator.

 str_chr_get()

 str_chr_set()

 str_chr_find()

 str_chr_rfind()

 str_len()

 str_len_set()

 str_limit()

 str_limit_set()

 loc_cdata_get()

 loc_cdata_set()

 loc_pdata_get()

 loc_pdata_set()

 Exceptions

 Where there is only one operation of interest, such as a query, there is no
operation named.

 str_len()

 str_limit()

RAPL-3 Reference Guide 83

 Where a family, sub-family, or operation is obvious, it is not included. Instances
include all arm motion commands and all math functions.

 depart

 move

 jog

 yaw

 ln

 sin

 sqrt

 mem_alloc

 mem_free

 time_set

 Where there is only one sub-family, the underscore may be omitted.

 griptype_set

 gripdist_get

 Where the name is an alias for another subprogram, components may be
changed or omitted.

 jog_w(JOG_X,D) xw(D)

84 Library Subprograms

 RAPL-II to RAPL-3
 The following are the equivalent RAPL-II and RAPL-3 commands.

 In some cases functionality is identical. In other cases functionality is different.

 Some RAPL-II commands have been split into two or more RAPL-3 commands.

 RAPL-II RAPL-3 ash system
shell

 ABORT abort() kill
 ABS fabs(), iabs()
 ACOS acos()
 ACTUAL
[cartesian or precision]

pos_get(POSITION_ACTUAL)
(precision)

 actual

 ALIGN align() align()
 ALLOC
[allocates, repartitions, sorts, verifies, ...]

 mem_alloc()
[only allocates, clears memory]

 ANALOG
[value of voltage on analog input channel]

 analog()

 AOUT
[manipulates analog output]

 aout()

 APPRO appro()
appros()

 appro

 ARM
[enables, disables arm power relay]

 robot_flag_enable()

 open(“\dev\estop”…

 abort()

 enable

 ASIN asin()
 ATAN2 atan2()
 CIRCLE circle() circle
 CLOSE grip_close() gripclose
 COMP
 XCOMP
 YCOMP
 ZCOMP
 OCOMP
 ACOMP
 TCOMP

 loc_cdata_get()
loc_pdata_get()

 CONFIG ioctl() [put options] siocfg
 COPY cp, copy
 COS cos()
 CPATH cpath() cpath
 CTPATH ctpath() ctpath
 CUT
[only deletes characters]

 str_edit()
[deletes or inserts characters]

 DECODE str_to_int()
 DEG deg()

RAPL-3 Reference Guide 85

 DELAY delay()
msleep()

 DELETE, DEPROG unlink() rm, del
 DEPART depart()

departs()
 depart

 DIR ls, dir
 DISABLE robot_flag_enable() disable
 DLOCN erase

eraseall

 DO do [flow control]
 DVAR erase

eraseall

 EDIT editor of
Robcomm3

 ELBOW
[A255]

 stance_set(... elbow ...)

 testing

 pose/
setstance

 pose/
setstance

 ENABLE robot_flag_enable() enable
 ENCODE
[int to string for printing]

 snprintf(), sprintf()

 END [flow control]
 EXECUTE execl()

execv()
 run
filename

 filename

 FINISH finish() finish
 FREE heap_space()

[longest contiguous free area in
heap]

 mem [in
memory]
df [on file
system]

 GETCH
[returns character code at serial input]

 read()

 getch()

 GOPATH ctpath_go() gopath
 GOSUB [call to sub, func, or command]
 GOTO goto [flow control]
 GRIP gripdist_set(), grip() grip
 HALT halt()
 HERE here() here
 HOME home() home
 HOMEGRIP homegrip() homegrip
 HOMESEQ seekswitch() seekswitch
 HOMEZC homezc() homezc
 IF if [flow control]
 IFPOWER if robotispowered() …
 IFSIG if input() …
 IFSTART fpstart(),

 front panel library

86 Library Subprograms

 IFSTRING if [comparing string variables or
constants]

 INBOUNDS
[is location in bounds]

 inbounds()

 INPUT input()
read() [with stdin or other
parameter]
reads()
readsa()

 input

 INT

 [returns closest integer value]

 INVERT
[invert Z, leave X and Y, of coord system]]

 invert() invert

 JOG jog_w()
wx(), wy(), wz(), xrot(), yrot(),
zrot()

 jog_ws()
wxs(), wys(), wzs(),xrots(),
yrots(), zrots()

 jog

 JOINT joint() joint
 KBHIT
[character exists, to be read from serial input]

 kbhit()

 LIMP limp() limp
 LISTL, LLOC list [in .v3]

print [in .v3]

 LISTP, LPROG ls, dir
 LISTV, LVAR list [in .v3]

print [in .v3]

 LN ln()
 LOCK lock() lock
 LOG log()
 MA
[move to absolute angles]

 moveabsolute() moveabs

 MAGRIP
[force applied by magnetic gripper]

 grip() grip

 MI
[move by increments of angles]

 moveincrement() moveinc

 MOD [function] mod [operator]
 MOTOR motor() motor
 MOVE move()

moves()
 move

 NOLIMP nolimp() nolimp nolimp
 NOTRACE abort()
 OFFSET base_set()

base_get()

 ONLINE online() online
 ONPOWER loop ... if ... robotispowered() ...

delay()

RAPL-3 Reference Guide 87

 ONSIG loop … if input() … delay()
 ONSTART read(“\dev\buttons”…

 front panel library

 OPEN grip_open() gripopen open
 OUTPUT output() output
 PASTE
[only inserts characters]

 str_edit
[deletes or inserts characters]

 PAUSE signal() ... input() ... if ...
 PENDANT [gives and takes control] pendant
 PITCH pitch()

jog_t(TOOL_PITCH, ...)

 pitchs()
jog_ts(TOOL_PITCH, ...)

 pitch

 POINT loc_cdata_set()
loc_pdata_set()

 point()

 set [location
= location]

 POSE
[A465,G3000]

 stance_set() pose
setstance

 POW pow()
 PRINTF printf()
 RAD rad()
 RANDOM
[returns random number]

 random()

 REACH
[A255]

 stance_set() pose

 setstance

 READY ready() ready ready
 RENAME mv, move
 RETURN return [from sub, func, or

command]

 ROLL roll()
jog_t(TOOL_ROLL, ...)

 rolls()
jog_ts(TOOL_ROLL, ...)

 roll

 RUN
[default is last program executed]

 run filename

 SERIAL ioctl() [get options] siocfg
 SET = [assignment]

 operators

 set

 SHIFT
[alter X, Y, Z of cartesian location]

 get/change/move

 translations only

 shift

 SHIFTA
[alter all 8 coordinates of cartesian loc.]

 shift_w() shift

 SIN sin()
 SPEED speed_set(), speed()

 speed_get(), speed(-1)

 speed speed

88 Library Subprograms

 SQRT sqrt()
 SRANDOM
[returns random number and reseeds]

 seed()

 (reseeds)

 STATUS status

 servostat

 sysstat

 STRPOS
[finds substring in string]

 str_chr_find
[finds character in string]

 SYSTEM sysstat
 TAN tan()
 TEACH pendant
 TIME mtime()

 time()

 delay()

 date

 TOOL tool_set()
tool_get()

 tool tool

 TRIGGER
[activate output at location]

 settrigger() ?? trigger

 TRUNC
[truncates and returns integer]

 (int)
typecast

 UNLOCK unlock() unlock
 UNTIL do ... until [flow control]
 W0 pos_get(), xforms w0 w0
 W1 pos_get(), xforms w1 w1
 W2 pos_get(), xforms w2 w2
 W3 pos_get(), xforms w3 w3
 W4 pos_get(), xforms w4 w4
 W5 pos_get(), xforms w5 w5
 WAIT while input()…
 WE1 w1 w1
 WE3 w3 w3
 WGRIP gripdist_get() wgrip
 WHILE while [flow control]
 WITH
 X movex() movex movex
 XREADY ready() ready
 XZERO zero() zero
 Y movey() movey movey
 YAW yaw()

jog_t(TOOL_YAW, ...)

 yaws()
jog_ts(TOOL_YAW, ...)

 yaw yaw

 Z movez() movez movez

RAPL-3 Reference Guide 89

 @ACCEL accel_get(), accels_get()

 accel_set(), accels_set()

 accel

 @@CAL calibrate() cal
 @@CALGR grip_cal() calgrip
 @@CALSEQ homeseq() homeseq
 @@CALZC calzc() calzc
 @CALRDY calrdy() calready
 @CLINACC linacc_get()

 linacc_set()

 linacc

 @CLINSPD linspd_get()

 linspd_set()

 linspd

 @CROTACC linacc_get()

 linacc_set()

 linacc

 @CROTSPD linspd_get()

 linspd_set()

 linspd

 @@DIAG diagnostics
 @GAIN gains_set()

 gains_get()

 gain

 @LOCATE pos_set() locate
 @MAXSPD maxvel_set(), maxvels_set()

 maxvel_get(), maxvels_get()

 maxvel

 @SEEK seek()
 @SERVERR get_servoerr_params()

 set_servoerr_params()

 @@SETUP split into relevant sections
 @TRACK track_spec_set() setnoa
 @XLIMITS jointlim_get()

 jointlim_set()

 limits

 @XLINKS linklen_get(), linklen_set() linklen
 @XMAXVEL maxvel_set()

 maxvel_get()

 maxvel

 @@XNET transputernet()
 @XPULSES xpulses_get(),

 xpulses_set()

 @XRATIO xratio_get()

 xratio_set()

 @ZERO zero()

 pos_set()

 zero

90 Library Subprograms

 Subprograms: Category Listing

 These lists give an overview of subprograms by category and can be helpful for
comparing related subprograms. Since a category is focussed on one set of tasks,
some subprograms are listed under more than one category.

 In these category listings, the descriptions of the subprograms are very brief. For
a complete description, see the subprogram listing under the alphabetical listing.

 On the following pages, subprograms are grouped under the following categories.

 Analog Input

 Calibration

 Calibrating arm and gripper.

Configuration File Handling

 Date and Time

 Current time and date. Elapsed time in milliseconds.

 Device Input and Output

Digital Input and Output

 Environment Variables

 Error Message Handling

 Subprograms for handling error descriptors returned from subprogram calls.

 File and Device System Management

 Creating and deleting directories and objects in the file system. Mounting another
file system on a directory.

 File Input and Output

 Input and output for files and devices: opening, closing, reading, writing, both
unformatted and formatted with format specifiers listed. Input and output for
other objects is under Device Input and Output. Input and Output for sockets is
under Multi-tasking.

 Subcategories include:

 Formatted Input

 Unformatted Input

 Formatted Output

 Unformatted Output

 Front Panel

 Configuring the front panel for custom operation.

 Gripper

 Operating the gripper.

92 Subprograms:Category Listing

 Home

 Homing the robot (for A465 and A255).

 Location

 Packing data from a location to an array and from an array to a location.
Converting one type of location to another. Shifting locations in world or tool
frame.
 Subcategories include:
 Kinematic Conversion
 Data Manipulation
 Flags

 Math
 Trigonomic, logarithmic, and other math functions. Converting radians to degrees
and degrees to radians.

 Memory
 Allocating and freeing memory. Determining and setting heap.

 Motion
 Subprograms designed to initiate robot motion.

 Pendant
 Reading characters and writing strings at the pendant. Manipulating the cursor
and screen. Manipulating variables from the teach pendant.

 Pointer Conversion and Function Pointers
 Special subprograms to convert pointers to variables and to call functions using a
pointer.

 Robot Configuration
 Configuring the arm: number of axes, velocities, accelerations, gains, travel
limits, link lengths. etc.

 Signals
 Sending signals. Setting actions dependant on signals. Determining and setting
signal masks.

 Stance
 Subprograms to adjust the robot stance. RAPL-3 uses the term “stance” for a
specific set of joint angles used when reaching a location.

 Status

 String Manipulation
 Editing, appending, copying, etc. of strings. Determining and converting case of
characters and strings. Converting strings to other data types and other types to
strings.

 System Process Control
 Subcategories include:

Single and Multiple Processes
 Operating System Management

 Point of Control and Observation

 ToolTransform and Base Offset

 Base offsets and tool transform.

 V3 Files

 The v3 subprograms allow a program to modify a v3 file.

RAPL-3 Reference Guide 93

 Win 32

 These Win 32 commands allow a CROSnt process to communicate with a process
in the Windows NT environment.

94 Subprograms:Category Listing

Analog Input
 analogs_get Retrieves the values of the eight analog inputs on the

C500C controller.

 boardtemp_get Retrieves the C500C main board temperature, in degrees
Celsius.

RAPL-3 Reference Guide 95

Calibration
 calibrate Calibrates axes.

 calrdy Moves the arm to the calibrate position.

 calzc Calibrates at next zero cross.

 grip_cal Calibrates the gripper.

 hsw_offset_get Returns the offset between homing switch and calibration
position.

 motor Rotates a motor by a specified number of encoder pulses.

 pos_get Gets the position of the arm

 pos_set Sets the position of the arm

 ready Moves the arm to the READY position.

 zero Sets current motor position registers to 0.

96 Subprograms:Category Listing

Configuration File Handling
 cfg_load Loads a text configuration file for the current application.

 cfg_load_fd Loads a configuration information from a file that is
already open.

 cfg_save Re-writes a configuration file for the current application.

 cfg_save_fd Re-writes a configuration file for the current application.

RAPL-3 Reference Guide 97

 Date and Time

 mtime Obtains the time since system start-up.

 time Returns the current time.

 time_set Sets the current time.

 time_to_str Converts a system time code to an ASCII string.

98 Subprograms:Category Listing

 Device Input and Output

 chmod Changes access mode information about a file or device.

 fprint Writes the specifies data to the file associated wth file
descriptor fd.

 fprintf Converts and writes output to a device or file.

 freadline Reads (interactively) a line of characters from a file and
echoes to a file.

 ioctl I/O control operation. Used to configure and control a device.

 mknod Makes a special node.

 open Opens a file or device and returns a file descriptor.

 rcv Receives words from a socket.

 send Sends specified number of words into the socket

 sigfifo Sends a signal to all of the readers at the other end of a fifo

 socketpair Gets a pair of file descriptors for a private client and server
socket

RAPL-3 Reference Guide 99

 Digital Input and Output

 input Returns the state of an input.

 inputs Returns an int that represents the bitmapped state of the
digital inputs.

 net_in_get Reads input data from the F3 end of arm I/O boards.

 net_ins_get Reads all input data from the F3 end of arm I/O boards.

 net_out_set Sets a specified F3 end of arm output to a specified value.

 net_outs_get Gets the current state of a set of F3 end of arm outputs.

 net_outs_set Allows several F3 end of arm outputs to be set to a specified
state at the same time.

 output_get Queries an output channel for its state. Returns the state.

 output_pulse Sets an output channel to one state, waits, and then sets the
channel to the opposite state.

 output
output_set

 Sets an output channel to a state.

 outputs
outputs_set

 Sets the entire bank of output channels to states of a
bitmapped value.

 outputs_get Queries the bank of output channels. Returns an int that
represents the bitmapped state of the outputs.

100 Subprograms:Category Listing

 Environment Variables

 environ Allows to retrieve each individual string from its
environment.

 getenv Allows to retrieve the value of a specified environment
string.

 setenv Creates/redefines an environment variable’s value.

 time_to_str Converts a system time code to an ASCII string.

 unsetenv Deletes the selected environment string.

RAPL-3 Reference Guide 101

 Error Message Handling
 Rapl-3 commands always return a value. A positive return value indicates that
the command completed successfully. A negative return value indicates an error.
Errors are designated by _error_descriptors_. Commands upon failure return the
negative value of the specific error descriptor.

 For example:

 int t
t = open(....) ;; t is assigned the return value from the open command
if (t < 0)

;; it FAILED
printf("The error descriptor is {}\n", -t) ;;Print error descriptor
printf("And it means '{}'\n", str_error(-t)) ;; Print error message

end if

 The error descriptor (-t) is a 32 bit value, divided into 4 fields, with the following
bit description.

 msb lsb
[subsystem:7] [b2:8] [b1:8] [code:8]

 The Subsystem field defines the part of the system where the error originated.
For example, the kernel is subsystem 0, the robot library is subsystem 1 and the
robot server is subsystem 2.

 Code identifies the specific error code for the given subsystem. Each subsystem
has associated with it a specific list of error codes. For example, code 1 is
"general error" for the kernel subsystem, and is "illegal straight line move" for the
robot library subsystem.

 The error codes (and their translations) are located in a set of files in the
/lib/errors directory. The file names are of a standard form, "sysNNN.err", where
NNN is a 3-digit 0-padded decimal number defining the subsystem. For example,
kernel errors are contained in the sys000.err file, robot library errors in
sys001.err, robot server in sys002.err.

 The format of these files are standard. As a result given the error descriptor the
error code can be determined. The first line of the subsystem sysNNN.err file
contains the subsystem name. The subsequent lines contain, in sequence, the
error code number EEE and an error translation.

 Line 1: Subsystem name
Following lines: EEE error translation string

 Where EEE is a 3-digit zero-padded decimal number corresponding to the specific
code of the error descriptor. Within the error translation string, the system
recognizes two special sequences: "$1" and "$2". On printing errors containing
these strings, the system will replace the $1 and $2 with the decimal values of b1
and b2, respectively. For example, consider the following hypothetical error
translation file, say, sys064.err:

 This_Demo System
001 Idiotic error
002 Not-so idiotic error
003 Error on robot axis $1 (I think)
004 Error on axis $2 from module $1
005 Oops!

102 Subprograms:Category Listing

 When an error descriptor corresponding to the This_Demo System error 004
[0x04060504] is translated using the function str_error(), the error result is
"Error on axis 6 from module 5".

 Given the error descriptor returned from a failed function call the specific error
code can be determined using the error handling functions. As a consequence a
listing of the subsystems and their error codes are not explicitly listed. The list of
errors can be obtained from sysNNN.err files in the /lib/errors directory.

 The Kernel subsystem (subsystem 0) error code are specifically returned in some
subprograms to denote errors. An enum type error_code_t defines the kernel
subsystem errors as follows:

 EOK = 0 no error

 ENOENT = 2 no such file or directory

 ESRCH = 3 no process with that pid number

 EINTR = 4 interrupted system call

 EIO = 5 input/output error

 ENXIO = 6 no device

 E2BIG = 7 too many arguments or too long an argument area

 ENOEXEC = 8 file is not an executable

 EBADF = 9 bad file descriptor

 ECHILD = 10 no child process

 EPERM = 11 permission denied

 ENOMEM = 12 not enough memory

 EACCESS = 13 access denied

 EBUSY = 16 resource busy

 EEXIST = 17 file exists

 EXDEV = 18 link across devices attempted

 ENODEV = 19 operation not supported by device

 ENOTDIR = 20 tried to search a non-directory

 EISDIR = 21 tried to open a directory for writing

 EINVAL = 22 invalid argument

 ENFILE = 23 too many open files on the system

 EMFILE = 24 too many open files for this process

 ENOTTY = 25 inappropriate ioctl()

 ETXTBSY = 26 executable text file busy

 ENOSPC = 28 device out of space

 ESPIPE = 29 illegal operation on fifo or socket

 ERANGE = 34 result out of range

 EAGAIN = 35 resource temporarily unavailable

 ETIMEOUT = 37 timed out

 ENOTSOCK = 39 tried to send/rcv on a non-socket

 ENOSERV = 40 tried to access a socket with no server

RAPL-3 Reference Guide 103

 ENOCLIENT = 41 server tried to talk to a client that no longer exists
or has closed the socket.

 ERESET = 42 device is being reset

 ENOTEMPTY = 43 attempted to delete a non-empty directory

 EOPNOTSUPP = 45 operation not supported

 The fields b2, b1 define extra data required to report specific errors. The fields b1
and b2 are not used for all (or even many) error descriptors. If not used each of
the bits is set to 0. As an example, when an "axis N out" error is reported, b1
carries the number of the axis that is out.

 Error Descriptors Command Summaries

 The following subprograms exist for handling error descriptors:

 addr_decode Looks up the address specified in the line number tables
and decodes it into a line and file.

 addr_to_file Converts an address to a file name string.

 addr_to_line Converts an address to a line number.

 err_compare Compares two error descriptors for matching subsystem
and error code fields.

 err_compose The function reconstructs and returns the original error
descriptor

 err_get_b1 Given a +ve error descriptor, returns the value of b1.

 err_get_b2 Given a +ve error descriptor, returns the value of b2.

 err_get_code Given a +ve error descriptor, returns the value of the
errorcode.

 err_get_subsys Given a +ve error descriptor, returns the number of the
subsystem originating it.

 error_addr Returns the address where the current exception
occurred.

 error_code Get the current exceptions error code

 error_file Returns the name of the file where the current error
resides.

 error_line Gets the line number of the current error.

 str_error Returns a pointer to a string that describes an error code.

 str_subsys Returns a string giving the name of the subsystem
originating a given error code.

 Warning: The str_error() and str_subsys() routines share a static string variable
for storing their return values. They cannot be called in the same print() or
printf(). For example:

 printf(".....", str_subsys(...), str_error(...))

104 Subprograms:Category Listing

 will NOT work as expected; always break these function calls into separate
printf() statements.

RAPL-3 Reference Guide 105

 File Input and Output
 Input and output for files: opening, closing, reading, writing, both unformatted
and formatted with format specifiers listed. Input and output for devices such as
sockets, pipes and fifos is found in the Device Input and Output category.

 Format Specifiers The format string may consist of two different objects, normal characters which
are directly copied to the file descriptor, and conversion braces which print the
arguments to the descriptor. The conversion braces take the format:

 { [flags] [field width] [.precision] [x | X] }

 Flags
 Flags that are given in the conversion can be the following (in any order):

• – (minus sign) specifies left justification of the converted argument in its field.

• + (plus sign) specifies that the number will always have a sign.

• 0 (zero) in numeric conversions causes the field width to be padded with
leading zeros.

Field width
The field width is the minimum field that the argument is to be printed in. If the
converted argument has fewer characters than the field, then the argument is
padded with spaces (unless the 0 (zero) flag was specified) on the left (or on the
right if the – (minus sign) was specified). If the item takes more space than the
specified field width, then the field width is exceeded.

.precision
The precision number specifies the number of characters in a string, the number
of significant digits in a float, or the maximum number of digits in an integer to
be printed.

x or X
This is the hexadecimal flag which specifies whether or not an integer argument
should be printed in hexadecimal (base 16) or not. The lowercase x specifies
lowercase letters (abcde) are to be used in the hexadecimal display and the
uppercase X specifies uppercase letters (ABCDE)..

A character sequence of {{ means to print the single { (opening brace) character.

Unformatted Input
freadline Reads (interactively) a line of characters from a file and echoes to a

file.
read Reads a number of words (4 byte entities) from a file descriptor.
readline Reads (interactively) a line of characters from the standard input

device, normally the terminal keyboard. Echoes to the standard
output device, the terminal screen.

reads Reads a string from a file.
readsa Reads a string from a file and appends it to the end of another string.
seek Provides a method to move through a file arbitrarily rather than

sequentially.

106 Subprograms:Category Listing

Formatted Input
str_scanf Separates the contents of a string according to a specified

format and places them into a list of pointers.

Unformatted Output
fprint Writes data to a file, exactly as given.

 print Writes data to the standard output device, normally the
terminal screen, exactly as given.

snprint Writes data to a string, exactly as given.

write Writes words (4 byte entities) to a file descriptor.

writeread Atomically writes words to a file descriptor and reads
words from a file descriptor.

writes Writes a string to a file.

Formatted Output
fprintf Writes data to a file under a specified format.

printf Writes data to the standard output device, normally the
terminal screen, under a specified format..

snprintf Writes data to a string, under a specified format.

RAPL-3 Reference Guide 107

File and Device System Management

access Checks whether a file can be accessed in the mode
specified.

chdir Changes the current working directory to path.
chmod Changes access mode of an file or device.
close Closes file. Breaks the connection between a file

descriptor and an open file.
dup Duplicates an existing file descriptor.
dup2 Duplicates an existing file descriptor.
flock Sets and releases advisory locks on a file.
fstat Obtains information about a particuar open object in the

file system.
ftime Changes the modification time of an open filesystem

object.
ioctl I/O control operation. Used to configure and control a

device.
killfifo Sends a signal to all readers at the other end of the fifo.
link Makes a hard link to an existing file or directory. Useful

for renaming files, moving files, or sharing data.
MAJOR Extracts the major number from a device.
MINOR Extracts the minor number from a device.
mkdir Creates a new empty directory.
mknod Makes a special node (device, fifo, socket).
mount Mounts a file system
open Opens a file and returns a file descriptor.
pipe Creates a single stream pipe.
rcv Receives (reads) words from a socket.
readdir Reads a directory entry and stores the structure in buf.
rmdir Deletes an empty directory.
seek Moves the starting position in a file to read or write.
server_get For use with multiple robot systems - Gets the name of

the current server name.
server_info For use with multiple robot systems - Gets information

about the current server.
server_protocol Returns the protocol designator from the robot server.
server_set For use with multiple robot systems - Sets the current

server.
server_version Specifies the robot server version.
sigfifo Sends a signal to readers of a fifo.
socketpair Gets a pair of file descriptors for a client and server

socket.
stat Obtains information about a particular object in the file

system.

108 Subprograms:Category Listing

statfs Gets information about a mounted filesystem.
send Sends (writes) words to a socket.
sync Flushes all the file system buffers of their contents.
unlink Removes a link to a file.
unmount Unmounts a file system
utime Changes the modification time of a filesystem object.

RAPL-3 Reference Guide 109

Front Panel
There are five front panel buttons on the controller, two of which can be
programmed using RAPL 3 subprograms designed for reading or setting the
button status. The ARM POWER button cannot be controlled using the RAPL-3
subprograms. However, the robotispowered function can be used to determine,
but not set, the status of the arm power.

The other buttons do not have switch position settings on or off, instead they are
momentarily set buttons that only register ON (high) when they are pressed. The
status of a button is high (ON) only while it is actually pressed. After it is released
the status returns to 0 (OFF). The buttons are labeled with one of the following
set of labels.

CYCLE START F1
PROGRAM RESET F2
PAUSE CONTINUE PAUSE CONTINUE
HOME HOME
ARM POWER ARM POWER

The function of the buttons are identical, only the labels on the buttons are
changed. The F1, F2, (CYCLE START PROGRAM RESET) buttons are user
programmable. They can be programmed to have specific meanings for different
applications. For instance an application can be programmed to require that one
or both buttons must be pressed in order to initiate a robot movement.

The PAUSE CONTINUE button if pressed while the robot is in motion causes the
robot motion to pause. For example if robot motion is initiated from the
command line and then terminated from the keyboard (ALT-A or ALT_E) the
operating system takes control, stops the robot, and flashes the PAUSE
CONTINUE button. To initiate robot movement again the PAUSE CONTINUE
button must be pressed. A message appears on the terminal requesting that the
button be pressed.

Each of the buttons has an indicator light. In the case of the ARM POWER
button, the light indicates the ARM POWER status. If the light is illuminated, the
ARM POWER is ON. Correspondingly if the light is not illuminated, the ARM
POWER is OFF. The HOME light is used to indicate that the A series robot is
homed or, that the F3 robot is calibrated. The HOME button however does not
cause the either robot to be homed or calibrated.

The remaining lights are programmable and have no relationship to the button
status. Like the buttons the light function can be programmed using the RAPL 3
subprograms. They can be programmed to indicate certain conditions, or to
illuminate when the robot is in a certain position.

Status Window
The status window on the controller, can display two hexadecimal digits. The
subprogram panel_status can be used to set and test the status window. The
function changes the window display but does not change the system status.

110 Subprograms:Category Listing

Panel Button Subprograms
The following subprograms can be used to control the front panel:

onbutton Waits for one of the buttons to be pressed. The light can
be made to blink while waiting for the light to be pressed.
The light is left in the same state as when we found it.

panel_button Returns True if the button is pressed.
panel_button_wait Waits for a particular button to be pushed.
panel_buttons Returns the setting of the panel buttons as a bit vector.
panel_light_get Gets the status of a particular light.
panel_light_set Sets the status of one particular light.
panel_lights_get Gets the status of the controller front panel buttons.
panel_lights_set Sets the status of the controller front panel buttons.
panel_status Sets the front panel status display to show a specified

value

Button_enum type

A global enumerated type variable button_enum is defined for the buttons as
follows:

global typedef button_enum enum

BF_1 =1,
BF_2 =2,
B_PAUSE_CONT =4,
b_HOME =8

end enum

RAPL-3 Reference Guide 111

Gripper

grip
gripdist_set

Moves servo-gripper fingers to a specified distance apart.

grip_cal Calibrates the gripper.

grip_close Closes the gripper.

grip_finish Holds program execution until gripper motion is finished.

grip_open Opens the gripper.

gripdist_get Gets the current distance between servo-gripper fingers.

gripisfinished Determines if the gripper is finished moving.

gripper_stop Stops the gripper motion

griptype_get Gets what the robot gripper type is currently set to.

griptype_set Sets the gripper type to correspond to the gripper in use:
air or servo-motor.

112 Subprograms:Category Listing

Home

home Homes specified axes.

homezc Homes.

hsw_offset_get Returns the offset between homing switch and calibration
position.

robotishomed Returns current home state.

zero Sets all the current motor position registers to 0.

RAPL-3 Reference Guide 113

Location
Kinematic Conversion
joint_to_motor Converts a location from joint angles to motor pulses.

joint_to_world Converts a location from joint angles to world coordinates.

motor_to_joint Converts a location from motor pulses to joint angles.

motor_to_world Converts a location from motor pulses to world coordinates.

world_to_joint Converts a location from world coordinates to joint angles.

world_to_motor Converts a location from world coordinates to motor pulses.

Data Manipulation
here Stores the current commanded location in a location

variable.

loc_cdata_get Packs cartesian data from a location into a float array.

loc_cdata_set Packs cartesian data from a float array into a location.

loc_check Tests the checksum of a location.

loc_class_get Returns the class of a location.

loc_class_set Sets the class of a location.

loc_pdata_get Packs precision data from a location into an integer array.

loc_pdata_set Packs precision data from an integer array into a location.

loc_re_check Recalculates and resets the checksum of a location.

pos_axis _set Sets the specified axis to a position.

pos_get Gets the position of the robot.

pos_set Sets all axes to a specified position.

shift_t Alters cartesian location in tool frame of reference.

shift_w Alters cartesian location in world frame of reference.

Flags
loc_flags_get Returns the flags of a location.

loc_flags_set Sets the flags of a location.

loc_machtype_get Returns the machine type code of a location.

loc_machtype_set Sets the machine type code of a location.

114 Subprograms:Category Listing

Math
These functions perform common mathematical calculations. All math functions
take floating point arguments.

acos Calculates the arc cosine.

asin Calculates the arc sine.

atan2 Calculates the arc tangent.

cos Calculates the cosine.

deg Converts radians to degrees.

fabs Finds the absolute value of a float.

iabs Finds the absolute value of an int.

ln Calculates the natural logarithm.

log Calculates the common logarithm.

pow Calculates a value raised to a power.

rad Converts degrees to radians.

rand A function for generating random numbers (integers).

rand_in A function for generating random numbers (integers)
which fall in the range specified.

sin Calculates the sine.

sqrt Calculates the square root.

str_to_float Converts a string to a float.

str_to_int Converts a string to an integer.

tan Calculates the tangent.

RAPL-3 Reference Guide 115

Memory

heap_set Sets the heap size of the current process.

heap_size Returns the number of words in the heap.

heap_space Returns the length of the longest contiguous free area in
the heap.

mem_alloc Allocates an area of memory and clears it by initializing it
to zeros..

mem_free Frees an allocated area by returning it to the pool of free
space.

memcopy Copies a block of words (4 byte entities).

memset Sets a block of words to contain a value.

memstat Gets information about current memory status.

pdp_get The function gets the private data area pointer for the
current thread.

pdp_set A subroutine to set the private area memory for the
current thread.

str_sizeof Returns the number of words of memory to store a string.

sync Flushes file system buffers.

116 Subprograms:Category Listing

Motion

align Aligns “approach/depart” axis to a world axis.

appro Moves the tool centre-point to an approach position, not in
straight-line mode.

appros Moves the tool centre-point to an approach position in
straight-line mode.

calrdy Moves the arm to the calibrate position.

cpath Calculates and immediately executes a path.

ctpath Creates and stores a continuous path through an array of
locations with triggers for gpio (general purpose
input/output).

ctpath_go Runs a path previously stored by ctpath.

depart Moves the tool centre-point to a depart position in joint
interpolated mode.

departs Moves the tool centre-point to a depart position in
straight-line mode.

finish Forces a command to finish before the next command is
initiated.

grip
gripdist_set

Moves the fingers of the servo-gripper to a specified
distance apart from each other.

grip_close Closes the gripper.

grip_finish Holds program execution until gripper motion is finished.

grip_open Opens the gripper.

gripper_stop Stops the gripper motion

halt Stops the robot motion

jog_t
tx, ty, tz,
yaw, pitch,
roll

Moves the tool centre-point in the tool frame of reference,
not in straight-line mode

jog_ts
txs, tys, tzs,
yaws, pitchs,
rolls

Moves the tool centre-point in the tool frame of reference,
in straight-line mode.

jog_w
wx, wy, wz,
zrot, yrot,
xrot

Moves the tool centre-point in the world frame of
reference, not in straight-line mode

RAPL-3 Reference Guide 117

jog_ws
wxs, wys, wzs,
zrots, yrots,
xrots

Moves the tool centre-point in the world frame of
reference, in straight-line mode.

joint Rotates a rotational joint a specified number of degrees, or
moves a linear joint a specified number of current units.

limp Disengages the servo control of a motor which limps that
joint.

lock Locks an axis.

motor Rotates a motor by a specified number of encoder pulses.

move Moves the tool centre-point to a specified location, not in
straight-line mode.

moves Moves the tool centre-point to a specified location, in
straight-line mode.

nolimp Re-engages the servo motor of a joint previously set limp.

online Sets the online mode

pitch In the tool frame of reference rotates (joint interpolated
motion) around the orientation axis.

pitchs In the tool frame of reference, rotates (straight line motion)
around the orientation axis.

ready Moves the arm to the READY position.

robot_abort Stops motion and discards contents of motion queue.

robot_cfg_save Re-writes the “/conf/robot.cfg” file with the current robot
configuration information.

robot_info Returns whether robot is done moving.

robotisdone Returns the current robot done state

speed
speed_set

Sets or gets the speed of arm motions

speed_get Sets or gets the speed of arm motions

unlock Unlocks an axis.

118 Subprograms:Category Listing

Pendant
The pendant subprograms allow a program to use the teach pendant.

Pendant Library Commands
The following commands are exported from the pendant library and need the
library name (stp) to be specified in the subprogram call.

app_close Closes a pendant application so that a new one can
be opened.

app_open Selects the application specified by the argument
name.

clear_error Clears persistent error bits on the DSP

confirm_menu Forces the user to confirm an action before it is
carried out.

pendant_bell Sounds the pendant bell.

pendant_chr_get Reads a character from the pendant

pendant_close Closes the pendant in preparation for shutting
down a program or the controller.

pendant_cursor_pos_get Returns the current position of the pendant cursor.

pendant_cursor_pos_set Move the cursor to the position specified

pendant_cursor_set Enables or disables the pendant cursor.

pendant_flush Flushes any ‘junk’ characters in the incoming
buffer.

pendant_home Moves the pendant cursor to the top left side of the
pendant screen (home).

pendant_home_clear Moves the pendant cursor to the home position and
clears the screen.

pendant_open Prepares the pendant for access and initializes it to
defaults.

pendant_write Writes a string to the pendant.

robot_move Prepares to move the robot using the pendant

select_menu Displays the three lines s1, s2 and s3 on the
pendant screen.

shutdown Shuts down the pendant subsystem.

startup Initializes the pendant i/o in preparation for
invoking menus.

RAPL-3 Reference Guide 119

teach_menu Selects and teaches variables for an application.

teach_var_v Similar to teach_var with the added feature that
the variable is written in the location pointed to by
a pointer.

var_create Creates a variable

var_teach Teaches a location variable.

vars_save Invokes the v3_vars_save() operation on the
currently open application v3 file.

120 Subprograms:Category Listing

Pointer Conversion and Function pointers

call_ifunc Calls an integer function through a pointer.

RAPL-3 Reference Guide 121

Robot Configuration
Configuring the robot arm: number of axes, velocities, accelerations, gains, travel
limits, link lengths coordinate systems etc.

Refer also to the Calibrate and Home Categories for specific subprograms for
calibration and homing programs.

The following is a listing of the robot configuration commands. For more detail
about a command refer to the alphabetical command summary listing.

accel_get Gets the acceleration for one axis.

accel_set Sets the acceleration for one axis.

accels_get Gets the accelerations for all axes.

accels_set Sets the accelerations for all axes.

armpower Enables and disables the armpower switch.

axes_get Gets the number of axes.

axes_set Sets the number of axes.

axis_status Obtains data on all axes.

conf_get Gets a list of robot configuration parameters.

gains_get Gets the gains for an axis.

gains_set Sets the gains for an axis.

gripisfinished Determines if the gripper is finished moving.

griptype_set Sets the gripper type to correspond to the gripper in use: air or
servo-motor.

jointlim_get Gets limits of travel of axes.

jointlim_set Sets limits of travel of axes.

linacc_get Returns the current value of the robot’s linear acceleration in
metric or English engineering units.

linacc_set Sets the current value of the robot’s linear acceleration in metric
or English engineering units to the value specified by the
parameter linacc.

linklen_get Gets the link length for an axis.

linklen_set Sets the link length for an axis.

linspd_get Returns the maximum linear speed for the robot in units of mm
or in. per second depending on the configuration.

linspd_set Sets the linear speed for the robot in units of mm or in. per
second depending on the configuration.

122 Subprograms:Category Listing

maxvel_get Gets the maximum angular velocity for one motor.

maxvel_set Sets the maximum angular velocity for one motor.

maxvels_get Gets the maximum angular velocities for all motors.

maxvels_set Sets the maximum angular velocities for all motors.

online Sets the online mode.

robot_error_get Returns the latest error state of the robot.

robot_flag_enable Enables flags.

robot_info Returns whether robot is done moving.

robot_mode_get Gets the current mode of motion.

robot_odo Gets the current value of the robot arm power odometer.

robot_servo_stat Returns status of F3 servo controllers.

robot_type_get Gets the current robot code for the installed kinematics.

robot_type_set Sets the current robot code for the installed kinematics.

robotislistening Determines if the robot server is responding to queries.

rotacc_get Returns the value of the maximum rotational acceleration
parameter.

rotacc_set Sets the value of the maximum rotational acceleration
parameter.

rotspd_get Retrieves the current value of the maximum rotational speed
parameter.

rotspd_set Sets the value of the maximum rotational speed parameter.

server_get For use with multiple robot systems - Gets the name of the
current server name.

server_info For use with multiple robot systems - Gets information about
the current server.

server_protocol Returns the protocol designator from the robot server.

server_set For use with multiple robot systems - Sets the current server.

server_version Specifies the robot server version.

units_get Gets current setting of units: metric or English.

units_set Sets current units: metric or English.

verstring_get Gets the current kinematics version string.

RAPL-3 Reference Guide 123

xpulses_get Gets the number of encoder pulses per revolution of a motor.

xpulses_set Sets the number of encoder pulses per revolution of a motor.

xratio_get Gets the ratio of conversion from pulses to motion of an axis.

xratio_set Sets the ratio of conversion from pulses to motion of an axis.

124 Subprograms:Category Listing

Signals
The 16 signals are listed in the Appendix.

malarm Requests that the system send the current process a
specified signal after a specified delay.

sig_arm_set Sets the signal to use to notify in case of an arm state
change.

sig_mask_set Sets a signal mask and returns the old signal mask.

sigfifo Sends a signal to all of the readers at the other end of a
fifo

sigmask Returns the correct mask for a signal.

signal Sets an action to be performed when a signal is received.

sigsend Sends a signal to a process.

str_signal Returns a pointer to a string that describes a signal.

WIFSIGNALED Determines if the child process was signal-terminated.

WTERMSIG Returns the actual signal number that signal-terminated a
child process.

RAPL-3 Reference Guide 125

Stance
Use of the Term “Stance”

RAPL-3 uses the term “stance” for a specific set of joint angles used when
reaching a location. This is a change from RAPL-II that used “pose”. ISO standard
8373, Manipulating Industrial Robots – Vocabulary, reserves “pose” for a different
meaning.

stance_get Returns the current stance of the robot.

stance_set Sets the arm to a specified stance.

126 Subprograms:Category Listing

Status

robot_error_get Returns the current (latest) error state of the robot.

robot_odo Gets the current value of the robot arm power odometer.

robotisdone Returns the current robot done state.

robotisfinished Returns the current finished state of the robot

robotishomed Returns current home state.

robotislistening Determines if the robot server is responding to queries.

robotispowered Returns the current state of the robot arm power.

verstring_get Gets the current kinematics version string.

RAPL-3 Reference Guide 127

String Manipulation

chr_is_lower Determines whether letter character is lower case.

chr_is_upper Determines whether letter character is upper case.

chr_to_lower Converts letter character to lower case.

chr_to_upper Converts letter character to upper case.

sizeof Returns the size, in RAPL-3 words, of its argument

str_append Appends one string to another string.

str_chr_find Finds the first occurrence of a character in a string.

str_chr_get Returns the ASCII value of a specified character in a string.

str_chr_rfind Finds the last occurrence of a character in a string.

str_chr_set Sets the value of a specified character in a string.

str_cksum Computes a 32-bit bytewise checksum of the characters of a
string.

str_dup Allocates space for a string, copies it into the allocated space and
returns a pointer to the new string.

str_edit Replaces a specified part of a string with another string.

str_error Returns a pointer to a string that describes an error code.

str_len Returns the length of a string.

str_len_set Sets the length of a string.

str_limit Returns the limit on the length of a string.

str_limit_set Sets the limit on the length of a string.

str_scanf Separates a string according to a format and places into variables.

str_signal Returns a pointer to a string that describes a signal.

str_sizeof Returns the number of words of memory to store a string.

str_substr Copies a substring (a specified part of a string).

str_subsys Given a specific error descriptor, the function returns a string
giving the name of the subsystem origination the error.

str_to_float Converts a string to a float.

str_to_int Converts a string to an integer.

128 Subprograms:Category Listing

str_to_lower Converts string to lower case.

str_to_upper Converts string upper case.

time_to_str Converts a system time code to an ASCII string

RAPL-3 Reference Guide 129

System Process Control

Single and Multiple Processes
Splitting a program.

abort Returns its argument value.

argc Returns the number of command-line arguments to the
program.

argv Returns a pointer to the nth command-line argument to the
program.

delay Sleeps for at least the number time specified (millisecond)s.

execl Loads and executes another program that is given in path.
Use this command when all the command-line arguments are
known.

execv Loads and executes another program that is given in path.
Use this command when all the command-line arguments are
not known.

exit Causes normal program termination.

get_ps Gets the process status information from a process table.

getopt Provides a mechanism for handling command line arguments
and options.

getpid Gets the process identification number of the calling program.

getppid Gets the process identification number of the parent of the
calling program.

memstat Gets information about the current system memory status.
Returns the number of 64 byte units.

module_name_get Gets the name of the module performing the subroutine call.

msleep Sleeps for the time specified and then returns to the main
program.

robot_error_get Returns the current (latest) error state of the robot.

sem_acquire Attempts to acquire a semaphore.

sem_release Releases a semaphore.

sem_test Tests a semaphore.

setprio Sets the priority of a process.

split Creates a duplicate child process of the current process.

130 Subprograms:Category Listing

waitpid Waits for a child process to complete.

WEXITSTATUS Returns the actual exit code of the child process that exited.

WIFEXITED Determines if the child process has been exited.

WIFSIGNALED Determines if the child process was signal-terminated.

Operating System Management
Getting and setting process identification and priority.

setprio Sets the priority of a process

sigsend Sends a signal to a process.

socketpair Gets a pair of file descriptors for a private client and server
socket

sysconf Obtains system configuration information.

sysid_string Returns a string describing a specified system id.

va_arg_get Gets the next varargs argument.

 va-arg_type Returns a type descriptor for the next varargs argument.

Point of Control and Observation
These routines get or release point of control or point of observation. Any
command which “writes” to the robot (moves, re-sets parameters, etc.) requires
point of control. Only one process can have point of control at one time. If one
process has point of control, another process requesting point of control will be
denied point of control (ctl_get() will fail with an EBUSY error condition).

All library functions which require point of control explicitly ask for it, so there is
typically no need for the user to perform this task.

ctl_get Gets point of control.

ctl_give Gives control explicitly to the process specified by the pid
parameter.

ctl_rel Releases point of control.

obs_get Gets point of observation.

obs_rel Releases point of observation.

RAPL-3 Reference Guide 131

Tool Transform and Base Offset
base_get Gets the current base offset.

base_set Sets the base offset.

tool_get Gets the current tool transform, the redefinition of the
origin point and the orientation of the tool coordinate
system.

tool_set Sets a tool transform, a redefinition of the origin point and
the orientation of the tool coordinate system.

132 Subprograms:Category Listing

v3 Files
The v3 subprograms allow a program to modify a v3 file.

These v3 subprograms are the same subprograms that are used by the teach
pendant and the application shell when you use those tools to modify the
teachable variables in a v3 file.

Before modifying a v3 file from a program, ensure that this is necessary.

Background
v3 files have a very specific use.

The v3 File

A v3 file contains the values for the teachable variables of a program. Teachable
variables can include: cartesian locations, precision locations, integers, floats,
and strings, both scalar and array.

Variables are declared teachable so that their values can be stored outside the
program, modified (normally by the teach pendant or the application shell), and
used for initializing.

Teaching Variables

The advantage of having variables in a v3 file is being able to modify values
outside the program. The primary advantage is being able to teach locations.
Using the teach pendant or the application shell, you can move the arm and,
with the teach pendant’s teach selection or ash’s here command, have the data of
the current position packed into the location variable.

Initializing Variables with the v3 File

In the CROS/RAPL-3 environment, a v3 file is used to initialize teachable
variables of a program, at the moment when the program is readied to run. After
that, the v3 file is not used. Any changes made to a v3 file have no effect on a
program unless the program is run again. When it is run again, the v3 file is
used to initialize the teachable variables of the program, again, at the moment
when the program is readied to run.

Modifying and Using Variables

Any variable, whether cloc, ploc, int, float, or string, whether declared as
teachable or unteachable, can be modified and used within a program
independent of any v3 file.

Locations do not all have to be taught. For example, for a pallet (rows x columns
of locations) you could teach three corner locations, or for a microplate carousel
you could teach the top and bottom locations, and calculate the intermediate
locations. These calculated locations can be used in motion commands like any
other location variable.

To avoid calculating during each run of the program, you can store the variables.

Storing Variables in Any File

To store variables between runs of a program, or between the running of a set-up
program and the application program, the variables must be stored in a file. You
do not need to store them in a v3 file. Variables can be written out to a data file
and read in from that file with the regular file i/o subprograms.

Even though you can modify a data file from another RAPL-3 program or from
another kind of file editing program, you cannot load this file into an application

RAPL-3 Reference Guide 133

shell database or teach pendant database for the variables to be modified by the
application shell or the teach pendant.

Storing Variables in a v3 File

You must use the v3 file when you want to store variables outside the program
and also have them accessible using the teach pendant or the application shell.

Modifying a v3 File from a Program

There are instances where a v3 file must be modified from a program.

One is a situation where locations are determined by the program and need to be
available later for use by the teach pendant or the application shell.

Another is a situation where, as the program is running, the locations need to be
monitored and corrected and these corrected locations need to be used at the
next running of the program.

Using These v3 Subprograms

To properly modify a v3 file, several of these v3 subprograms must be used in a
certain order.

From a program, modify a v3 file carefully. An incorrect routine can result in a
corrupted v3 file and lost data. You have to construct routines similar to the teach pendant
and application shell routines that ensure that the v3 file is properly modified.

Architecture for v3 Subprograms
The following files and structures are part of the v3 architecture.

Program File

The program file is the executable file containing sub, func, and command calls
and other parts of the program. If the program file has any teachable variables,
data structures can be created for a corresponding v3 file. v3 File

The v3 file is the file that stores the data structures of teachable variables. The v3
file is used to initialize teachables in a program, as the program is readied to run.
Backing Store File

“Backing store file” is another term for the v3 file, highlighting its role as a back-
up, stored in the file system while the data structures are in memory and being
manipulated by v3 commands. Incore File

The incore file is the set of data structures loaded in memory. This “file” is the in-
core-memory equivalent to the v3 file stored in the file system, but also has a
control block. The file is a linked list of records. Control Block

A structure that contains data about the file, the records, and modifications.
There is one control block.

Record

A structure that contains data about a variable: its basetype, its identifier, its
value, etc. There are as many records as there are teachable variables.

Parameters
Commands, functions, and subroutines that manipulate v3 files use the following
structs as parameters.

134 Subprograms:Category Listing

v3_cb

The v3_cb struct is the control block.
v3_cb struct

v3_incore@
head

Head of the linked list

int entries How many entries in the list (not counting the
list head)

int locks How many v3_lock() calls have been done.
The file is not unlocked until this count
reaches 0 again

int fd fd of the open file descriptor.
-1 is none.

int dirty In-core data cleanliness flag.
0 is clean, 1 is data only, 2 is structure
change.

v3_header h Header, read from the file. Note: the size of
this section is variable depending on the size
of the header (sourcename)

end struct

v3_incore

The v3_incore struct is the record when loaded in core.
v3_incore struct

v3_incore@
next

For linking.

v3_incore@
prev

For linking.

int offset Offset in the file where the record is
located.
0 is not yet in the file

void@ valptr The value part of this record.
v3_record v The v3_record itself.

Note that sizeof(this field) gives misleading
results since the full name and the data block
are stored contiguously here to cut overhead.

end struct

Subs, Funcs, and Commands
Opening and Closing Files

These subprograms manage the storage file and the in-core file.

v3_extract Builds data structures from the program file.

v3_f_close Closes the storage file.

v3_f_disconnect Disconnects the storage file from the in-core file.

v3_f_free Frees memory by deleting the in-core file.

v3_f_modified Checks the file for modifications.

v3_f_open Loads a storage file into core memory.

v3_f_save Saves an in-core file to a storage file.

v3_lock Locks the file.

RAPL-3 Reference Guide 135

v3_new Creates a new set of core block structures.

v3_save_on_exit Sets the RAPL-3 interpreter so that when the program exits,
all of its final v3 variable values will be saved to the
specified v3 file.

v3_unlock Unlocks the file.

Modifying Variables

These subprograms modify variables in the in-core file.

v3_append_lists Appends a second list onto a first list.

 v3_create_variable Creates a new variable.

v3_delete_variable Deletes a variable and its value from the list.

v3_find_variable Finds a specified variable.

v3_get_first Gets the first node on the list.

v3_get_info Gets information about the in-core structures.

v3_get_next Gets the next node on the list.

v3_get_prev Gets the previous node on the list.

v3_get_value_p Gets the pointer to the value element of an in-core
node.

v3_mark_taught Marks an incore node as taught.

136 Subprograms:Category Listing

Win 32
These Win 32 commands allow a CROSnt process to communicate with a process
in the Windows NT environment.

The named pipe driver DLL allows servers to be written in RAPL-3 and have non-
RAPL-3 based clients. A named pipe is a Win32 inter-process communication
object that allows two processes (which do not have to be running on the same
machine) to transfer information between each other. The client-server
mechanism is used in this form of communication.

Named pipes provide two mechanisms for data transfer: byte-by-byte and
message based. Byte-by-byte sends data through the pipe on a byte-by-byte
basis. Message based transfers the entire data in one operation. Message based
reads can only be used if messaged based writes on the other end of the pipe are
enabled.

All transfers are done in overlapped i/o mode. This means that unless the
operation can be completed immediately, it is placed in the background. When
the operation is complete, a signal is sent to the process that started the
operation.

Normal read(), write(), reada(), readsa(), and other i/o operations can be used with
named pipes. The read and write calls can return an error, 0 if the I/O operation
is placed in the background, or the number of words actually read.

Further Windows NT Information

On the subject of named pipes in Windows NT, refer to Windows NT (Win 32)
documentation.

File System Mounting

For commands on mounting a CROSnt file system on a Windows NT file system,
see File and Device System Management.

Win 32 Commands
connectnp Checks or waits for a client to connect with the

named pipe.
closenp Closes a named pipe
disconnectnp Breaks a pipe connection with a client.
opennp Opens a named pipe in the Windows NT domain.
statusnp Returns the current status of a named pipe

See also Device Input and Output for read(), write(), reada(), readsa(), and other
i/o operations.

Types Used With Win 32 Commands
The following types are used with the Win 32 commands.

NPIPE_MODES
global typedef NPIPE_MODES enum

M_READ_MESSAGE = 1
M_WRITE_MESSAGE = 2

end enum

RAPL-3 Reference Guide 137

NPIPE_STATUS
global typedef NPIPE_STATUS enum

NPIPE_OPENED = 0x0001,
NPIPE_CONNECTED = 0x0002,
NPIPE_CONNECT_PENDING = 0x0100,
NPIPE_READ_PENDING = 0x0200,
NPIPE_WRITE_PENDING = 0x0400,
NPIPE_TRANSACT_PENDING = 0x0800,
NPIPE_OPERATION_PENDING = 0x0F00

end enum

138 Subprograms:Category Listing

Subprograms: Alphabetical Listing

Subprograms of the CRS-supplied libraries are listed in alphabetical order on the
following pages.

140 Subprograms: Alphabetical Listing

Reading Subprogram Entries
Each subprogram is described in the following format.

name_of_subprogram
Alias Another name for the same subprogram. With some alias entries, there is a

cross-reference from the alias entry to the original entry which contains the full
description of the subroutine, function, or command.

Description A description of the functionality of this subroutine, function, or command.

Caution
Warning

A characteristic that could create a problem.

Library The library if the subprogram has export scope.

Syntax The subprogram’s declaration in the library. The declaration follows the rules for
subprogram declarations.

The declaration declares the scope of the subprogram. A few subprograms have
export scope. They are explicitly listed as such and must be called by naming the
library with the subprogram. All other subprograms have global scope. Since
they are visible to all programs, they are called by naming the subprogram only.

The declaration declares whether the subprogram is a subroutine, function, or
command. This determines whether it does not return a value, returns a value,
or returns a success/error integer under the system’s error checking.

If the subprogram is a func, it declares the type of return value: int, float,
location, or pointer.

Next, the declaration names the subprogram with a unique identifier.

Within parentheses the declaration lists parameter(s), giving the type of
parameter and an identifier. The commas separating parameters are required
syntax. Three dots (. . .) indicate a variable number of parameters which are
described in the following parameter list.

Parameters
Arguments

A list with explanations and types.

Distinctions are made between parameters passed by value and parameters
passed by reference (var parameters). If a parameter passed by reference is
packed, expected values of the parameter are listed.

With subprograms that are able to take a variable number of parameters
(varargs), distinctions are made between required parameters and optional
parameters.

Parameters are also called arguments.

Returns The return value of the function or command which indicates success (zero or
positive) or failure (negative).

If a zero or positive value carries specific meaning, it is described.

If a negative value is returned for a specific reason, it is described.

Example An example of use in a program.

Result The example's result.

System Shell
Application Shell

If applicable, an equivalent command in the CROS/RAPL-3 system shell or
application shell, described in the Robot System Software Documentation Guide.

RAPL-3 Reference Guide 141

RAPL-II Any similar RAPL-II commands.

See Also Any related RAPL-3 subroutines, functions, commands, statements, keywords, or
topics, described in this Reference Guide.

Category The category of this subprogram. All subprograms are briefly listed with related
subprograms in the category section.

Using Subprograms
To use the subprogram in your program, call the subprogram by name with
parameter(s)/argument(s) of the type indicated. To use an export subprogram,
precede the subprogram call with the library name.

Follow the syntax and parameter descriptions, or modify an example.

Required characters are in non-italic monospace font. Programmer-
supplied identifiers and constructs are in italics. Optional items are in [square
brackets], except for arrays. The continuation character can be used.

142 Subprograms: Alphabetical Listing

abort
Description This is a utility command that simply returns its argument value. Since abort()

is a RAPL-3 command, a negative argument to abort() will cause a command
failure exception at the line where abort was called. If abort() is passed a positive
or zero argument, then it does nothing.

Syntax command abort(int err)

Parameters err the monitored return value: an int

Returns The value of the parameter.

Example if (check_status() > 0)
n = 1

else
n = -1

end if
abort(n) ;; will cause an exception if n is -1

RAPL-II ABORT terminates a program, but not under any system error checking.

See Also exit terminates program normally

Category System Process Control: Single and Multiple Process

accel_get
Description Gets the acceleration for one axis. The units are in deg/sec2.

Syntax command accel_get(int axis, var float dst)

Parameters axis the axis being inquired: an integer
dst a float -packed with the acceleration in

Returns Success >= 0. The parameter is packed.
Failure < 0

Example float curr_accel
accel_get(5,curr_accel)

Application Shell Same as accel.

See Also accels_get gets the accelerations for all axes
accel_set sets the acceleration for one axis
accels_set sets the accelerations for all axes

Category Robot Configuration

accel_set
Description Sets the acceleration for one axis.

Joint F3 A465 A255
Default Maximum Default Maximum Default Maximum

1 879 1758 720 1440 500 1000

2 879 1758 720 1440 500 1000

RAPL-3 Reference Guide 143

3 879 2637 720 1440 500 1000

4 1098 3294 1425 2850 2250 4500

5 1098 3294 1440 2850 4500 9000

6 1098 3294 1425 2850

Syntax command accel_set(int axis, float accel_in)

Parameters axis the axis being set: an int
accel_in the acceleration for that axis in deg/sec2: a float
Note: If accel_in is less than 10% of the default acceleration value, the value will
be set to 10% of the default instead.

Returns Success >= 0
Failure < 0

Example accel_set(1, 879)

RAPL-II Similar to @ACCEL.

See Also accel_get gets the acceleration for one axis
accels_get gets the accelerations for all axes
accels_set sets the accelerations for all axes

Category Robot Configuration

accels_get
Description Gets the accelerations for all axes. The units are in deg./sec.2

Syntax command accels_get(var float[8] accels)

Parameters accels the accelerations of the axes in deg/sec2: an array of floats

Returns Success >= 0. The parameter is packed.
Failure < 0

Example float[8] curr_accels
accels_get(curr_accels)

Application Shell Same as accel

See Also accel_get gets the acceleration for one axis
accel_set sets the acceleration for one axis
accels_set sets the accelerations for all axes

Category Robot Configuration

accels_set
Description Sets the accelerations for all axes. The units are in deg./sec.2:

F3 A465 A255
Default Maximum Default Maximum Default Maximum

1 879 1758 720 1440 500 1000
2 879 1758 720 1440 500 1000
3 879 2637 720 1440 500 1000

144 Subprograms: Alphabetical Listing

4 1098 3294 1425 2850 2250 4500
5 1098 3294 1440 2850 4500 9000
6 1098 3294 1425 2850

Syntax command accels_set(var float[8] accels)

Parameters accels the accelerations for the axes in deg./sec.2: an array of floats
Note: If any element of accels is less than 10% of the default acceleration value
for that axis, the value will be set to 10% of the default instead.

Returns Success >= 0
Failure < 0

Example float[8] new_accels = {500, 500 , 500 , 4500, 9000, 0, 0, 0}
accels_set(new_accels)

RAPL-II Similar to @ACCEL.

See Also accel_get gets the acceleration for one axis
accels_get gets the accelerations for all axes
accel_set sets the acceleration for one axis

Category Robot Configuration

access
Description Checks to see if the file specified in path can be accessed in the way specified by

mode.

Syntax func int access(var string[] path, a_modes mode)

Parameters path the filename: a variable length string
mode the access mode, of type a_modes:

F_OK file exists
X_OK file is executable
W_OK file is writeable
R_OK file is readable

Returns

0 Success. The file exists and can be accessed in mode.

-EINVAL Some of the arguments are illegal (bad mode or file path.)

-ENOTDIR One of the components in path was not a directory.

-ENOENT The file denoted by path did not exist.

-EIO An I/O error occurred.

-EACCESS The access specified by mode is not allowed
Example string[] path = “filename”

...
if access(path, F_OK) == 0

;; File Exists
if access(path, X_OK) == 0

;; File is executable
end if
if access(path, W_OK) == 0

;; File is writeable
end if
if access(path, R_OK) == 0

;; File is readable

RAPL-3 Reference Guide 145

end if
end if

RAPL-II No equivalent.
See Also chmod changes the access mode

open opens a file
Category File and Device System Management

acos
Description Calculates the arc cosine of a float.

Argument Range: +1.0 ≥ argument ≥ –1.0

Syntax func float acos(float x)

Returns Success >= 0. The arc cosine of the argument, an angle in degrees.
Failure < 0

Example float x = 0.965926
printf ("acos of 0.965926 = {}\n",acos(x))

Result 15.000

RAPL-II ACOS

See Also asin calculates the arc sine
atan2 calculates the arc tan
cos calculates the cosine

Category Math

addr_decode
Description A subroutine for troubleshooting errors. Looks up the address specified in the

line number tables and decodes it, if possible, into a line and file. Note that if the
string sp is NULL, no file name is copied.

Syntax sub addr_decode(int address, var int line, string[]@ sp)

Parameter address int defining the address to look up in the line tales
lineint gets packed with the line number
sp string pointer specifying the file to write the decoded line to.

Returns nothing. “line” is set to 0 on failure; sp@ (if sp is not NULL) is set to “” on failure.
Example int lnum

string[64] fname

try
;;
;; some code here…
;;

except
printf(“Error {} ({}) happened\n”, -error_code(),

str_error(-error_code()))
addr_decode(error_addr(), lnum, fname)
printf(“ at line {} of file {}\n”, lnum, fname)

end try

Result If an error occurs in the try block, the error and its name and
the line and file where it occurred will be printed.

See Also error_code() find the error descriptor of an exception that has occurred
error_addr() find the address where an exception occurred
str_error() convert an error descriptor into a string

146 Subprograms: Alphabetical Listing

Category Error Message Handling

addr_to_file
Description Calls the addr_decode subroutine to convert the given address to a file name

string. This provides a simpler interface to addr_decode() for getting at the name
of a file where an exception has occurred.

Syntax func string[]@ addr_to_file(int addr)

Parameter addr an int which specifies the address which is to be converted to a file
name

Returns A pointer to a string containing the file name, or a pointer to an empty string if it
fails.

Example ;; in the except block of a try-except construct:
printf(“The exception happened at line {} of file {}\n”,/
addr_to_line(error_addr()), addr_to_file(error_addr()))

Result The line and file where the exception occurred are printed.

See Also addr_decode()
error_addr()

Category Error Message Handling

addr_to_line
Description A function that calls the addr_decode function to convert an address to a line

number.

Syntax func int addr_to_line(int addr)

Parameter addr an int specifying the address to be converted to a line number.

Returns The correct line number, or 0 if it fails.

Example see addr_to_file()

See Also addr_decode()
addr_to_file()
error_addr()

Category Error Message handling

align
Description Aligns the “approach/depart” tool axis parallel to an axis of the world coordinate

system.

The “approach/depart” tool axis is a specific axis of the tool coordinate system.
With no tool transform set (the tool coordinate system is at its default, identical
to the mechanical interface coordinate system), the “approach/depart” tool axis is
the axis arising off of, and perpendicular to, the tool flange (mechanical
interface). The F3 tool coordinate system (which is similar to a recent
international standard) and the A465/A255 tool coordinate system (which is an
earlier pre-standard system) are different.

• F3: the “approach/depart” tool axis is the Z axis of the F3 tool coordinate
system. The axes of the tool coordinate system are parallel to the

RAPL-3 Reference Guide 147

corresponding axes of the world coordinate system when the arm is in the
calrdy position (straight up).

• A465 or A255: the “approach/depart” tool axis is the X axis of the A465/A255
tool coordinate system. The axes of the tool coordinate system are parallel to
the corresponding axes of the world coordinate system when the arm is in the
ready position.

With no tool transform set the “approach/depart” tool axis is the axis
perpendicular to, the tool flange (A-series tool X axis, F-series tool Z axis). The
align() command aligns the approach/depart axis with the world axis specified.

If a tool transform has been set, the tool coordinate system is transformed from
the default setting and the align() command aligns the transformed
“approach/depart” tool axis parallel to an axis of the world coordinate system.

The world axis for alignment is specified with a parameter.

The align() command moves the arm in joint-interpolated motion. The tool centre
point’s start and end point are the same, but the tool centre point travels as a
result of various joint motions, not in straight line mode.

Syntax command align (int speed, align_axis_t axis [, coord_t])

Parameters speed the speed during align, percentage of full speed
axis the axis to align to, one of:
ALIGN_NEAR aligns to the closest axis of the world coordinate system
ALIGN_X aligns to the + X axis of world coordinate system

-ALIGN_X aligns to the – X axis of world coordinate system
ALIGN_Y aligns to the + Y axis of world coordinate system

-ALIGN_Y aligns to the – Y axis of world coordinate system
ALIGN_Z aligns to the + Z axis of world coordinate system

-ALIGN_Z aligns to the – Z axis of world coordinate system

Optional Parameter coord_t

Returns Success >= 0
Failure < 0

Example align(_Z) ;; aligns to the Z axis

align(ALIGN_NEAR) ;; aligns to the closest axis

RAPL-II Similar to ALIGN.

See Also tool_set re-defines the tool coordinate system

Category Motion

analogs_get
Description Retrieves the values of the eight analog inputs (2 of which are available to the

user) on the C500C controller.

Syntax command analogs_get(var float[8] values)

Related Definitions The following defined symbols give which channel is which:
ANA_USER1 -- user analog input 1
ANA_USER2 -- user analog input 2
ANA_SGAFEEDBACK -- servo gripper feedback input
ANA_BATTERYVOLT -- lithium backup battery (volts)
ANA_V24SUPPLY -- 24 volt supply (volts)
ANA_V12SUPPLY -- 12 volt supply (volts)

148 Subprograms: Alphabetical Listing

ANA_V5SUPPLY -- 5 volt supply (volts)
ANA_BOARDTEMP -- main board temperature (Celsius)

Returns Success >= 0; the values[] array filled in with the input readings.
Failure < 0 (-ve error code)

Example float[8] vals
...
analogs_get(vals)
printf(“The board temperature is {} Celsius\n”,
vals[ANA_BOARDTEMP])

See Also boardtemp_get()

Category Analog Input

app_close
Description Closes a pendant application so that a new one can be opened. Only one

application can be open at any given time.

Library stp

Syntax export command app_close()

Parameters None

Returns Success >= 0
Failure < 0

Example string[10] name = “my_app_23”
stp:startup
stp:app_open(name, 0)
...

stp:app_close()
...

Result The current application being accessed from the pendant is closed.

See Also pendant_close
start_up
app_open

Category Pendant

app_open
Description Selects the application specified by the argument name. If the application does

not exist and the create parameter is true then create the application. An error
code is returned if the application is not found.

Library stp

Syntax export command app_open(var string[] name, int create)

Parameter create_flag 1 create is true
create_flag 0 create is false

Returns Success >= 0
Failure < 0

Example ...
stp: app_open(“New_Path”, 0)
...

RAPL-3 Reference Guide 149

Result If an application New_Path exists, it is selected, if it does not
exist, the return is an error descriptor.

See Also app_close()

Category Pendant

appro
Description Moves the tool centre-point to an approach position. The approach position is

defined by a location, and a distance from that location along the
“approach/depart” tool axis.

Moves in joint-interpolated mode (tool centre-point curves through space as
necessary as a result of joint changes). The motion is not cartesian-interpolated
(straight-line).

Used to move the arm, usually quickly, to a position near a location before
moving the tool, usually slowly, to the location.

Syntax command appro(gloc location, float distance)

Parameter location the target location: a cloc or ploc
distance the distance from the location to the approach position: a float

Returns Success >= 0
Failure < 0

Example appro(rack_5, 100.0) ;; millimetres

appro(tray_1, 4.0) ;; inches

RAPL-II Similar to APPRO.

See Also appros like appro(), but in straight line motion
depart moves to depart position; opposite of appro
departs moves to depart position; opposite of appros
tool_set re-defines the tool coordinate system

Category Motion

appros
Description Moves the tool centre-point to an approach position. The approach position is

defined by a location, and a distance from that location along the
“approach/depart” tool axis.

Moves in cartesian-interpolated mode (straight line motion). The motion is not
joint-interpolated (tool centre-point curves through space as necessary as a result
of joint changes).

Used to move the arm, usually quickly, to a position near a location before
moving the tool, usually slowly, to the location.

Syntax command appros(gloc location, float distance)

Parameter location the target location: a cloc or ploc
distance the distance from the location to the approach position: a float

Returns Success >= 0
Failure < 0

Example appros(rack_5, 100.0)

150 Subprograms: Alphabetical Listing

appros(tray_1, 4.0)

RAPL-II Similar to APPRO.

See Also move like moves(), but not in a straight line
depart moves to depart position; opposite of appro
departs moves to depart position; opposite of appros
tool_set re-defines the tool coordinate system

Category Motion

argc
Description Returns the number of command-line arguments to the program. The program

name is included as an argument.

Reminder: Arrays are indexed by zero; The following code segment will produce
an error:

num_args = argc()
args = argv(num_args)

Syntax func int argc()

Returns Always succeeds. Returns the number of command line arguments.

Example ;; program name: ex_argcv
;; the following example prints out the command line arguments
;; including the name of the process.
main

const MAX_COUNT = 10
int num_args, count = 0
string[]@[10] arg_ptr ;; maximum of 9 arguments

;; in addition to the name
num_args = argc() ;; get num. of line args.
printf ("number of arguments {}\n",num_args)
while (count<num_args) && (count<MAX_COUNT)

arg_ptr[count] = argv(count) ;; initialize ptr to string
printf ("arg {8}: {8}\n",count,arg_ptr[count])
count ++ ;; increment index count

end while
end main

Result a command line of “ex_argcv 11 22 33” will produce the following
output:

arg 0: ex_argcv
arg 1: 11
arg 2: 22
arg 3: 33

See Also argv returns a pointer to a command-line argument

Category System Process Control: Single and Multiple Processes

argv
Description Returns a pointer to the nth command-line argument to the program. By

convention, argv(0) is the name of the program itself.

Syntax func string[]@ argv(int n)

Returns Returns a NULL pointer on failure, or a pointer to the string on success.

Example ;; program name: ex_argcv
;; the following example prints out the command line arguments

RAPL-3 Reference Guide 151

;; including the name of the process.
main

const MAX_COUNT = 10
int num_args, count = 0
string[]@[10] arg_ptr ;; maximum of 9

;; arguments
;; in addition to the
;; name

num_args = argc() ;; get num. of line
args.

printf ("number of arguments {}\n",num_args)
while (count<num_args) && (count<MAX_COUNT)

arg_ptr[count] = argv(count) ;; initialize pointer to
string

printf ("arg {8}: {8}\n",count,arg_ptr[count])
count ++ ;; increment index count

end while
end main

Result a command line of “ex_argcv 11 22 33” will produce the following
output:

arg 0: ex_argcv
arg 1: 11
arg 2: 22
arg 3: 33

See Also argc returns the number of command-line arguments

Category System Process Control: Single and Multiple Processes

armpower
Description Enables and disables the armpower switch. As long as one process has the arm

power OFF, arm power cannot be turned on.

Syntax command armpower(Boolean switch)

Parameter switch Boolean, one of:
OFF disables the arm power (turns it off and keeps it off)
ON enables arm power (allows arm power to be turned on)

Returns Success = 0
Failure < 0

Example armpower(OFF)
...
armpower(ON)

RAPL-II Same as ENABLE/DISABLE ARM and ARM ON/OFF.

Category Robot Configuration

asin
Description Calculates the arc sine of a float.

Argument Range: +1.0 ≥ argument ≥ –1.0

Syntax func float asin(float x)

Returns Success >= 0 The arc sine of the argument, an angle in degrees.
Failure < 0

152 Subprograms: Alphabetical Listing

Example float x = 0.422618
float y
printf (“asin of 0.422618 = {}\n”,asin(x))

Result 25.0000

RAPL-II ASIN

See Also acos calculates the arc cosine
atan2 calculates the arc tan
sin calculates the sine

Category Math

p an int.
pstr the : a pointer to a string.
f the : a pointer to a string.
l the : an int.

atan2
Description Calculates the arc tangent of a float, an angle in radians whose tangent is a/b,

using the signs of a and b to determine the quadrant.

Syntax func float atan2(float a, float b)

Returns Success >= 0. Returns the angle.
Failure < 0

Example printf ("Q1 2, 2: {}\n",atan2 (2,2))
printf ("Q2 2,-2: {}\n",atan2 (2,-2))
printf ("Q3 -2,-2: {}\n",atan2 (-2,-2))
printf ("Q4 -2, 2: {}\n",atan2 (-2,2))

Result Q1 2, 2: 45.00
Q2 2,-2: 135.00
Q3 -2,-2:-135.00
Q4 -2, 2: -45.00

RAPL-II ATAN2

See Also acos calculates the arc cosine
asin calculates the arc sine
tan calculates the tangent

Category Math

axes_get
Description Returns the number of machine axes, transform axes, and actual axes installed

on the robot. Machine axes are the axes of the robot arm, e.g. 6 for F3. Transform
axes are the axes that participate in the kinematics transform, e.g. 7 for F3T
(robot arm and track). Actual axes are the total number of axes in the controller,
e.g. 8 for T475 with C500-controlled carousel.

Syntax command axes_get(var int machine, var int transform, var int
actual)

Parameters machine the machine axes: an int.
transform the transform axes: an int.
actual the actual axes: an int.

Returns Success = 0. Parameters are packed accordingly.
Failure < 0

RAPL-3 Reference Guide 153

Example int mach, trans, act
axes_get(mach, trans, act)

See Also axes_set sets the number of machine, transform, and actual axes
Category Robot Configuration

axes_set
Description The axes_set command sets the number of axes in the robot system. An axis is a

joint that has its position (motion) controlled by the controller. A track or a
carousel can be an axis if connected as part of the robot system. For example, an
F3, with 6 axes, can have a track as axis 7.

Syntax command axes_set(int numaxes)

Parameters numaxes the number of axes; an intReturns Success >= 0
Failure < 0

Example axes_set(7) ;; set the system axes to 7.

See Also axes_get gets the number of machine, transform, and actual axes

Category Robot Configuration

axis_status
Description Obtains data on the status of all axes.
Syntax command axis_status(var int[8] status)

Parameter An array of up to 8 integers into which the status for each axis is stored.
Returns Success >= 0

The axis status is a bit mask. The bits represent the following:
Bit Number Use
 0 home switch state
 1 positive (+) direction limit switch state
 2 negative (–) direction limit switch state
 3 limp command state
 4 axis limp due to collision state
 5 arm for receipt of next zero-cross event
 6 zero-cross event has happened
 7 lock axis from any motion commands
 8 any error condition
 9 servo fault bit
10 motor fault bit
11 joint homed
12 joint calibrated
13 begin motion
14 loss of feedback check bit
15 axis done state

Failure < 0
Example int[8] curr_status

...
axis_status(curr_status)

RAPL-II Similar to STATUS which obtained status data but displayed them at the default
device.

154 Subprograms: Alphabetical Listing

Category Robot Configuration

base_get
Description Gets the current base offset, the redefinition of the origin point and the

orientation of the world coordinate system.

The default origin is the centre of the base mounting surface of the robot arm.

The offset has translational coordinates, x, y, and z, rotational coordinates, zrot,
yrot, and xrot, and extra axes (if any). The data type used is a cloc which also has
an integer flag.

Syntax command base_get(var cloc baseloc)

Parameter baseloc the variable to hold offset data: a cloc of variable size

Returns Success >= 0
baseloc the offset with flag, x, y, z, zrot, yrot, xrot, e1, e2 data: a cloc

flag the : an int
x the distance along the X axis, in current units: a float
y the distance along the Y axis, in current units: a float
z the distance along the Z axis, in current units: a float
zrot the rotation around the Z axis, in degrees: a float
yrot the rotation around the Y axis, in degrees: a float
xrot the rotation around the X axis, in degrees: a float
e1 the distance or rotation of the first extra axis: a float
e2 the distance or rotation of the second extra axis: a float

Failure < 0

Example cloc curr_offset
base_get(curr_offset)
print(curr_offset, “\n”) ;; no offset applied

Result cloc[9,64(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)]

RAPL-II Similar to OFFSET.

See Also base_set sets a base offset, a re-definition of world coordinates
shift_w alters coordinate(s)/orientation(s) in world frame of reference
tool_get gets the current tool transform, the redefinition of tool coordinates

Category Tool Transform and Base Offset

base_set
Description Sets a base offset, a redefinition of the origin point and the orientation of the

world coordinate system.

The default origin is the centre of the base mounting surface of the robot arm.

The base_set() command has the capacity for a transformation of a five or six
degree-of-freedom arm and one or two extra axes. A cloc data type is used which
requires an integer constant flag followed by float constant coordinates. The
coordinate system can be redefined by translational coordinates, x, y, and z, and
rotational coordinates: zrot, yrot, and xrot. The origin can be further redefined by
an extra axis, for example for a track.

A common use of the base_set() command is to transform the coordinate system
for an inverted-mounted arm.

Syntax command base_set(var cloc baseloc)

RAPL-3 Reference Guide 155

Parameters baseloc offset with flag, x, y, z, zrot, yrot, xrot, e1, e2 data: a cloc
flag the *: an int
x the distance along the X axis, in current units: a float
y the distance along the Y axis, in current units: a float
z the distance along the Z axis, in current units: a float
zrot the rotation around the Z axis, in degrees: a float
yrot the rotation around the Y axis, in degrees: a float
xrot the rotation around the X axis, in degrees: a float
e1 the distance or rotation of the first extra axis: a float
e2 the distance or rotation of the second extra axis: a float

Returns Success >= 0
Failure < 0

Example cloc invert
invert = cloc{0, 0, 0, 30, 0, 180, 0, 0, 0}
base_set (invert)

;; add 30 units offset to Z
;; reverse direction of Z and X
;; appropriate for an inverted arm

RAPL-II Similar to OFFSET.

See Also base_get gets the current base offset
shift_w alters coordinate(s)/orientation(s) in world frame of reference
tool_set sets a tool transform, a re-definition of the tool coordinate system

Category Tool Transform and Base Offset

boardtemp_get
Description The boardtemp_get() function retrieves the C500C main board temperature, in

degrees Celsius.

Syntax func float boardtemp_get()

Returns Success: returns the temperature.

Example printf(“The board temperature is {} Celsius\n”, boardtemp_get())

See Also analogs_get()

Category Analog Input

build_cloc
Description Allows building a cartesian location from a set of constants and variables. It is

equivalent to using loc_flags_set() to set the cloc’s flags, loc_cdata_set() to set the
8 cartesian axis values and loc_re_check() to recompute the checksum of the
resulting location.

Syntax func cloc build_cloc(int flags, float x, float y, float z, float
roll, float pitch, float yaw, float e1, float e2)

Returns A cloc constructed from the provided data.

See Also build_ploc(), loc_flags_set(), loc_cdata_set(), loc_re_check()

Category Location: Data Manipulation

156 Subprograms: Alphabetical Listing

build_ploc
Description Allows building a precision location from a set of constants and variables. It is

equivalent to using loc_machtype_set() to set the ploc’s machine type,
loc_flags_set() to set the ploc’s flags, loc_pdata_set() to set the 8 precision motor
pulse values and loc_re_check() to recompute the checksum of the resulting
location.

Syntax func ploc build_ploc(int machtype, int flags, float x, float y,
float z, float roll, float pitch, float yaw, float e1, float e2)

Returns A ploc constructed from the provided data.

See Also build_cloc(), loc_machtype_set(), loc_flags_set(), loc_pdata_set(), loc_re_check()

Category Location: Data Manipulation

calibrate
Description Finds the proximity sensor, backs up to the last zero cross, and calibrates axes.

Data is written to a calibration file named “robot.cal” stored in the conf/
directory. If no arguments are specified, all axes are calibrated.

Syntax command calibrate([axis] [,axis] [,axis] . . .)

Parameter axis an axis to calibrate: an int

Returns Success >= 0
Failure < 0

Example calibrate()
calibrate(1,3)

RAPL-II @@CAL

See Also home homes the axes
calzc calibrates at the next zero cross
zero sets motor position registers to zero

Category Calibration

call_ifunc
Description Calls an integer function through a function pointer.

Note:
 The function in question cannot be a VARARGS function.
 The compiler cannot perform any argument checking, etc. for the call. Use
carefully.
 What is passed to the function is quite literally what is listed. For example, if
<int>x is passed, but the function was expecting a var int parameter, it will fail.
Var parameters must be passed as explicit pointers, for example: if the function
is expecting "var int x", then pass variable "int z" as &z.

Syntax func int call_ifunc(void @funcp, ...)

Returns Success >= 0
Failure < 0

Example func int f1(int a, int b)
return a + b

RAPL-3 Reference Guide 157

end func

main
int a, b
void@ vp
vp = f1 ;; vp points to the function
a = 2
b = 3
printf(“f1(a,b) = {}\n”, call_ifunc(vp, a, b))

end main

Result The program prints out “f1(a,b) = 5”

Category Pointer Conversion and Function Pointers

calrdy
Description Moves the arm to the calibrate position. For an F3 or A465, moves the arm

straight up. For an A255, moves the arm horizontally outward.

Syntax command calrdy()

Parameter none

Returns Success >= 0
Failure < 0

Example calrdy()

Application Shell Same as calrdy.

RAPL-II Same as @CALRDY.

See Also zero sets motor position registers to zero

Category Calibration
Motion

calzc
Description Calibrates at the next zero pulse of the encoder.

Syntax command calzc(int axis, var int offset)

Parameter axis the axis to calibrate: an int
offset the offset: an int

Returns Success >= 0
Failure < 0

Example int offset = 0
calzc (1,offset) ;; calibrate axis one with no offset
motion

RAPL-II @@CALZC

See Also homezc
calibrate calibrates axes
home homes the axes
zero sets motor position registers to zero

Category Calibration

158 Subprograms: Alphabetical Listing

cfg_load
Description Loads a text configuration file for the current application. For a concrete

example of a configuration file, examine the /conf/robot.cfg robot server
configuration file on a typical C500/B/C controller.
Text configuration files are useful for holding strings, integers, constant clocs (for
tool transforms, etc.) and floating point constants that do not typically change
from run to run and do not need to be taught, but nevertheless need to be easily
configurable. Note that plocs are not supported.

Syntax command cfg_load(string[] myname, cfg_record@ crp, int n_records)

Parameters myname -- used for constructing the config file name.
n_records -- the number of cfg_records pointed to by crp
crp -- points to the cfg_records describing the

variables to load

Returns Success >= 0
Failure < 0 (-ve error code)

Details The cfg_load() mechanism works like this:
1. The “myname” argument is used to find the correct configuration file to load.
The cfg_load() routine tries “myname.cfg” (ie., in the current directory) first, then
“/conf/myname.cfg”. If neither of these files exist, then config_load() returns the
appropriate error code.
2. The config file is read, one line at a time. Anything following a ‘;’ is ignored as
a comment (unless the ‘;’ is inside a quoted string.) It is expected that lines will
be of the form:

symbol value
3. For each “symbol value” line found, the records pointed to by crp are
searched. If a match is found, then the value part of the line is converted and
stored in the variable indicated by the cfg_record.

Data structures The cfg_record structure is a global type definition in the system library, as is
defined as:

typedef cfg_record struct
string[]@ ident ;; field name
va_types type ;; the type (va_t_int, va_t_float,

;; va_t_cloc, va_t_string)
int limit ;; length limit, if va_t_string
void@ where ;; where to put the value

end struct

Example ;; A small example that uses the configuration file routines:

;; These are the variables whose values we wish to configure:
int reps = 10 ;; note the initialization to a default value
float height
cloc ttransform
string[20] title

;; The cfg_record table:
.define N_CONFIG 4
cfg_record[N_CONFIG] cfg_table = { \

{ “reps”, va_t_int, 0, &reps }, \
{ “height”, va_t_float, 0, &height }, \
{ “tool”, va_t_cloc, 0, &ttransform }, \
{ “title”, va_t_string, 20, &title } \

}

;; How we load the config in the main program...
main

RAPL-3 Reference Guide 159

...
cfg_load(“test”, &(cfg_table[0]), N_CONFIG)
;; At this point, all of the config variables have been
;; read in. If they were absent from the config file,
;; then they still have their default values.
...

end main

Example .cfg file ; sample .cfg file for the above example:
height 4.2 ; you can have a comment here, too.
reps 20
title “This is a test”
; note the format of the value for a cloc. The first number
; is the flags field, the others are x, y, z ...
tool { 0, 0.0, 0.0, 1.2, 0.0, 0.0, 0.0, 0.0, 0.0 }
; end of the .cfg file

See Also cfg_load_fd(), cfg_save(), cfg_save_fd(), cfg_token_get()

Category Configuration File Handling

cfg_load_fd
Description Loads a configuration information from a file that is already open. Please see

cfg_load() for details.

Syntax command cfg_load_fd(int fd, string[] myname,
cfg_record@ crp, int n_records)

Parameters fd -- the open (for reading) config file descriptor
myname -- used for constructing the config file name.
n_records -- the number of cfg_records pointed to by crp
crp -- points to the of cfg_records describing the

variables to load

Returns Success >= 0
Failure < 0 (-ve error code)

Example ;; See the cfg_load() example above for details.

;; A small example that uses the configuration file routines:

;; These are the variables whose values we wish to configure:
int reps = 10 ;; note the initialization to a default value
float height
cloc ttransform
string[20] title

;; The cfg_record table:
.define N_CONFIG 4
cfg_record[N_CONFIG] cfg_table = { \

{ “reps”, va_t_int, 0, &reps }, \
{ “height”, va_t_float, 0, &height }, \
{ “tool”, va_t_cloc, 0, &ttransform }, \
{ “title”, va_t_string, 20, &title } \

}

;; How we load the config in the main program...
main

int fd
...
open(fd, “myconfig.cfg”, O_RDONLY, 0) ;; open the file
cfg_load_fd(fd, “whatever”, &(cfg_table[0]), N_CONFIG)
...

end main

160 Subprograms: Alphabetical Listing

See Also cfg_load(), cfg_save(), cfg_save_fd(), cfg_token_get()

Category Configuration File Handling

cfg_save
Description Re-writes a configuration file for the current application. Please see cfg_load() for

many related details. This allows a program to change its own configuration and
then re-write its configuration file. Note that the original configuration file is
completely overwritten; all comments in it are lost. Also note that cfg_save() will
not create a missing config file; the file must already exist (but may be empty).

Syntax command cfg_save(string[] myname, cfg_record@ crp, int n_records)

Parameters myname -- used for constructing the config file name.
n_records -- the number of cfg_records pointed to by crp
crp -- points to the cfg_records describing the

variables to save

Returns Success >= 0
Failure < 0 (-ve error code)

Example ;; To the example from cfg_load(), add the following code
;; to re-write the configuration file:
...
cfg_save(“test”, &(cfg_table[0]), N_CONFIG)
...

See Also cfg_load(), cfg_load_fd(), cfg_save_fd(), cfg_token_get()

Category Configuration File Handling

cfg_save_fd
Description Re-writes a configuration file for the current application. Please see cfg_load() for

many related details. This allows a program to change its own configuration and
then re-write its configuration file. Note that the original configuration file is
completely overwritten; all comments in it are lost.

Syntax command cfg_save_fd(int fd, string[] myname,
cfg_record@ crp, int n_records)

Parameters fd -- the open (for writing) config file descriptor
myname -- used for constructing the config file name.
n_records -- the number of cfg_records pointed to by crp
crp -- points to the cfg_records describing the

variables to save

Returns Success >= 0
Failure < 0 (-ve error code)

Example ;; To the example from cfg_load(), add the following code
;; to re-write the configuration file using cfg_save_fd():
...
int fd
open(fd, “myconfig.cfg”, O_WRONLY | O_TRUNC, 0) ;; open the file
cfg_save_fd(fd, “test”, &(cfg_table[0]), N_CONFIG)
...

See Also cfg_load(), cfg_load_fd(), cfg_save(), cfg_token_get()

Category Configuration File Handling

RAPL-3 Reference Guide 161

chdir
Description Changes the current working directory to path. The search for all relative

pathnames (all pathnames that do not begin with a slash) starts at the current
working directory.

Syntax command chdir(var string[] path)

Returns

0 (-EOK) Success

-EINVAL If path was invalid

-ENOTDIR If path is not a directory

-ENOENT If path was not found

-EIO If an I/O error occurred

Example int fd
chdir ("/app/test/test2") ;; set working
directory
open (fd, "myfile", O_RDWR|O_CREAT, M_READ|M_WRITE)
fprintf (fd, "file header: 04/23/98")
close (fd)

System Shell cd

RAPL-II No equivalent.

Category File and Device System Management

chmod
Description Changes access mode information of an object (file or device) in the file system.
Syntax command chmod(var string[] path, int mode)

Parameter path string defining the path to the file
mode the modes of access, of type mode_flags, any combination of:

M_READ read allowed
M_WRITE write allowed
M_EXEC executable

Returns
0 (-EOK) Success
-EINVAL If the arguments were invalid
-ENOTDIR If any of the directory components of path was not a directory
-ENOENT If path was not found
-EIO If an I/O error occurred
-EAGAIN If we are temporarily out of the system resources needed to

perform this operation.
Example chdir ("/app/test/test2") ;; set working directory

open (fd, "myfile", O_RDWR|O_CREAT, M_READ|M_WRITE)
fprintf (fd, "file header: 04/23/98") ;; write data to file
chmod ("/app/test/test2/myfile",M_WRITE) ;; prevent file from
being read
close (fd)

System Shell chmod

162 Subprograms: Alphabetical Listing

RAPL-II No equivalent.
See Also open opens a file with specific access mode
Category File and Device System Management

chr_is_lower
Description Determines whether a character is lower case. Returns 1 if true, 0 if false.
Syntax func Boolean chr_is_lower(int char)

Parameter char the character: handled as an int
Returns True = 1

False = 0
Example int len, i, inval_char=0

string[25] user_input
...
printf ("enter selection (lower case only) : ")
readline (user_input,25)
...
for i = 0 to (str_len (user_input)-1)

if chr_is_lower(str_chr_get(user_input,i))== 0
inval_char = 1 ;; set invalid char. flag

end if
end for

See Also chr_is_upper checks if a character is upper case
Category String Manipulation

chr_is_upper
Description Determines whether a character is upper case. Returns 1 if true, 0 if false.

Syntax func Boolean chr_is_upper(int char)

Parameter char the character: handled as an int

Returns True = 1
False = 0

Example int len, i, inval_char=0
string[25] user_input
printf ("ENTER SELECTION (UPPER CASE ONLY): ")
readline (user_input,25)
...
for i = 0 to (str_len (user_input)-1)

if chr_is_upper(str_chr_get(user_input,i))== 0
inval_char = 1 ;; set invalid char. flag

end if
end for

See Also chr_is_lower checks if a character is lower case

Category String Manipulation

chr_to_lower
Description Converts a letter from upper case to lower case. If the letter is already lower case,

it is not changed.
Syntax func int chr_to_lower(int char)

RAPL-3 Reference Guide 163

Parameter char the character: handled as an int
Returns
Example int char, len, i, flag=0

string[25] user_input
printf ("enter selection (lower case only): ")
readline (user_input,25)
...
for i = 0 to (str_len (user_input)-1)

if chr_is_lower(str_chr_get(user_input,i))== 0
char = str_chr_get(user_input,i) ;; read upper case char
char = chr_to_lower(char) ;; convert case of char

;; to lower
str_chr_set (user_input,i,char) ;; write char back into

;; string
flag = 1 ;; set char conversion

flag
end if

end for

See Also chr_to_upper converts a character to upper case
str_to_lower converts a string to lower case

Category String Manipulation

chr_to_upper
Description Converts a letter from lower case to upper case. If the letter is already upper

case, it is not changed.

Syntax func int chr_to_upper(int char)

Parameter char the character: handled as an int

Returns Success >= 0
Failure < 0

Example int char, len, i, flag=0
string[25] user_input
printf ("ENTER SELECTION (UPPER CASE ONLY): ")
readline (user_input,25)
...
for i = 0 to (str_len (user_input)-1)

if chr_is_lower(str_chr_get(user_input,i))== 0
char = str_chr_get(user_input,i) ;; read lower case char
char = chr_to_upper (char) ;; convert case of char

;; to upper
str_chr_set (user_input,i,char) ;; write char back to

;; string
flag = 1 ;; set char conversion

flag
end if

end for

See Also chr_to_lower converts a character to lower case
str_to_upper converts a string to upper case

Category String Manipulation

clear_error
Description Clears persistent error bits on the digital signal processor (DSP). This includes

runaways, collisions, overspeeds, and encoder faults. After an error of this type,

164 Subprograms: Alphabetical Listing

the clear_error() command must be invoked before the arm power can be re-
engaged.

NOTE: This command only works with the F-series arms.

Syntax command clear_error()

Returns Success >= 0
Failure < 0 Returns -ve error descriptor if command fails.

Example clear_error()

Category Pendant

close
Description Closes a file or device. The connection between a file descriptor and the open file

associated with it is broken This frees the file descriptor for use with other files.

Syntax command close(int fd)

Returns

0 (-EOK) Success

-EINVAL The argument was invalid (ie., -ve)

-EBADF fd doesn’t correspond to an open file.

-EIO An I/O error occurred

Example int fd
...
open (fd, “filename”, O_RDONLY, 0) ;; open existing file for
reading
...
close (fd)

RAPL-II No equivalent

See Also open opens a file

Category File and Device System Management

closenp
close named pipe

Description Closes a named pipe.

Syntax closenp(int fd)

Parameter fd the file descriptor: an int

Returns Success >= 0
Failure < 0

Example closenp(pd)

closenp(NT_app_pipe)

RAPL-II No equivalent.

See Also opennp opens a named pipe
disconnectnp disconnects a client from a named pipe
connectnp connects to a named pipe
statusnp checks the status of a named pipe

RAPL-3 Reference Guide 165

Category Win 32

conf_get
Description Gets a list of robot configuration parameters.

Syntax command conf_get(var int[5] config)

Parameter config the configuration: an array of ints to hold:
[0] product code
[1] robot code
[2] number of axes
[3] config
[4] arm power status

Returns Success >= 0
Failure < 0

Example int[5] config

conf_get (config) ;; configuration is copied into the array
printf (“Robot configuration data is: “)
for i = 0 to 4

printf (“{}”,config[i])
end for

Result Robot configuration data is: 7, 9, 6, 79, 0

Category Robot Configuration

confirm_menu
Description Using the confirm_menu command forces the user to confirm an action before it

is carried out. The command allows for up to 3 strings to be sent to the pendant
screen. Each string will be placed on a different row of the screen starting with
the top row. Each string can have a maximum of 20 characters. Any character
beyond this is truncated.

Library stp

Syntax export func int confirm_menu(var string[] str_1, var string[]
str_2, var string[] str_3)

Parameter str_1 text string displayed on the top row of the pendant screen
str_2 text string displayed on the second row of the pendant screen
str_3 text string displayed on the third row of the pendant screen

Returns Success >= 0
Failure < 0

Example int ctrl
string[10] name = “my_app_23”
stp:startup()
stp:app_open(name, 0)
...
ctrl = stp:confirm_menu(“Do You wish to”,”Continue? ”,”***”)

...
stp:app_close()
...

See Also select_menu

Category Pendant

166 Subprograms: Alphabetical Listing

connectnp
connect named pipe

Description Checks or waits for a client to connect with the named pipe.

If the wait parameter is set to TM_NOWAIT, the command returns immediately. If
the wait parameter is set to TM_FOREVER (or anything else), it will block (not
interruptible) until a client connects.

Syntax command connectnp(int fd, int wait)

Parameters fd the file descriptor: an int
wait

Returns Success >= 0, client has connected.
Failure < 0

Example connectnp(pd,TM_NOWAIT)

connectnp(NT_app_pipe,TM_FOREVER)

RAPL-II No equivalent.

See Also disconnectnp disconnects a client from a named pipe
closenp closes a named pipe
opennp opens a named pipe
statusnp checks the status of a named pipe

Category Win 32

cos
Description Calculates the cosine of an angle. Takes an argument in degrees.

Syntax func float cos(float x)

Returns Success >= 0. The cosine of the argument in degrees.
Failure < 0

Example float x = 45.00
float y
y = cos(x)

Result 0.7071

RAPL-II COS

See Also sin calculates the sine
tan calculates the tangent
acos calculates the arc cosine

Category Math

cpath
Description Calculates and executes a path immediately.

The path is stored as path 0 and can be repeated with ctpath_go(0).

Syntax command cpath(gloc@ locname, int start, int finish, \
var trigger_type triggers)

RAPL-3 Reference Guide 167

Parameter locname the locations: a pointer to an array of locations
start the index of the location array to start: an int
finish the index of the location array to finish: an int
triggers the information to set gpio outputs: an int[16,2] for any of the rows in
the array,

elements in the 0 column are the indexes of the location array
elements in the 1 column are the setting and identifiers of gpio output

Returns Success = 0
Failure < 0

Example teachable cloc[10] b
trigger_type trig2
...
trig2[0,0]=6 ;; first trigger at location 6
trig2[0,1]=-1 ;; first trigger turns output #1 off
trig2[1,0]=7 ;; second trigger at location 7
trig2[1,1]=1 ;; second trigger turns output #1 on
trig2[2,0]=9 ;; third trigger is location 9
trig2[2,1]=15 ;; third trigger turns output #15 on
...
cpath(&b[0], 5, 9, trig1)

;; executes a path, starting at b[5] and going to b[9]
;; using trig2 as a trigger table

The location name must be given in this form. It is not sufficient to simply enter
b in the second argument.

RAPL-II Similar to CPATH.

See Also ctpath creates and stores a path with triggers
ctpath_go executes a stored path

Category Motion

ctl_get
Description Gets point of control.

Syntax command ctl_get()

Returns Success >= 0
Failure < 0. Will fail only due to communications.
 – 16, EBUSY, indicates another process has control.

Example ctl_get()

RAPL-II There is no corresponding construct.

See Also ctl_rel releases point of control

Category System Process Control: Point of Control and Observation

ctl_give
Description Gives control explicitly to the process specified by the pid parameter.

Syntax command ctl_give(int pid)

Parameter pid specifies the process to be given control

Returns Success >= 0
Failure < 0 Returns negative error code if command fails. Two possibilities are:

168 Subprograms: Alphabetical Listing

-EBUSY if calling process doesn’t have control to give
-ERRCH if no process pid exists

See Also ctl_rel releases point of control
getpid gets process identification
getppid gets parent process

Category System Process Control: Point of Control and Observation

ctl_rel
Description Releases point of control.

Syntax command ctl_rel()

Returns Success >= 0
Failure < 0

Example ctl_rel()

RAPL-II There is no corresponding construct.

See Also ctl_get gets point of control

Category System Process Control: Point of Control and Observation

ctpath
Description Creates and stores a continuous path through an array of locations with triggers

for gpio (general purpose input/output).

To execute the path, use the ctpath_go() command.

Syntax command ctpath(int pathnum, gloc@ locname, int start, int
finish, \

var trigger_type triggers [, int speed])

Parameters pathnum the path’s index number: an int from 1 to 8
locname the locations: a pointer to the first location of an array the locations

 must all be elements of the same one dimensional array
 Note the form in the example.
start index of the location array to start: an int
finish index of the location array to finish: an int
triggers the triggers: an array [16,2] of ints where the 16 triggers(rows in the

 array) are indexed 0 to 15, the trigger info (columns in the array) are
 indexed 0 and 1,and for any row, the elements contain
in column 0, the location, specified by its index in the location array,
locname
in column 1, the setting of the output, specified by a positive or
negative sign, and the output channel, specified by its number
See the example below.

Parameter (Optional) speed the percentage of full speed through the path: an int
if speed is not specified, the current robot speed is used

Returns Success = 0
Failure < 0

Example teachable cloc[20] a
trigger_type trig1
...
trig1[0,0]=0 ;; first trigger at location 0

RAPL-3 Reference Guide 169

trig1[0,1]=4 ;; first trigger is turning output #4 on
trig1[1,0]=3 ;; second trigger at location 3
trig1[1,1]=1 ;; second trigger is turning output #1 on
trig1[2,0]=5 ;; third trigger is location 5
trig1[2,1]=-4 ;; third trigger is turning output #4 off
...
ctpath(1, &a[0], 0, 19, trig1, 65)

;; pre-calculates path 1, starting at a[0] and going to a[19]
;; using trig1 as a trigger table and moving at 65% speed.

The location name must be given in this form. It is not sufficient to simply enter
a in the second argument.

Example ctpath(10, &mypoints[0], 20, 30, mytrig)

RAPL-II Similar to CTPATH and TRIGGER.

See Also ctpath_go runs the path
cpath

Category Motion

ctpath_go
Description Runs a path previously stored by ctpath(). Moves to the beginning of the specified

path and executes the path at the speed previously specified.

Moves the arm in joint-interpolated mode to the starting knot of the path at the
current speed setting. Moves through the path at the previously specified path
speed.

Since a cpath() is stored as path 0, the command ctpath_go(0) executes the
previous cpath().

Syntax command ctpath_go(int pathnumber)

Parameter pathnumber the path number defined in ctpath: an int

Returns Success = 0
Failure < 0

Example ctpath(1, &a[0], 0, 19, trig1, 65)
...
ctpath_go(1)

Example ctpath(3,12,dispense_adhesive)
...
ctpath_go(3)

RAPL-II Same as GOPATH.

See Also ctpath creates and stores a continuous path with triggers
cpath calculates and executes a path immediately

Category Motion

deg
Description Converts radians to degrees.

Syntax func float deg(float x)

Returns Success >= 0
Failure < 0

170 Subprograms: Alphabetical Listing

Example float x = 0.5
float y
y = deg(x)

Result 28.647890

RAPL-II DEG

See Also rad converts degrees to radians

Category Math

delay
Description Sleeps for at least the number of milliseconds specified in milliseconds. Repeated

signals can cause this delay to be longer than the milliseconds requested. Differs
from msleep(). delay() allows sleeping without getting terminated by an EINTR
error.

Syntax command delay (int milliseconds)

Returns Always returns 0 (Success)

Example loop
print (“Waiting for GPIO input 1. \n”)
if (input(1,state) == 1)

break
end if
delay (250)

end loop

RAPL-II Similar to DELAY.

See Also msleep sleeps for milliseconds

Category System Process Control: Single Multiple processes

depart
Description Moves the tool centre-point from the current position, along the

“approach/depart” tool axis, to a depart position. The depart position is defined
by a distance from the current position along the “approach/depart” tool axis.
Positive distance is away from the location. Negative is towards the location.

The starting position can be any position. It does not have to be a location.

This command is used to move the tool, usually slowly, away from a position a
short distance before moving the arm, usually quickly, to a position a larger
distance away.

Moves in joint interpolated mode. The result is not a straight line.

Syntax command depart(float distance)

Parameter distance the distance from the location to the depart position: a float

Returns Success >= 0
Failure < 0

Example depart(2.0)

depart(6.0)

speed_set(100)
appro(pick_1, 2.0)

RAPL-3 Reference Guide 171

speed_set(20)
move(pick_1)
finish()
grip_close()
grip_finish()
depart(2.0)
speed_set(100)
appro(place_1)

RAPL-II Similar to DEPART.

See Also departs like depart(), but in straight line motion
appro moves to an approach position; opposite of depart
appros moves to an approach position; opposite of departs
tool_set re-defines the tool coordinate system

Category Motion

departs
Description Moves the tool centre-point from the current position, along the

“approach/depart” tool axis, to a depart position. The depart position is defined
by a distance from the current location along the “approach/depart” tool axis.
Positive distance is away from the location. Negative is towards the location.

The starting position can be any position. It does not have to be a location.

Used to move the tool, usually slowly, away from a position a short distance
before moving the arm, usually quickly, to a position a larger distance away.

Moves in cartesian interpolated mode. The result is straight line motion.

Syntax command departs(float distance)

Parameter distance the distance from the location to the depart position: a float

Returns Success >= 0
Failure < 0

Example departs(2.0)

departs(6.0)

speed_set(100)
appros(pick_1,2.0)
speed_set(20)
moves(pick_1)
finish()
grip_close()
grip_finish()
departs(2.0)
speed_set(100)
appros(place_1)

RAPL-II Similar to DEPART.

See Also depart like departs(), but not in straight line motion
appro moves to an approach position; opposite of depart
appros moves to an approach position; opposite of departs
tool re-defines the tool coordinate system

Category Motion

172 Subprograms: Alphabetical Listing

disconnectnp
disconnect named pipe

Description Breaks a pipe connection with a client. The server forcibly disconnects the client.
Must be done to be able to connect with a new client.

Syntax command disconnectnp(int fd)

Parameter fd the file descriptor: an int

Returns Success >= 0
Failure < 0

Example disconnectnp(pd)

disconnectnp(NT_app_pipe)

RAPL-II No equivalent.

See Also connectnp connects to a named pipe
closenp closes a named pipe
opennp opens a named pipe
statusnp checks the status of a named pipe

Category Win 32

dup
Description Duplicates an existing file descriptor. The new file descriptor is the lowest

available file descriptor. The new file descriptor, stored in new_fd, has the
following in common with the original file descriptor, old_fd:

• Same open file or device
• Same file pointer

(Changing the file pointer of one changes file pointer of the other.)
• Same access mode (read, write, read/write)

Syntax command dup(var int new_fd, int old_fd)

Parameter new_fd the new file descriptor which is a duplication of old_fd: an int
old_fd the file descriptor being duplicated: an int

Returns
 >= 0 Success.
 -EAGAIN There are no free file descriptors.
 -EINVAL The old_fd argument was invalid (i.e. negative).
 -EBADF old_fd does not correspond to an open file.

Example See example for dup2()

See Also dup2 creates a new file handle

Category File and Device System Management

 dup2
Description Duplicates an existing file descriptor. The original file descriptor, old_fd, is

duplicated at a new position in the file descriptor table specified by new_fd. The

RAPL-3 Reference Guide 173

new file descriptor, new_fd, has the following in common with the original file
descriptor, old_fd:

• Same open file or device

• Same file pointer
(Changing the file pointer of one changes file pointer of the other.)

• Same access mode (read, write, read/write)

 dup2() creates the new handle with the value of new_fd. If there was a file
associated with new_fd already open then dup2() first closes this file.

Syntax command dup2(int new_fd, int old_fd)

Parameter new_fd the position of the new duplicated file descriptor: an int
old_fd the file descriptor being duplicated: an int

Returns

>= 0 Success.
-EINVAL The arguments were invalid (i.e. negative file descriptors).
-EBADF old_fd does not correspond to an open file.
-EINVAL The argument was invalid (i.e. negative file descriptors).
-EBADF fd does not correspond to an open file.
-EIO An i/o error occurred.

Example int nul, oldstdout, STDOUT = 1
string[] msg = "This is a test"

;; create a file
open (nul, "DUMMY.FIL", O_CREAT | O_RDWR, S_IREAD | S_IWRITE)

;; create a duplicate handle for standard output
dup (oldstdout, STDOUT)

;; redirect standard output to DUMMY.FIL
;; by duplicating the file handle onto
;; the file handle for standard output
dup2 (STDOUT, nul)

;; close the handle for DUMMY.FIL
close (nul)

;; will be redirected into DUMMY.FIL
fprint (STDOUT, msg)

;; restore original standard output handle
dup2 (STDOUT, oldstdout)

;; close duplicate handle for STDOUT
close (oldstdout)

See Also dup creates a new file handle
Category File and Device System Management

environ
Description Allows a program to retrieve each individual string from its environment. [This

command is available on the C500C only.]

174 Subprograms: Alphabetical Listing

Syntax command environ(var string[] dst, int n)

Parameters There are two required parameters:

dst a string variable to write the selected
environment string into.

n the index of the selected environment
string. Starts at zero.

Returns 1 � the selected string was successfully copied into dst
0 � there is no environment string with the specified index; dst is set to the
empty string
< 0 � a negative error code.

Explanation The environment strings are a set of strings of the form “label=value” that are
accessible to each running program. When one program launches another one
via execl() or execv(), it passes on its set of environment strings. Thus if one
program adds a new string to its environment or deletes a string from its
environment, all of its children inherit these changes.

Environment variables are convenient for storing information about the entire
system. When CROS starts up, it sets up the initial environment strings from
the diagnostic configuration strings. These strings are always set up by CROS
as part of the environment:

HOSTTYPE What kind of processor the controller has.
Typically “i386”.

OSTYPE What operating system is running
Typically “CROS”.

SerialNumber The controller serial number.

Example ;; This RAPL-3 program displays all of the environment strings:
;;
main

int n
string[256] s
n = 0
while (environ(s, n) > 0)

printf(“{}\n”, s)
n++

end while
end main

See Also getenv(), setenv(), unsetenv()

Category Environment Variables

err_compare
Description Compares two error descriptors for matching subsystem and error code fields.

Can be used, for example, to find out if an error is a runaway error (regardless of
the axis involved.)

Library syslib

Syntax func int err_compare(int d1, int d2)

Parameters d1, d2 error descriptors to compare

Returns 1 (True) if the subsystem and error codes match
0 (False) if they do not.

RAPL-3 Reference Guide 175

Example t = move(there)
if (err_compare(REAXIS_RUNAWAY, -t))

... runaway error ...
end if

See Also error descriptors

Category Error Message Handling

 err_compose
Description The function is passed four integer values representing the subsystem, b2, b1

and code values of a given error descriptor. The function reconstructs and
returns the original error descriptor. Refer to the Error Descriptor section for
details on the error descriptor.

Syntax func int err_compose(int subsys, int b2, int b1, int code)

Parameter subsys The integer value of the subsystem originating the error
b2 The integer value of the b2 field
b1 The integer value of the b1 field
code The integer value of the specific error code

Returns Returns the 32 bit error descriptor reconstructed from the 4 separate 8 bit fields.
Refer to the Error Handling section for a details on the file descriptor.
Failure < 0

Example A program to confirm that the translation from the error descriptor to the error
data is correct.

int t, comp, err_des
int subsys, code, b2, b1

t = open(fd, “myfile”, O__RDONLY, 0)
if (t < 0) ;; error

err_des = -t...
subsys = err_get_subsys(err_des)
code = err_get_code(err des)
b2 = err_get_b2(err_des)
b1 = err_get_b1(err_des)
if (comp = err_compose(subsys, b2, b1, code) != err_des)

...
;; Something went wrong in the error translations
...
exit(1)

else
printf(“The error {} ”, str_error(err_des))
printf(“ occurred in the {}subsystem ’\n”, str_subsys(err_des))

;; Note the str_error and the str_subsys function calls cannot occur in the
;; same print function call.

printf(“The b2 error field is ‘{}’\n”, b2)
printf(“The b1 error field is ‘{}’\n”, b1)
exit(1)

end if
end if

176 Subprograms: Alphabetical Listing

Result The error no device occurred in kernel subsystem
The b2 error field is X
The b1 error field is Y ::X and Y are integers.

See Also err_get subsys
err_get_b2
err_get_b1
err_get_code

Category Error Message Handling

 err_get_b1
Description The function is passed a +ve error descriptor. It returns the integer value of the

b1 field in the error descriptor. The error descriptor is a 32 bit integer, the
negative value of which is returned when a function call fails. Refer to the Error
Descriptor section for details on the error descriptor.

Syntax func int err_get_b1(int descriptor)

Parameter descriptor the parameter int is the error descriptor

Returns Success >= Returns the integer which corresponds to the 8 bits which correspond
to the b1 field in the error descriptor. Note: if the b2 field is not defined for the
specific error, the function returns 0. Refer to the Error Handling section.
Failure < 0

Example int t, err_des
t = open(fd, “myfile”, O__RDONLY, 0)
if (t < 0) ;; error

err_des = -t ;; change sign of error for use with error functions

printf(“The b1 error field is ‘{}’\n”, err_get_b1(err_des))
exit(1)

end if

Result The b1 error field is X X is the integer value of the b2 field of the error
descriptor

See Also error_code
addr_decode

Category Error Message Handling

 err_get_b2
Description The function is passed a +ve error descriptor. It returns the integer value of the

b2 field in the error descriptor. The error descriptor is a 32 bit integer, the
negative value of which is returned when a function call fails. Refer to the Error
Descriptor section for details on the error descriptor.

Syntax func int err_get_b2(int descriptor)
Parameter descriptor the parameter int is the error descriptor

Returns Success >= Returns the integer which corresponds to the 8 bits which
correspond to the b2 field

in the error descriptor. Note if the b2 field is not defined for the
specific error, the
 function returns 0. Refer to the Error Handling section.
Failure < 0

RAPL-3 Reference Guide 177

Example int t, err_des
t = open(fd, “myfile”, O__RDONLY, 0)
if (t < 0) ;; error

err_des = -t ;; change sign of error for use with error functions

printf(“The b2 error field is ‘{}’\n”, err_get_b2(err_des))
exit(1)

end if

Result The b2 error field is X X is the integer value of the b2 field of the error
descriptor

See Also error_code
addr_decode

Category Error Message Handling

 err_get_code
Description The function is passed a +ve error descriptor. It returns the integer value of the

code field in the error descriptor. The error descriptor is a 32 bit integer, the
negative value of which is returned when a function call fails. Refer to the Error
Descriptor section for details on the error descriptor.

 Note: Use the str_error function to convert the error descriptor to a string.

Syntax func int err_get_code(int descriptor)

Parameter descriptor the parameter int is the error descriptor

Returns Success >= Returns the integer which corresponds to the 8 bits which
correspond to the code field

 in the error descriptor. Refer to the Error descriptor section for
details.
Failure < 0

 Example int t, err_des
t = open(fd, “myfile”, O__RDONLY, 0)
if (t < 0) ;; error

err_des = -t ;; change sign of error for use with
error functions

printf(“The error code number is ‘{}’\n”, err_get_b2(err_des))
exit(1)

end if

Result The error code number is X X is the integer value of the error code
See Also str_error
Category Error Message Handling

 err_get_subsys
Description The function is passed a +ve error descriptor. It returns the integer value of the

subsystem where the error originated. The error descriptor is a 32 bit integer,
the negative value of which is returned when a function call fails. The subsystem
information is carried in the error descriptor. Refer to the Error Descriptor
section for details on the error descriptor.

Syntax func int err_get_subsys(int descriptor)
Parameter descriptor the parameter int is the error descriptor

178 Subprograms: Alphabetical Listing

Returns Success >= Returns the integer corresponding to the subsystem. For example:
Subsystem 0 kernel
Subsystem 1 robot library
Subsystem 2 robot server
(List is not complete)
Refer to the Error descriptor section for details on the subsystem error

files.
Failure < 0

Example int t, err_des
t = open(fd, “myfile”, O__RDONLY, 0)
if (t < 0) ;; error

err_des = -t ;; change sign of error for use with error functions
printf(“The error occurred in subsystem ‘{}’\n”, err_get_subsys(err_des))
exit(1)

end if

Result The error occurred in subsystem X X is the decimal number of the
subsystem

See Also error_code
addr_decode

Category Error Message Handling

 error_addr
Description The function returns the address where the current exception occurred.

Syntax func int error_addr()

Parameter no parameters required

Returns Success >= 0
Failure < 0

Example see the example for addr_to_file()

See Also error_code
addr_decode

Category Error Message Handling

 error_code
Description Get the current exception’s error code.

Syntax func int error_code()

Parameter no parameter required

Returns Success >=0
Failure < 0

Example try
 abort(-1) ;; this should cause an exception
except
 printf(“Error ‘{}’ happened\n”, str_error(-error_code()))
end try

Result The program prints out “Error ‘General Error’ happened”

RAPL-3 Reference Guide 179

See Also error_addr
addr_decode

Category Error Message Handling

 error_line
Description Calls the addr_to_line function to determine the line number of the current error.

This is equivalent to calling addr_to_line(error_addr()).

Syntax func int error_line()

Parameters No parameters required

Returns Success The line number
Failure 0

Example see addr_to_line() for a related example.

See Also error_addr
error_file
addr_to_line
addr_decode*

Category Error Message Handling

 error_file
Description Calls the addr_to_file function to convert the current error to a file name where

the current error resides. This is equivalent to calling addr_to_file(error_addr()).

Syntax func string[]@ error_file()

Parameters No parameters required

Returns Success A pointer to the file name string
Failure A pointer to an empty string on failure

Example see addr_to_file() for a related example.

See Also error_addr
error_line
addr_to_line
addr_decode*

Category Error Message Handling

 execl
Description Loads and executes another program. The program takes all the command-line

arguments as string[] parameters. The program that launches the new program is
terminated, and the new program takes on the pid number of its terminated
parent. The execl() command is often executed from within a child process. This
command is used when all of the command-line arguments are known. If they
are not known, use execv().
Certain errors can cause the program running execl() to terminate (with exit code
255). For example, missing libraries can cause this.

Syntax command execl(var string[] file_name, var string[] arg, ...)

180 Subprograms: Alphabetical Listing

Parameter file_name the file name, including the path, to be executed
arg a minimum of two arguments is required

Returns Success no return- the process ceases to exist and is replaced by the specified
new running process
Failure:

 -EBADF fd does not represent an open file

 -EINTR was interrupted by a signal

 –EINVAL path is illegal, or there is not at least one command-line
argument

 –E2BIG too many command-line arguments; the file is too big to
execute on this CROS version

 –EACCESS does not have its execute permission bit set

 –ENOEXEC the file is not a recognized executable

 –ENOMEM not enough free memory

 –EIO An I/O error occurred.

 -ENOENT The file specified by file_name does not exist

 -ESPIPE can't r/w on a socket

 -EIO an I/O error occurred

 -ENOTDIR A component of the path to the file was not a directory.

Example int split_id

string[] my_prog = “My_Program”
...
split_id
if split_id == 0

execl (my_prog, “arg0”, “arg1”, “arg2”)
else

waitpid (split_id,&status,0) ;; wait until child has terminated

 end if

RAPL-II EXECUTE

See Also execv executes another program with unknown arguments

Category System Process Control: Single and Multiple Processes

 execv
Description Loads and executes another program. The program that launches the new

program is terminated, and the new program takes on the pid number of its
terminated parent. The “execv” command is often executed from within a child
process. The program takes one other argument which is a pointer to variable
length array of strings, argv. These are the command-line arguments for the
program. This command is used when the command-line arguments are not
known. If the command-line arguments are known, use execl().
Certain errors can cause the program running execv() to terminate (with exit code
255). For example, missing libraries can cause this.

Syntax command execv(var string[] file_name, var string[]@@ argv)

Parameter file_name the file name, including the path, to be executed
argv pointer to an array of string pointers

RAPL-3 Reference Guide 181

Returns Success no return- the process ceases to exist and is replaced by the specified
new running process
Failure:

 -EBADF fd does not represent an open file

 -EINTR was interrupted by a signal

 –EINVAL path is illegal, or there is not at least one command-line
argument

 –EACCESS does not have its execute permission bit set

 –ENOEXEC the file is not a recognized executable

 –ENOMEM not enough free memory

 –EIO An I/O error occurred.

 -ENOENT The file specified by file_name does not exist

 -ESPIPE can't r/w on a socket

 -EIO an I/O error occurred

 -ENOTDIR A component of the path to the file was not a directory.

Example string[20] user_input
string[]@[10] argv_sp
int i, split_id, status, num_args = 0
loop

printf ("* enter argument: ")
readline(user_input,20)
if user_input != "x" ;; “x” terminates input

mem_alloc (argv_sp[num_args], sizeof(user_input))
;; allocate memory and
;; initialize ptr to memory

argv_sp [num_args]@ = user_input ;; initialize string
num_args ++ ;; increment string counter

else
break

end if
end loop

split_id = split()
if split_id == 0 ;; * child process

execv (argv_sp[0]@,&(argv_sp[0])) ;; execute new program
elseif split_id !=0 ;; * parent process

waitpid(split_id,&status,0) ;; wait for child to complete
end if

for i = 0 to (num_args-1)
mem_free (argv_sp[i]) ;; free allocate memory

end for

RAPL-II EXECUTE

See Also execl executes another program with known arguments
argc returns the number of command-line arguments
argv returns a pointer to a command-line argument

Category System Process Control: Single and Multiple Processes

182 Subprograms: Alphabetical Listing

 exit
Description Causes normal program termination. Open files are flushed and closed. The value

n is returned to the parent process indicating success or failure. Conventionally,
0 is used to indicate successful termination and non-zero values to indicate
abnormal termination. Note that only the lowest 8 bits of the ret_val value are
returned to the parent; the value must be in the range 0 to 255.

Syntax command exit(int ret_val)

Parameter ret_val the value returned to the parent process: an int

Returns Never returns.

Example int pid
...
pid = split()
if pid == 0
 ;; child process does something
 exit (0)
else
 ;; parent process does something
end if

Example int result
...
result = func_call() ;; evaluate the function return value

if result != EOK ;; an error occurred during the function execution
exit (-1)

else
exit (0) ;; no error

end if

RAPL-II ABORT

See Also abort terminates a program

Category System Process Control: Single and Multiple Processes

 fabs
Description Calculates the absolute value of a float.

Syntax func float fabs(float x)

Argument x the number: a float

Returns Success >= 0 The absolute value of the argument x.
Failure < 0

Example float x = -99.9
float y
y = fabs(x)

Result y is set to 99.9

RAPL-II ABS

See Also iabs calculates the absolute value of an int

Category Math

RAPL-3 Reference Guide 183

 finish
Description Forces the program to wait at the finish() command until arm motion has

finished. Normally a command is executed as soon as its parameters are
determined, which can be before the previous command has finished.

finish() is often used to finish the motion of the arm to a location before closing
the gripper at the location, instead of having the gripper start to close while the
arm is still in motion to the location. finish() is also used to synchronize
commands, such as input/output, with robot motion.

If online mode is off, finish() is not needed between two arm motion commands.
In online off mode, arm motion commands are executed as if there is a finish()
after each one. There is one exception, the motor() command for different axes.
The later motor() command does not wait for the earlier motor() command to
finish.

Syntax command finish()
Parameter No parameters required
Returns Success >= 0

Failure < 0
Example appro(pick_1,2.0)

move(pick_1)
finish()
grip_close()

 ;; Without finish()
;; the grip_close() command would begin executing
;; before the move(pick_1) command finished.

RAPL-II Similar to FINISH.
See Also online sets online mode off or on

grip_finish forces program to wait until gripper motion finished
robotisfinished
robotisdone gets the robot done state for non-control processes

Category Motion

 flock
file lock

Description Sets and releases advisory locks on a file.

At any one time, a file can have:
only one exclusive lock, or
any number of shared locks.

A flock() command can interruptably block. If the non-blocking flag, LOCK_NB, is
used the operation does not block. If the non-blocking flag is absent, the
operation blocks when locking.

Syntax command flock(int fd, int operation)

Parameter fd the file descriptor: an int
operation the locking operation; one of:

LOCK_SH
shared lock; block until the lock is made

LOCK_EX
exclusive lock; block until the lock is made

184 Subprograms: Alphabetical Listing

LOCK_SH|LOCK_NB
shared lock; return -EAGAIN immediately if this would have

blocked
LOCK_EX|LOCK_NB

exclusive lock; return -EAGAIN immediately if this would have
blocked

LOCK_UN
unlock

Returns

 0 (-EOK) Success

 -EINVAL An argument was invalid

 -EBADF fd does not correspond to an open file

 -EAGAIN The LOCK_NB flag was set and we did not immediately
succeed.

 -EINTR This operation was interrupted by a signal.

Example open (fd,"test.txt",O_RDWR|O_TEXT|O_CREAT|O_TRUNC,M_READ|M_WRITE)

flock(fd,LOCK_EX) ;; obtain an exclusive lock

Category File and Device System Management

 fprint
 file print
Description Writes the specified data to the file associated with file descriptor fd. Two types

of arguments can be given in the variable argument list: constants and variables.
The constants are printed exactly as they are given. The variable's value is what
is copied to the file descriptor. The method used in printing is to print the
arguments in the exact order that they were given.

Syntax command fprint (int fd, ...)
Parameters fd file descriptor: an int

string constants or variables
Returns

 >= 0 Success
 -EINVAL If the arguments (notably fd) are invalid.
 -EBADF If fd does not correspond to an open file.
 -EACCESS If the file open on fd is not open for writing.
 -ESPIPE If an attempt is made to write to a socket.
 -EIO An I/O error occurred.
 -EAGAIN (nonblocking I/O only). Not ready to write any

bytes.
 -EINTR This operation was interrupted by a signal.

Example int fd
float cycle_count = 4
...
cycle_count = cycle_count +1 ;; now at 5
open \
(fd,"test.txt",O_RDWR|O_TEXT|O_CREAT|O_TRUNC,M_READ|M_WRITE)
fprint (fd, "Cycle ",cycle_count," data collection.\n")
close (fd)

RAPL-3 Reference Guide 185

Result Cycle 5.00000 data collection.\n
sent to the file associated with file descriptor fd.

Category File Input and Output: Unformatted Output
Device Input and Output

 fprintf
 file print formatted

Description Converts and writes output to the file associated with file descriptor fd under the
control of a specified format fmt.

Format specifications are detailed in the Formatted Output section of File Input
and Output

Syntax command fprintf(int fd, var string[] fmt, ...)

Parameters fd file descriptor
fmt formatted string

Format Specifiers The format string may consist of two different objects, normal characters, which
are directly copied to the file descriptor, and conversion braces which print the
arguments to the descriptor. The conversion braces take the format:

 { [flags] [field width] [.precision] [x | X] }

 Flags

 Flags that are given in the conversion can be the following (in any order):

• – (minus sign) specifies left justification of the converted argument in its field.

• + (plus sign) specifies that the number will always have a sign.

• 0 (zero) in numeric conversions causes the field width to be padded with
leading zeros.

Field width

The field width is the minimum field that the argument is to be printed in. If the
converted argument has fewer characters than the field, then the argument is
padded with spaces (unless the 0 (zero) flag was specified) on the left (or on the
right if the – (minus sign) was specified). If the item takes more space than the
specified field width, then the field width is exceeded.

precision

The precision number specifies the number of characters to be printed in a
string, the number of significant digits in a float, or the maximum number of
digits to be printed in an integer.

x or X

This is the hexadecimal flag which specifies whether or not an integer argument
should be printed in hexadecimal (base 16) or not. The lowercase x specifies
lowercase letters (abcde) are to be used in the hexadecimal display and the
uppercase X specifies uppercase letters (ABCDE).

Returns

>= 0 Success
-EINVAL If the arguments (notably fd) are invalid.
-EBADF If fd does not correspond to an open file.

186 Subprograms: Alphabetical Listing

-EACCESS If the file open on fd is not open for writing.
-ESPIPE If an attempt is made to write to a socket.
-EIO An I/O error occurred.
-EAGAIN (nonblocking I/O only). Not ready to write any

bytes.
-EINTR This operation was interrupted by a signal.

Example int fd
float cycle_count = 4
...
cycle_count = cycle_count +1 ;; now at 5
open (fd,"test.txt",O_RDWR|O_TEXT|O_CREAT|O_TRUNC,M_READ|M_WRITE)
fprintf (fd, "Cycle {6.4} data collection.\n",cycle_count)
close (fd)

Result Cycle 5.000 data collection.

Category File Input and Output: Formatted Output
Device Input and Output

freadline
file read line

Description Reads (possibly interactively) a line of up to maxlen characters from infd into str.
If outfd >= 0, then echoing is done to outfd and interactivity is assumed. The line
terminator can be either a carriage return or a line feed. Returns the number of
characters actually read including the terminator. A value of 0 means EOF. The
function can return up to maxlen +1 since the end of line is included in the
count, but not in the returned string.

Syntax command freadline (int infd, int outfd, var string[] str, int
maxlen)

Parameters

infd file descriptor of data source

outfd
file descriptor of echoed data or –1 if you are reading from a file
(with no echoing needed.)

str destination of data read from infd

maxlen maximum length of character read

Returns

>= 0 Success; the number of characters read, including the
terminator

-EINVAL the arguments were invalid

-EBADF one of the file descriptors do not correspond to an open
file

-EACCESS tried to read/write from a file that was not opened for the
required access

-ESPIPE can’t r/w on a socket

-EIO an I/O error occurred

-EAGAIN (nonblocking I/O) no bytes were ready for reading / the
device was not ready for writing

RAPL-3 Reference Guide 187

-EINTR this operation was interrupted by a signal

Example int fd
string[64] user_input
open (fd,"log.txt", O_RDWR|O_TEXT|O_CREAT, M_READ|M_WRITE)
seek (fd,0,SEEK_END) ;; append user

;; input to file
freadline (stdin,stdout,user_input,64) ;; input is read

;; from ”stdin”
into string “user_input”and echoed out

to “stdout”
writes (fd,user_input,0) ;; write string to

;; file
writes (fd,"\n",0) ;; write new line

;; char. to file
close (fd)

See Also readline

Category File Input and Output: Unformatted Input
Device Input and Output

fstat
Description Obtains information about a particular open object in the file system.

Syntax command fstat(int fd, var c_dirent buf)

Parameters There are two required paramters

fd the file descriptor of the open object

buf a c_dirent structure. See the information on stat() for
further details.

Returns

>= 0 Success; buf is filled in with data about the object. Note
that the de_name field will be a null string, as the system
cannot currently find the name of the open object.

< 0 Failure

Possible failure codes are:
-EINVAL the arguments were invalid.
-EBADF there is no open object corresonding to fd.
-EIO I/O error

Example int fd
c_dirent info
open(fd, “/conf/rc”, O_RDONLY, 0)
...
fstat(fd, info)
printf(“The /conf/rc file is {} bytes long.\n”, info.de_size)
...

Result The size of the /conf/rc file is displayed.

See Also stat()

Category File and Device System Management

188 Subprograms: Alphabetical Listing

ftime
Description Changes the modification time of an open filesystem object.

Library syslib

Syntax command ftime(int fd, int modtime)

Parameters There are two required parameters:

fd the open file descriptor

modtime what time to reset the object’s modification
time to.

Returns >= 0 � Success
< 0 � Failure
Possible failure return codes are:
-EINVAL Invalid argument
–EBADF There is no open file corresponding to fd.
–EACCESS Access denied
–EIO I/O error

Example int fd, t
t = time() ;; get the time NOW
open(fd, “myfile”, O_RDWR, 0)
...
ftime(fd, t - 60) ;; reset the timestamp to one minute ago
...

See Also utime()

Category File and Device System Management

gains_get
Description Gets the gains for an axis.

Syntax command gains_get(int axis, var float kp, var float ki, var
float kd)

Parameters axis the axis being inquired: an int
kp proportional gain: a float
ki integral gain: a float
kd derivative gain: a float

Returns Success >= 0
Failure < 0

Example ;; check default gains for A465 axis 1

float p, i, d
gains_get(1, p, i, d)
print ("p = ",p,"\ni = ",i,"\nd = ",d,"\n")

Result p = 12.0000
i = 0.0200000
d = 100.000

See Also gains_set sets the gains for an axis

Category Robot Configuration

RAPL-3 Reference Guide 189

gains_set
Description Sets the gains for an axis.

Syntax command gains_set(int axis, var float kp, var float ki, var
float kd)

Parameters axis the axis being set: an int
kp proportional gain: a float
ki integral gain: a float
kd derivative gain: a float

Returns Success >= 0
Failure < 0

Example ;;An example to create an array of gains for each axis, and then set the gains to
values stored
;;in the array. The gains are then printed for each axis.
;;

int axis_num, count
float[6] P,
float[6] I
float[6] D
...
;; initialize the array of gains
...

for count =0 to 5
axis_num = count +1
gains_set(axis_num, P[count], I[count], D[count])
printf (“Axis_num, P:{}, I{}, D{} \n”, P[count},I[count],D[count])

end for

RAPL-II @@GAIN

See Also gains_get gets the gains for an axis

Category Robot Configuration

get_ps
Description Obtains an entry in the system’s process table. Can be used to obtain all entries

one at a time, like the system shell’s ps command.

CROS-500 has room in the process table for 20 entries, numbered from 0 to 19.
CROSnt has room in the process table for 64 entries, numbered from 0 to 63.
Data is stored in the table from the back to the front — the oldest process, init, is
entry 19 or 63, the second oldest is 18 or 62, and so on. As a result, printing the
data by incrementing the slot number up to 19 or 63, places the oldest entry last,
like the system shell’s ps command.

Any empty slot in the process table is zeroed. Since processes have pids
numbered from 1, you can test for an empty slot by testing for a pid of 0 (zero).
This get_ps() command gets the process information for the entry identified by
slot. The information is stored in the ps_struct ps, which is a globally declared
struct. If slot is out of range, -EINVAL is returned.

Syntax command get_ps(int slot, var ps_struct ps)

190 Subprograms: Alphabetical Listing

Parameters slot the entry of the process table: an int (CROSnt: 0-63; CROS-500: 0-19)
ps the process information: a ps_struct struct, with members

pid an int
ppid an int
flags a constant of the enum ps_flags, one of:

PR_IN_SYSTEM
PR_NO_SIGNAL
PR_RAPL3 this is a RAPL-3 process
PR_PRIVILEGED this is a privileged system process
PR_INTERRUPTED
PR_TIMEDOUT

status a constant of the enum ps_status, one of:
PS_FREE
PS_HOLD
PS_READY
PS_RUN
PS_SLEEP
PS_STOP
PS_ZOMBIE
PS_WAITIO
PS_WAITSEM
PS_WAITSOCK
PS_WAIT

prio a constant of the enum ps_priority, one of:
PR_LOW
PR_NORM
PR_HIGH

sigmask an int
sigpending an int
sys_fticks an int
usr_fticks an int
rt_slippage an int
clicks an int
argv0 the name of the process or program, a string[32]

Returns
0 (-EOK) Success
-EINVAL slot was out of range (negative or too large)

Example ps_struct ps
get_ps(63, ps)

Example int slot = 0
ps_struct ps
...
get_ps(slot, ps)

Example int slot = 0
ps_struct ps
int pid, status, ret
loop

ret = get_ps(slot, ps)
if ret == -EINVAL

break
end if
pid = ps.pid
status = ps.status
printf("pid {2} status {2} \n",pid,status)
slot = slot + 1

end loop

Example int slot = 0
ps_struct ps

RAPL-3 Reference Guide 191

string[]@[12] status_string = { \
"FREE ", "HOLD ", "READY", "RUN ", \
"SLEEP", "STOP ", "ZOMB ", "WIO ", \
"WSEM ", "WSOCK", "WAIT ", "IWIO " }

...
while((get_ps(slot, ps)) != -EINVAL)

slot++
if (ps.pid == 0)

continue
end if
printf("pid {2} status {2} name {} \n" \

,ps.pid,status_string[ps.status],ps.argv0)
end while

RAPL-II No equivalent.

See Also getpid get the process’s id number
getppid get the parent’s id number
module_name_get get the name of the module

Category System Process Control: Single and Multiple Processes

getenv
Description Allows a program to retrieve the value of a specified environment string. [getenv()

is available on a C500C only.]

Syntax command getenv(var string[] dst, string[] key)

Parameters There are two required parameters:

dst A string variable in which the result will be stored.

key The key to search for.

Returns 0 � the key was not found; dst is set to the null string.
1 � the key was found; dst is set to the value part of the string.
–ve � a negative error code.

Example ;; One of the environment strings that is always defined is
;; the SerialNumber string (which looks like:
;; “SerialNumber=XYZ1234”
;; This code displays what the controller serial number is.
;; If the serial number environment string were as above, then
;; it would print the “XYZ1234” portion:
string[32] sn
getenv(sn, “SerialNumber”)
printf(“The controller serial number is ‘{}’\n”, sn)

See Also environ(), setenv(), unsetenv()

Category Environment Variables

getopt
Description Provides a mechanism for handling command line arguments and options. It is

patterned after the getopt(3) function of ANSI C. The getopt() function is based
on the assumption that command lines look like this:

name [-options] otherargs…
where name is the name of the command being run, [-options] is an optional list
of option flags, each starting with a ‘-‘ character, and otherargs is a set of other
items (not starting with ‘-‘) on the command line.

192 Subprograms: Alphabetical Listing

Syntax func int getopt(string[] opts)

Related vars There are several related variables exported from syslib to support getopt():
int
syslib:opterr

This variable is a flag that the user
can set before calling getopt(). If
non-zero (which is the default), it
indicates that getopt() should report
errors on its own. A typical getopt()
error message looks like:

name: illegal option –X
or name: option requires an argument

–X
where name is the name of the program
(as returned by argv(0)) and X is the
option character with the problem.

int
syslib:optind

This variable indicates which argv() is
the next one for getopt() to process.

string[256]
syslib:optarg

For options with arguments, getopt()
places the argument string in here.

Parameters
opts A string with a list of all the valid option

flags. For example, if the string is “abc”, then
getopt() expects that “-a”, “-b” and “-c” are all
valid options for the command. If an option
letter in opts is followed by a ‘:’, then the
option is supposed to have an argument following
it. For example, if opts is “af:h”, then the
valid options are “-a”, “-h” and “-f argument” or
“-fargument”.

Returns Success: the character from the opts string that was matched, or EOARGS
(which is -1) if we have run out of option flags to parse.
Failure: ‘?’ if an unrecognized or illegal option was found. If syslib:opterr is not
zero, then getopt() reports the error before returning the ‘?’.

Example The getopt() function is rather complex, and in more need than
most of an example. The following short program illustrates how
to use getopt():

sub usage()
;; display a usage message
fprintf(stderr, “Usage: {} [-options] arg1 [arg2...]\n”, argv(0))
fprintf(stderr, “ Options are:\n”)
fprintf(stderr, “ -a do something\n”)
fprintf(stderr, “ -b do something else\n”)
fprintf(stderr, “ -c target do something to someone\n”)
fprintf(stderr, “ -h, -? display this message\n”)
exit(1)

end sub

main
int ch
loop

ch = getopt(“abc:h?”)
if (ch < 0)

break
end if
case (ch)
of ‘a’:
printf(“got –a\n”)

of ‘b’:
printf(“got –b\n”)

of ‘c’:

RAPL-3 Reference Guide 193

printf(“got –c {}\n”, syslib:optarg)
else

;; ‘?’ and ‘h’ fall into here as well
usage()

end case
end loop

if (syslib:optind == argc())
;; we don’t have an arg1 – we are at the end of the list
fprintf(stderr, “{}: missing argument\n”, argv(0))
usage()

end if

printf(“The other arguments are:\n”)
while (syslib:optind < argc())

printf(“ {}\n”, argv(syslib:optind))
syslib:optind++

end while

exit(0)
end main

See Also argc(), argv()

Category System Process Control: Single and Multiple Processes

getpid
Description Returns the id number of the process of the calling program.
Syntax func int getpid()

Returns The process id of the calling program.
Example int pid

...
pid = getpid() ;; get our process id number

See Also getps gets entry in process table
getppid get the parent’s id number
module_name_get get the name of the module

Category System Process Control: Single and Multiple Processes

getppid
Description Returns the id number of the parent process of the calling program.
Syntax func int getppid()

Returns The process id of the parent of the calling process.
Example int ppid

...
ppid = getppid() ;; get our parent process id number

See Also getps gets entry in process table
getppid get the parent’s id number
module_name_get get the name of the module

Category System Process Control: Single and Multiple Processes

grip
Alias of gripdist_set

194 Subprograms: Alphabetical Listing

alias same as
grip(...) gripdist_set(...)

Description Moves the fingers of the servo-gripper to a specified distance apart from each
other.

Example grip(1.0)

RAPL-II Same as GRIP.

See gripdist_get gets the current servo finger separation distance

Category Gripper
Motion

grip_cal
Description Calibrates the gripper by setting travel distance.

Syntax command grip_cal(float mindist, float maxdist)

Parameters mindist the minimum distance for finger travel: a float
maxdist the maximum distance for finger travel: a float

Returns Success >= 0
Failure < 0

Example grip_cal(0.0, 50.80) ;; millimetres for standard servogripper

Example grip_cal(25.0, 50.0) ;; min and max for custom fingers and
objects

Example grip_cal(0.0, 2.0) ;; inches for standard servogripper

See Also calibrate calibrate the arm axes
gripdist_set opens/closes servo fingers to specified separation distance
gripdist_get gets current servo finger separation distance
grip_open opens the gripper
grip_close closes the gripper

Category Gripper
Calibration

grip_close
Description Closes the gripper. If configured with a servo gripper the command accepts an

optional argument specifying the force used by the gripper. The argument is
given as a percentage of full force valid range 0 to 100.

Fingers can be machined to surround an object and grasp it on the outside, or
machined to be inserted into a hole and grasp the object by exerting force on the
insides of the hole. This configuration determines whether the object is grasped
by gripclose() and released by gripopen(),or grasped by gripopen() and released by
gripclose().

Warning Gripping at a force above 75% for more than a few seconds may shorten the life
of the servo-gripper. To grip an object without overloading the gripper, after
initially making contact with the object, reduce the force. The servo-gripper
mechanics keep a firm grip on the object.

Syntax command gripclose([int servo_force])

RAPL-3 Reference Guide 195

Argument (Optional) servo-force the percentage of force applied: an int

Returns Success >= 0
Failure < 0

Example move(get_part)
finish()
grip_close(100)
grip_finish()
msleep(200)
grip_close(60)

RAPL-II Similar to CLOSE.

See Also grip_open opens the gripper; opposite of grip_close
gripdist_set sets the servo fingers at a separation distance
gripdist_get gets the current servo finger separation distance

Category Gripper
Motion

grip_finish
Description Like the finish() command, holds execution of the program at the grip_finish()

command until gripper motion has finished. Normally a command is executed as
soon as its parameters are determined, which can be before the previous
command has finished. grip_finish() is often used to finish the motion of the
gripper at or near a location before moving the arm. Also used to synchronize
commands, such as input/output, with gripper motion.

If online mode is off, online(OFF), grip_finish() is not needed between two
gripper motion commands. Gripper motion commands are executed as if there is
a grip_finish() after each one.

Syntax command grip_finish()

Parameter empty
Returns Success >= 0

Failure < 0
Example online(ON)

...
appro(rack[i,j], 200) ;; millimetres
finish()
move(rack[i,j])
finish()
grip_close()
grip_finish()
depart(200)

See Also finish holds execution until arm motion finished
gripisfinished returns TRUE if gripper is finished moving

Category Gripper
Motion

grip_open
Description Opens the gripper. Takes an optional argument for a servo-gripper, of the

percentage of force with a valid range between 0 - 100..

Fingers can be machined to surround an object and grasp it on the outside, or
machined to be inserted into a hole and grasp the object by exerting force on the

196 Subprograms: Alphabetical Listing

insides of the hole. This configuration determines whether the object is grasped
by gripclose() and released by gripopen(),or grasped by gripopen() and released by
gripclose().

Warning Gripping at a force above 75% for more than a few seconds may shorten the life
of the servo-gripper. To grip an object without overloading the gripper, after
initially making contact with the object, reduce the force. The servo-gripper
mechanics keep a firm grip on the object.

Syntax command grip_open([int servo_force])

Argument (Optional) servo_force the percentage of force applied: an int

Returns Success >= 0
Failure < 0

Example move(set_part)
finish()
grip_open()
grip_finish()
depart(2.0)

RAPL-II Similar to OPEN.
See Also grip_close closes the gripper; opposite of grip_open

gripdist_set sets the servo fingers at a separation distance
gripdist_get gets the current servo-finger separation distance

Category Gripper
Motion

gripdist_get
Description Gets the distance between fingers of the servo-gripper.
Syntax command gripdist_get(var float distance)

Parameter distance float variable to store current gripper distance
Returns Success >= 0. The finger distance: a float.

Failure < 0
Example float my_gripper_dist

...
close (100)
grip_finish()
gripdist_get(my_gripper_dist)
if my_gripper_dist <=30

return (-1) ;; gripper has no part in fingers
else

return (0) ;; gripper has part in fingers
end if

RAPL-II WGRIP()
See Also grip sets the finger separation distance

setgriptypesets the gripper type (air, servo, etc.)
Category Gripper

gripdist_set
Alias grip

alias same as
grip(...) gripdist_set(...)

RAPL-3 Reference Guide 197

Description Moves the fingers of the servo-gripper to a specified distance apart from each
other.

To attain the grip distance, fingers open or close depending on the starting
position.

Warning Do not use this command to hold an object. This will damage the gripper. The
gripdist_set() command operates at 100% force. To control gripper force and hold
an object, use the gripclose() and gripopen() commands.

Syntax command gripdist_set(float distance)

Parameter distance the distance between fingers in current units: a float

Returns Success >= 0
Failure < 0

Example gripdist_set(1.0)

RAPL-II Similar to GRIP.

See Also gripdist_get gets the current servo finger separation distance
grip_close closes the gripper (with force for servo)
grip_open opens the gripper (with force for servo)

Category Gripper
Motion

gripisfinished
Description Determines if the gripper is finished moving. Returns FALSE (0) , TRUE, or error

<0.

Syntax command gripisfinished()

Parameters empty

Returns Success >= 0
Failure < 0

Example int depart_dis
teachable ploc place
...
move(place)
grip_close(50)
loop

if gripisfinished()
depart(depart_dis)

else
msleep(250

endif
end loop

Result Depart location place after the gripper is closed.

See Also grip_close
grip_finish

Category Gripper
Robot Configuration

gripper_stop
Description The command stops any gripper motion.

198 Subprograms: Alphabetical Listing

Syntax command griper_stop()

Returns Success >= 0
Failure < 0 Returns -ve error descriptor if command fails.

Example ...
gripper_stop()

Result Gripper motion stops

See Also grip_open
grip_close
gripdist_set
gripdist_get

Category Gripper
Motion

griptype_get
Description Gets what the robot gripper type is currently set to.

Syntax command griptype_get(var grip_type gtype)

Returns Success >= 0; gtype is filled in with the gripper type code.
Failure < 0 (-ve error code)

Example This RAPL-3 code segment displays, in words, the setting of the
gripper type:

int gtype
griptype_get(gtype)
case (gtype)
of 0:

printf(“No gripper type selected\n”)
of GTYPE_AIR:

printf(“Air gripper selected\n”)
of GTYPE_SERVO:

printf(“Servo gripper selected\n”
end case

See Also griptype_set()

Category Gripper

griptype_set
Description Sets the gripper type to correspond to the gripper in use. Gripper type must be

set to GTYPE_SERVO to use the gripdist_set() or gripdist_get() command.

Syntax command griptype_set(grip_type gtype)

Parameters One of:
 GTYPE_AIR for air grippers (the default)
 GTYPE_SERVO for servo-motor grippers

Returns Success >= 0
Failure < 0

Example griptype_set(GTYPE_SERVO)

RAPL-II @@SETUP grip type questions

RAPL-3 Reference Guide 199

See Also grip_open opens the gripper
grip_close closes the gripper
gripdist_set opens/closes servo fingers to specified separation distance
gripdist_get gets current servo finger separation distance
grip_finish finishes current gripper motion
gripisfinished determines if the gripper motion is finished

Category Gripper
Robot Configuration

halt
Description Stops any current robot motion.

Syntax command halt()

Parameter (empty)

Returns Success >= 0
Failure < 0

Example halt()

RAPL-II Similar to HALT.

See Also finish finishes current motion command before next motion

Category Motion

heap_set
Description Sets the heap size for current application. The heap is a storage space that can

be allocated under user control. The default size is 4K bytes which equals 1K
words (4 bytes = 1 word). The command heap_set() sets the heap size of the
current process to at least size words. Note that if you run out of heap space, the
system will attempt to allocate you more. That being said, it is generally better
(and faster) to simply allocate enough for your program at the start.

Note that if heap_set() is called after allocations have already been done, resetting
the heap size may be time consuming.

Syntax command heap_set(int size)

Parameter size integer value of the size of memory to be allocated in words (word = 4 bytes)

Returns

>= 0 Success

-ENOMEM There is not enough memory for the requested operation.

-EINVAL size is a nonsensical value (ie., negative)

Example int mem = 8192
heap_set(mem)
...
;; allocate memory needed using mem_alloc() command

Result Allocates 8192 bytes of memory

See Also heap_space determines the longest free area in the heap
heap_size returns the number of words in heap segment

200 Subprograms: Alphabetical Listing

mem_alloc allocates memory -(can increase allocated heap if necessary)
mem_free free memory space

Category Memory

heap_size
Description Returns the number of words in the heap segment of the current process. This

total size includes free, allocated, and overhead.

Syntax func int heap_size()

Parameters none

Returns Returns the number of words the entire heap currently occupies.

Example
int size_heap
size_heap=heap_size()
if (size_heap < 16)

heap_set(16)
end if

Result If the heap is not at least 16 Kbytes then it is set to 16 Kbytes

See Also heap_space() find the amount of free space in the heap
heap_set() set the total amount of space in the heap

Category Memory

heap_space
Description Determines the length of the longest contiguous free area available in the

program’s heap. If an object greater than this size is allocated using mem_alloc()
then the system will have to expand the size of the heap.

Syntax func int heap_space()

Returns The length of longest contiguous area, in words.

Example
int heap_bloc, space = 3
void@ ptr
heap_bloc = heap_space()

if heap_bloc < 5
printf("heap space is low/n")
...
mem_alloc(ptr, space)

else
mem_alloc(ptr, space)

end if

Result Allocates memory of 3 words (12 bytes) - Notifies user if heap space is less than 5
Kbytes.

RAPL-II Similar to FREE

See Also mem_alloc() allocates an area of memory and initializes it
mem_free() de-allocates an area of memory
heap_set() sets the heap size of the current process
heap_size() determines how big the heap is in total.

Category Memory

RAPL-3 Reference Guide 201

here
Description Stores the current commanded robot location in the specified location variable. A

precision or cartesian location is stored, depending on the location type of the
input variable. Currently, the location’s type must be explicitly defined prior to
use in the here() command.

Syntax command here(var gloc location)

Returns Success >= 0
Failure < 0

Example loc_class_set(#first ,loc_precision)
loc_class_set(_last ,loc_cartesian)
...
here(first) ;;store precision location
...
here(last) ;;store cartesian location

RAPL-II HERE

See Also pos_get gets the position of the robot

Category Location: Data Manipulation

home
Description Homes the specified axes in numerical order: 1 (waist), 2 (shoulder), 3 (elbow), 4,

5, 6. This command assumes the robot has been correctly calibrated.
Syntax command home([axis] [,axis] [,axis] ...)

Parameter(s) axis an axis to home
Returns Success >= 0

Failure < 0
Example if home(7) >= 0

if home(1,2,3,4,5,6) >= 0
else

print "Error homing arm.\n"
end if

else
print "Error homing track.\n"

end if

RAPL-II Similar to HOME.
See Also calibrate calibrates axes

homezc homes the axis specified
ready moves the arm to the READY position
robotishomed gets the homed or not-homed state of axes

Category Home

homezc
Description Homes the axis specified, and returns the offset in pulses.

Syntax command homezc(int axis, var int offset)

Parameter(s) axis an axis to home
offset the offset

202 Subprograms: Alphabetical Listing

Returns Success >= 0
Failure < 0

Example int machine, transform, actual, I
int[8] offsets

axes_get(machine, transform, actual)
for i = 1 to machine

homezc(i, offsets[i])
printf("axis {1} offset is {}\n", i,offsets[i])

end for

Result Homing axis 1… OK
axis 1 offset is 519

RAPL-II Same as HOMEZC.

See Also calzc calibrates at the next zero pulse of the encoder
calibrate calibrates axes
home homes the specified axes in numerical order
ready moves the arm to the READY position
robotishomed gets the homed or not-homed state of axes

Category Home

hsw_offset_get
Description Returns the offset between the homing switch and the calibration position of a

given axis, in encoder pulses. Used with an A465.

Syntax func int hsw_offset-get(int axis)

Parameter axis the axis to be inquired: an int

Returns

Example int machine, transform, actual, i, robot
int[8] offsets

robot = robot_type_get()
printf("robot is {}\n", robot)

if robot == 465
axes_get(machine, transform, actual)

for i = 1 to machine
offsets[i] = hsw_offset_get(i)
printf("axis {1} offset is {}\n",

i,offsets[i])
end for

else
printf("Robot must be a 465 for this command")

end if

Result Prints the offsets for each axis, if the robot is a A465

See Also homezc homes the axis specified

Category Calibration
Home

iabs
Description Calculates the absolute value of an int.

RAPL-3 Reference Guide 203

Syntax func int iabs(int x)

Argument x the number: an int

Returns The absolute value of the integer x. Note that one integer (-2147483648) does not
have a positive counterpart because of the limitations of 32-bit 2’s complement
binary numbers.

Example int x = -99
int y
y = abs(x)

Result 99

RAPL-II ABS

See Also fabs calculates the absolute value of a float

Category Math

input
Description Queries the specified input channel for its state. Returns the state.

This subprogram is a function, not a command as it was in the earliest versions
of RAPL-3.

Syntax func int input(int channel)

Parameters channel the input channel: an int

Returns Success >= 0
the state, an int, one of:

0 = off
1 = on

Failure < 0 Returns error code

Example 1 state = input(4)

Example 2 if (input(8)) then ;; check sensor for presence of material
load_part() ;; material present

else
continue ;; material not present

end if

Application Shell Similar to input.

RAPL-II Similar to INPUT, but INPUT packed the state into a variable, and could be used
for digital and string input.

See Also inputs queries the entire bank of input channels for their states
output sets an output channel to a state
output_pulse sets and reverses an output
output_get gets the current state of an output channel
outputs sets the entire bank of outputs

Category Digital Input and Output

inputs
Description Queries the entire bank of input channels for their states. Returns an integer

that represents the bitmapped states of the inputs.

204 Subprograms: Alphabetical Listing

For the C500 controller, each of the first 16 bits represents an input. The least
significant bit is input 1, the sixteenth significant bit is input 16. The integer in
hex

Syntax func int inputs()

Parameters none

Returns Success >= 0
the input states: an int representing a bitmask where the lower 16 bits each
correspond to one of the inputs:

0 off
1 on

Failure < 0 Returns error code
Example int dig_inputs

dig_inputs = inputs() ;; read all inputs
dig_inputs = dig_inputs & 0xf ;; enable lower 4 bits only
case dig_inputs

of 1: ;; first input is high
task_1()

of 2: ;; second input is high
task_2()

of 4: ;; third input is high
task_3()

of 8: ;; fourth input is high
task_4()

end case

Application Shell No equivalent.
RAPL-II No equivalent.
See Also input queries an input channel for its state

outputs sets the entire bank of output channels to states
outputs_get queries the entire bank of output channels for their states

Category Digital Input and Output

ioctl
Description I/O control operation. Used to configure and control a device.

If a get parameter is used, the data is stored. If a put parameter is used, the data
is written.
To change a serial port configuration, read the current status into one of the data
structures, change the data for specific members of the struct, and write the new
data for the port.

Syntax command ioctl(int fd, ioctl_op op, void@ data)

Parameters fd the port
op the operation, of type ioctl_op:

IOCTL_NOP no operation
IOCTL_GETC get configuration information
IOCTL_PUTC put configuration information
IOCTL_GETS get status information
IOCTL_PUTS put status information
IOCTL_GETSIG get special signal information
IOCTL_PUTSIG put special signal information
IOCTL_RDTIME set read timeout
IOCTL_WRTIME set write timeout

data a struct of integers of type sio_ioctl_conf:
int baud baud rate
int res_01

RAPL-3 Reference Guide 205

int res_02
int OutxCtsFlow 1 => enable CTS output flow control
int OutxDsrFlow 1 => enable DSR output flow control
int DtrControl 1 => enable DTR flow control
int DsrSensitivity 1 => enable DSR sensitivity
int TXContinueOnXoff 1 => continue trans after sending XOFF
int OutX 1 => enable output Xoff flow control
int InX 1 => enable input Xoff flow control
int res_10
int res_11
int RtsControl 1 => enable RTS flow control
int res_13
int res_14
int res_15
int lowtrig soft flow low trigger (xon point)
int hightrig soft flow high trigger (xoff point)
int wordlen word length (7 or 8 bits)
int parity 0 => none, 1 => odd, 2 => even
int stopbits 1 => 1 bit, 2 => 2 bits, 15 => 1.5 bits
int xonchar soft flow xon char
int xoffchar soft flow xoff char
int res_23
int res_24
int res_25
int fifotrig 0 => 1 byte, 1 => 4; 2 => 8; 3 => 14 bytes
int lfchar (unimpl) lf char for auto cr
int crchar (unimpl) cr char to emit for auto cr
int autocr (unimpl) enable auto cr
int res_30

Returns

>= 0 Success

-EINVAL one of the arguments is invalid

-EBADF fd does not correspond to an open object

-ENODEV the object open on fd is not a device

-ENOTTY the device does not support ioctl()

-EIO an I/O error has occurred

System Shell Same as siocfg

RAPL-II CONFIG, SERIAL

Category Device Input and Output

jog_t
Aliases tx, ty, tz, yaw, pitch, roll

alias same as

206 Subprograms: Alphabetical Listing

tx(...) jog_t(TOOL_X, ...)

ty(...) jog_t(TOOL_Y, ...)

tz(...) jog_t(TOOL_Z, ...)

yaw(...) jog_t(TOOL_YAW, ...)

pitch(...) jog_t(TOOL_PITCH, ...)

roll(...) jog_t(TOOL_ROLL, ...)

Description In the tool frame of reference, moves the tool centre point in a cartesian-axis
direction. TOOL_X, TOOL_Y, and TOOL_Z move the tool centre point along the X,
Y, and Z axis by the specified distance in current units (millimetres or inches).
TOOL_ YAW, TOOL_PITCH, and TOOL_ROLL rotate around an axis by the
specified rotation in degrees.

Yaw, pitch, and roll are tool motion based, not tool axis based. The command
gives the same motion, although the robots have different coordinate systems.

motion axes

common name F3
coordinate
system

A465/A255
coordinate
system

yaw normal X Z

pitch orientation Y Y

roll approach/depart Z X

This command, jog_t(), is joint-interpolated.

For motion along an axis (TOOL_X, TOOL_Y, TOOL_Z), the end-point is along the
tool axis, but the tool centre point travels as a result of various joint motions, not
in a straight line.

Similarly for rotation around an axis (TOOL_YAW, TOOL_PITCH, TOOL_ROLL),
the end-point is determined and the tool travels to it as a result of various joint
motions. The start point and end point for the tool centre point are the same (no
change in distance along the axis or angle between the axis and the tool), but the
start position and end position of the tool are different by the amount of rotation.

For cartesian-interpolated (straight line) motion, see jog_ts().

Syntax command jog_t(tool_axis_t axis, float distance)

Parameters axis the axis for motion
TOOL_X along the X axis
TOOL_Y along the Y axis
TOOL_Z along the Z axis
TOOL_YAW around the normal axis
TOOL_PITCH around the orientation axis
TOOL_ROLL around the approach/depart axis

distance the distance of travel, in current units or degrees: a float

Returns Success = 0
Failure < 0

Example jog_t(TOOL_Z,200) ;; millimetres
jog_t(TOOL_Y,-200)

Example move(centre)
jog_t(TOOL_PITCH,45) ;; rotate around Y
jog_t(TOOL_PITCH,-90)

RAPL-II No equivalents. DEPART moved along the approach/depart axis.

RAPL-3 Reference Guide 207

See Also jog_ts jogs like jog_t, but straight line motion
jog_w jogs like jog_t, but in world frame of reference
joint moves by joint degrees
motor moves by encoder pulses

Category Motion

jog_ts
Aliases txs, tys, tzs, yaws, pitchs, rolls

alias same as
txs(...) jog_ts(TOOL_X, ...)

tys(...) jog_ts(TOOL_Y, ...)

tzs(...) jog_ts(TOOL_Z, ...)

yaws(...) jog_ts(TOOL_YAW, ...)

pitchs(...
)

jog_ts(TOOL_PITCH,
...)

rolls(...) jog_ts(TOOL_ROLL, ...)

Description In the tool frame of reference, moves the tool centre point in a cartesian-axis
direction. TOOL_X, TOOL_Y, and TOOL_Z move the tool centre point along the X,
Y, and Z axis by the specified distance in current units (millimetres or inches).
TOOL_ YAW, TOOL_PITCH, and TOOL_ROLL rotate around an axis by the
specified rotation in degrees.

Yaw, pitch, and roll are tool motion based, not tool axis based. The command
gives the same motion, although the robots have different coordinate systems.

motion axes

common name F3
coordinate
system

A465/A255
coordinate
system

yaw normal X Z

pitch orientation Y Y

roll approach/depart Z X

This command, jog_ts(), is cartesian-interpolated (straight line).

For motion along an axis (TOOL_X, TOOL_Y, TOOL_Z), the tool centre point
travels in a straight line along the axis to the end point.

For rotation around an axis (TOOL_YAW, TOOL_PITCH, TOOL_ROLL), the tool
centre point stays on the axis, while the tool rotates around the axis. The tool
centre point stays in the same place.

For joint-interpolated (not straight) motion, see jog_t()

Syntax command jog_ts(tool_axis_t axis, float distance)

Parameters axis the axis for motion
TOOL_X along the X axis
TOOL_Y along the Y axis
TOOL_Z along the Z axis
TOOL_YAW around the normal axis
TOOL_PITCH around the orientation axis

208 Subprograms: Alphabetical Listing

TOOL_ROLL around the approach/depart axis
distance the distance of travel, in current units or degrees: a float

Returns Success = 0
Failure < 0

Example jog_ts(TOOL_Z,200) ;; millimetres
jog_ts(TOOL_Y,-200)

Example move(centre)
jog_ts(TOOL_PITCH,45) ;; rotate around Y
jog_ts(TOOL_PITCH,-90)

RAPL-II No equivalents. DEPART moved along the approach/depart axis.

See Also jog_t jogs like jog_ts, but joint interpolated
jog_ws jogs like jog_ts, but in world frame of reference
joint moves by joint degrees
motor moves by encoder pulses

Category Motion

jog_w
Aliases wx, wy, wz, zrot, yrot, xrot

alias same as
wx(...) jog_w(WORLD_X, ...)

wy(...) jog_w(WORLD_Y, ...)

wz(...) jog_w(WORLD_Z, ...)

zrot(...) jog_w(WORLD_ZROT, ...)

yrot(...) jog_w(WORLD_YROT, ...)

xrot(...) jog_w(WORLD_XROT, ...)

Description In the world frame of reference, moves the tool centre point in a cartesian-axis
direction. WORLD_X, WORLD_Y, and WORLD_Z move the tool centre point along
the X, Y, and Z axis by the specified distance in current units (millimetres or
inches). WORLD_ZROT, WORLD_YROT, and WORLD_XROT rotate around the Z,
Y, and X axis by the specified rotation in degrees.

This command, jog_w(), is joint-interpolated.

For motion along an axis (WORLD_X, WORLD_Y, WORLD_Z), the end-point is
along the world axis, but the tool centre point travels as a result of various joint
motions, not in a straight line.

Similarly for rotation around an axis (WORLD_ZROT, WORLD_YROT,
WORLD_XROT), the end-point is determined and the tool travels to it as a result
of various joint motions. The start point and end point for the tool centre point
are the same (no change in distance along the axis or angle between the axis and
the tool), but the start position and end position of the tool are different.

For cartesian-interpolated (straight line) motion, see jog_ws().

Syntax command jog_w(world_axis_t axis, float distance)

Parameters axis the axis for motion
WORLD_X along the X axis
WORLD_Y along the Y axis
WORLD_Z along the Z axis
WORLD_ZROT around the Z axis
WORLD_YROT around the Y axis

RAPL-3 Reference Guide 209

WORLD_XROT around the X axis
distance the distance of travel, in current units or degrees: a float

Returns Success = 0
Failure < 0

Example move(base_point)
jog_w(WORLD_X,200) ;; millimetres

Example appro(centre)
pitch(45) ;; pitch around tool point
jog_w(WORLD_XROT,45) ;; rotate around X

RAPL-II Similar to JOG, X, Y, Z, without straight line parameter.

Also similar to YAW, PITCH, and ROLL. In RAPL-II these names were used for
rotations in the world frame of reference. In RAPL-3, world rotations are called
zrot, yrot, and xrot, and tool rotations are called yaw, pitch, and roll.

See Also jog_ws jogs like jog_w, but straight line motion
jog_t jogs like jog_w, but in tool frame of reference
joint moves by joint degrees
motor moves by encoder pulses

Category Motion

jog_ws
Aliases wxs, wys, wzs, zrots, yrots, xrots

alias same as
wxs(...) jog_ws(WORLD_X, ...)

wys(...) jog_ws(WORLD_Y, ...)

wzs(...) jog_ws(WORLD_Z, ...)

zrots(...) jog_ws(WORLD_ZROT, ...)

yrots(...) jog_ws(WORLD_YROT, ...)

xrots(...) jog_ws(WORLD_XROT, ...)

Description In the world frame of reference, moves the tool centre point in a cartesian-axis
direction. WORLD_X, WORLD_Y, and WORLD_Z move the tool centre point along
the X, Y, and Z axis by the specified distance in current units (millimetres or
inches). WORLD_ZROT, WORLD_YROT, and WORLD_XROT rotate around the Z,
Y, and X axis by the specified rotation in degrees.

This command, jog_ws(), is cartesian-interpolated (straight line).

For motion along an axis (WORLD_X, WORLD_Y, WORLD_Z), the tool centre point
travels in a straight line along the axis to the end point.

For rotation around an axis (WORLD_ZROT, WORLD_YROT, WORLD_XROT), the
tool centre point stays on the axis, while the tool rotates around the axis. The tool
centre point stays in the same place.

For joint-interpolated (not straight) motion, see jog_w()

Syntax command jog_ws(world_axis_t axis, float distance)

Parameters axis the axis for motion
WORLD_X along the X axis
WORLD_Y along the Y axis
WORLD_Z along the Z axis
WORLD_ZROT around the Z axis

210 Subprograms: Alphabetical Listing

WORLD_YROT around the Y axis
WORLD_XROT around the X axis

distance the distance of travel, in current units or degrees: a float

Returns Success = 0
Failure < 0

Example move(base_point)
jog_ws(WORLD_X,200) ;; millimetres

Example appros(centre)
pitch(45) ;; pitch around tool point
jog_ws(WORLD_XROT,45) ;; rotate around X

RAPL-II Similar to JOG, X, Y, and Z, with straight line parameter.

Also similar to YAW, PITCH, and ROLL. In RAPL-II these names were used for
rotations in the world frame of reference. In RAPL-3, world rotations are called
zrot, yrot, and xrot, and tool rotations are called yaw, pitch, and roll.

See Also jog_w jogs like jog_ws, but joint interpolated
jog_ts jogs like jog_ws, but in tool frame of reference
joint moves by joint degrees
motor moves by encoder pulses

Category Motion

joint
Description Rotates a rotational joint (e.g. of an articulated arm) by a specified number of

degrees, or moves a linear joint (e.g. of a track or gantry) by a defined number of
units (millimetres or inches depending on metric or English mode).

Syntax command joint(int axis, float distance)

Parameters axis the axis being moved: an int
distance the distance of travel, in current units: a float

Returns Success >= 0
Failure < 0

Example joint(7,20) ;; moves the track (for F3 or A465) 20 units

joint(1,45) ;; moves the waist joint +45 degrees

RAPL-II Similar to JOINT

See Also jog moves by cartesian increment
motor moves by encoder pulses

Category Motion

joint_to_motor
Description Converts a location from joint angles to motor pulses. Used if a location of one

type needs to be converted to another type for checking or other use within the
program.

Syntax command joint_to_motor(var float[8] joint, var ploc motor)

Parameters joint the location in joint angles, in degrees
motor the location in motor pulses: a ploc

RAPL-3 Reference Guide 211

Returns Success >= 0
 motor is packed
Failure < 0

Example float[8] joints1 = {10, -15, 5, 0, 0, 0, 0, 0}
ploc motor1
...
joint_to_motor(joints1, motor1)

Result motor1 is packed with the appropriate pulse data

RAPL-II Similar to SET with different location types.

See Also motor_to_joint converts motor pulses to joint angles
joint_to_world converts joint angles to world coordinates

Category Location: Kinematic Conversion

joint_to_world
Description Converts a location from joint angles to world coordinates. Used if a location of

one type needs to be converted to another type for checking or other use within
the program.

Syntax command joint_to_world(var float[8] joint, var cloc world)

Parameters joint the location in joint angles
world the location in world coordinates: a cloc

Returns Success >= 0
 world is packed
Failure < 0

Example float[8] joints1 = {10, -15, 5, 0, 0, 0, 0, 0}
cloc world1
...
joint_to_world(joints1, world1)

Result world1 is packed with the appropriate world coordinate data

RAPL-II Similar to SET with different location types.

See Also world_to_joint converts world coordinates to joint angles
joint_to_motor converts joint angles to motor pulses

Category Location: Kinematic Conversion

jointlim_get
Description Gets the positive and negative limits of travel for a specified axis..

Syntax command jointlim_get(int axis, var float poslim, var float neglim
)

Parameter axis an int specifying the axis
poslim the positive limit: an array of up to 8 floats
neglim the negative limit: an array of up to 8 floats

Returns Success >= 0
Failure < 0

Example
int axes, total, trnsfrm
float[8] pluslim, neglim

212 Subprograms: Alphabetical Listing

int count, t
...
t= axes_get(axes,trnsfrm, total)

if t>0
for count = 1 to axes

jointlim_get(count, pluslim[count-1], neglim[count-
1])

printf("axis {2} limits are: +{5} -
{5}/n",count,\ pluslim[count-1],
neglim[count-1])

end for
else
... use for error handling
end if

Result Prints the robot joint limits

See Also jointlim_set

Category Robot Configuration

jointlim_set
Description Sets the positive and negative limits of travel for one axis.

Syntax command jointlim_set(int axis, float poslim, float neglim)

Parameter axis the axis to set: an int
poslim the positive limit: a float
neglim the negative limit: a float

Returns Success >= 0
Failure < 0

Example
int count
int axes, total, trnsfrm
teachable float[8] pluslim, neglim

axes_get(axes,trnsfrm, total)
for count = 1 to axes

jointlim_set(count, pluslim[count-1], neglim[count-1])
end for

RAPL-II Similar to @XLIMITS, except @XLIMITS took the limit in radians.

See Also jointlim_get

Category Robot Configuration

limp
Description Disengages the servo control of a motor which limps that joint. A single axis or

several axes can be specified. All axes are specified by an empty parameter.

Warning Provide adequate support for arm links before limping any joint. Without
adequate support, they can drop suddenly when the joint is limped, and may
cause damage or injury.

Syntax command limp([int axis] [, int axis] ...)

Parameters (Optional) (empty) all axes limped
axis axis being limped: an int

RAPL-3 Reference Guide 213

Returns Success >= 0
Failure < 0

Example limp() ;; limps all axes
limp(3) ;; limps axis 3
limp(4, 5, 6) ;; limps axis 4, 5, and 6

RAPL-II Similar to LIMP.

See Also nolimp unlimps axes

Category Motion

linacc_get
Description Returns the current value of the robot’s linear acceleration in metric or English

units.

Syntax command linacc_get(var float linacc)

Parameter linacc is packed with the current acceleration setting

Returns Success >= 0
Failure < 0 Returns -ve error descriptor if command fails.

Example float acc
printf(“The linear acceleration is {}”, linacc_get(acc))

Result The linear acceleration is 1016.

See Also linacc_set sets the linear speed
units_set sets the current units metric or English
linspd_get returns the maximum linear speed
linspd_set sets the linear speed depending on the configuration

Category Robot Configuration

linacc_set
Description Sets the current value of the robot’s linear acceleration in metric or English units

to the value specified by the parameter linacc.

Syntax command linacc_set(var float linacc)

Parameter linacc specifies the requested setting for the robot acceleration.

Returns Success >= 0
Failure < 0 Returns -ve error descriptor if command fails.

Example ;; Decrease the acceleration by 50 percent
;; Current acceleration is 1016 mm/sec2

float old_acc, new_acc
linacc_get(old_acc)
printf("The acceleration was {}/n", old_acc)
new_acc = old_acc*0.5
linacc_set(new_acc)
printf("The acceleration is now {}/n",new_acc)

Result The acceleration was 1016.
The acceleration is now 508.

See Also linacc_get sets the linear speed
units_set sets the current units metric or English

214 Subprograms: Alphabetical Listing

linspd_get returns the maximum linear speed
linspd_set sets the linear speed depending on the configuration

Category Robot Configuration

link
Description Makes a hard link to an existing file or directory. Useful for renaming files,

moving files, or sharing data.

Syntax command link(var string[] name1, var string[] name2)

Parameters

name1 the name of the object to create a new link to
name2 the name of the new link

 Returns

>= 0 Success
-EINVAL one of the file names was invalid
-ENOTDIR a component of one of the names was not a directory
-ENOENT the original object was not found
-EIO an I/O error occurred
-EAGAIN the system is temporarily out of the resources required to

carry out this operation
-EISDIR can’t create a hard link to a directory
-EEXIST name2 already exists
-EXDEV tried to link across filesystems

Category File and Device System Management

linklen_get
Description Gets the link length for all axes.

Syntax command linklen_get(var float[8] length)

Parameter length an array of floats

Returns Success >= 0
Failure < 0

Example int machine, transform, actual, I
float[8] links

axes_get(machine, transform, actual)
linklen_get(links)

for i = 1 to machine
printf("axis {1} link length is {}\n", i,links[i])

end for

Result For a 255 robot:
axis 1 link length is 10.0000
axis 2 link length is 10.0000
axis 3 link length is 2.0000
axis 4 link length is 0.0000
axis 5 link length is 0.0000

See Also linklen_set sets the link length for an axis

RAPL-3 Reference Guide 215

Category Robot Configuration

linklen_set
Description Sets the link length for an axis.

Syntax command linklen_set(int axis, float length)

Parameter axis an int
length a float

Returns Success >= 0
Failure < 0

See Also linklen_get gets the link lengths of all axes

Category Robot Configuration

linspd_get
Description Returns the maximum linear speed for the robot in units of millimetres per

second or inches per second depending on the unit configuration.

Cannot be used in the speed() command which takes an integer parameter of
percentage of maximum speed, for example speed(<int>linspd_get(t))

Syntax command linspd_get(var float linspd)

Parameter linspd is packed with the maximum speed value.

Returns Success >= 0
Failure < 0 Returns negative error code if command fails.

Example float max_lin_spd
int curr_percent_spd
linspd_get(max_lin_spd)
speed_get(curr_percent_spd)
printf("The maximum linear speed is {}/n", max_lin_spd)
printf("The current speed setting is {}/n", curr_percent_spd)

Result The maximum linear speed is
The current speed setting is

See Also linspd_set sets the linear speed
units_set sets the units metric or English

Category Robot Configuration

linspd_set
Description Sets the linear speed for the robot in units of millimetres per second or inches

per second depending on the configuration.

Syntax command linspd_set(var float linspd)

Parameter linspd specifies the new speed setting

Returns Success >= 0
Failure < 0 Returns -EINVAL if (linspd < 0) or other error if the command

fails.

216 Subprograms: Alphabetical Listing

Example ;; Set the linear speed to the maximum speed
float spd
linspd_get(spd)
linspd_set(spd)
printf(“The speed is {}\n”, spd)

Result Sets the linear robot speed to the maximum speed value.

See Also speed_get gets the current speed setting
speed_set sets the speed of arm motions
linspd_set sets the linear speed
units_set sets the current units metric or English

Category Robot Configuration

ln
Description Calculates the natural logarithm of a float. Takes a positive argument.

Syntax func float ln(float x)

Returns The natural logarithm of the argument.

Example float x = 7.5
float y
y = ln(x)

Result 2.014903

RAPL-II LN

See Also log calculates the common (base 10) logarithm
pow calculates a value raised to a power

Category Math

loc_cdata_get
Description Packs the cloc cl into the float array fa. The float[8] array corresponds to the

cartesian coordinates x, y, z, yaw, pitch, roll, extra axis 1, extra axis 2; or x, y, z,
pitch, roll, extra axis 1, extra axis 2, extra axis 3.

Syntax sub loc_cdata_get(var cloc cl, var float[8] fa)

Parameters cl cartesian coordinate location variable
fa an array of floats - packed with the location values of cl

Example ...
teachable cloc cl
float[8] fa
loc_cdata_get(cl, fa)
...

See Also loc_cdata-set
loc_pdata_get
loc_pdata_set

Category Location: Data Manipulation

RAPL-3 Reference Guide 217

loc_cdata_set
Description Packs the cartesian data in fa into the cloc cl. The float[8] array corresponds to

the cartesian coordinates x, y, z, yaw, pitch, roll, extra axis 1, extra axis 2; or x,
y, z, pitch, roll, extra axis 1, extra axis 2, extra axis 3.

Syntax sub loc_cdata_set(var cloc cl, var float[8] fa)

Parameter cl cartesian coordinate location variable packed with the data in fa
fa an array of floats specifying the data for the cloc

Example ...
cloc cl
float[8] fa = {2,3,4,0,0,0,0,0}
loc_cdata_set(cl, fa)

...

RAPL-II POINT

See Also loc_cdata_get
loc_pdata_get
loc_pdata_set

Category Location: Data Manipulation

loc_check
Description Tests the checksum of the generic location gl. If the checksum is OK, returns 1.

Syntax func int loc_check(var gloc gl)

Parameter gl generic location to be checked
Returns

True (1) Success; the checksum is correct.
False (0) Failure; the checksum is wrong.

Example gloc gl
...
if loc_check(gl) == 1

;; everything OK
else

;; everything NOT OK
end if

See Also loc_re_check
Category Location: Data Manipulation

loc_class_get
Description Returns the location class of a generic location variable gl. The different classes

are loc_unknown, loc_cartesian, and loc_precision.

Syntax func loc_class loc_class_get(var gloc gl)

Parameter gl gloc generic location variable

Returns loc_class, one of:
loc_unknown
loc_cartesian
loc_precision

218 Subprograms: Alphabetical Listing

Example gloc gl
...
case loc_class_get(gl)
of loc_unknown:

;; Location Type Unknown
of loc_cartesian:

;; Cartesian location (cloc)
of loc_precision:

;; Precision location (ploc)
else

;; Error
end case

Category Location: Data Manipulation

loc_class_set
Description Sets the class of a generic location variable gl to location class lc. The different

classes are loc_unknown, loc_cartesian, and loc_precision.

Syntax sub loc_class_set(var gloc gl, loc_class lc)

Parameter gl gloc generic location variable
lc loc_class type: must be

loc_unknown
loc_cartesian
loc_precision

Example gloc gl1, gl2
loc_class lc
...
lc = loc_class_get(gl1)
loc_class_set(gl2, lc)

Category Location Data: Manipulation

loc_flags_get
Description Returns the flags that are set for the generic location variable gl. Warning: the

flags are used to mark if the location has been taught and what units it is in. It
is potentially dangerous to tamper with the flags of a location.

Syntax func int loc_flags_get(var gloc gl)

Parameter gl location variable (cloc or ploc)

Returns an integer with the bits set according to the following:
 global const LOC_INVALID = 0x00

global const LOC_VALID = 0x01
global const LOC_CALIBRATE = 0x02
global const LOC_MARKER = 0x04
global const LOC_NULL = 0x08
global const LOC_METRIC = 0x10
global const LOC_TOOL = 0x20
global const LOC_BASE = 0x40
global const LOC_OFFSET= 0x80

. Example int flags
gloc gl
...

RAPL-3 Reference Guide 219

flags = loc_flags_get(gl)
loc_flags_set(flags + 1)

See Also loc_flag_set

Category Location: Flags

loc_flags_set
Description Sets the flags on the generic location variable gl to f. Does not re-calculate the

checksum.

Syntax sub loc_flags_set(var gloc gl, int f)

Parameter gl the location: a cloc or ploc
f an integer the flag constructed with the bits set according to the
following defined constants
 global const LOC_INVALID = 0x00
 global const LOC_VALID = 0x01
 global const LOC_CALIBRATE = 0x02
 global const LOC_MARKER = 0x04
 global const LOC_NULL = 0x08
 global const LOC_METRIC = 0x10
 global const LOC_TOOL = 0x20
 global const LOC_BASE = 0x40
 global const LOC_OFFSET= 0x80

Example int flags
gloc gl
...
flags = loc_flags_get(gl)
loc_flags_set(gl, flags + 1)

See Also loc_flags_get
Category Location: Flags

loc_machtype_get
Description Returns the machine type code of a generic location gl.

Syntax func machine_type loc_machtype_get(var gloc gl)

Parameter gl generic location variable

Returns Success >= 0 Returns a machine_type enumerated type
machine_type, one of:

mc_a255 A255
mc_a465 A465
mc_f2 F2

Failure < 0

Example gloc gl
int mach_type
...
mach_type = loc_machtype_get(gl)

See Also loc_machtype_set

Category Location: Flags

220 Subprograms: Alphabetical Listing

loc_machtype_set
Description Sets the machine type code of generic location variable gl to machine type mt.

Does not re-calculate the checksum.

Syntax sub loc_machtype_set(var gloc gl, machine_type mt)

Parameter gl generic location variable*
mt machine_type, enumerated type one of:

mc_a255 A255
mc_a465 A465
mc_f2 F2 * see enum

Example gloc gl1, gl2
int mt
...
mt = loc_machtype_get(gl1)
loc_machtype_set(gl2, mt)

See Also loc_machtype_get

Category Location: Flags

loc_pdata_get
Description Packs a gloc into an integer array. The int[8] array corresponds to the motor

pulse values for the 8 motors, in order.

Syntax sub loc_pdata_get(var ploc pl, var int[8] ia)

Parameter pl ploc (precision location variable)
ia integer array packed with the motor pulse counts

Example ...
teachable ploc pl
int[8] ia
loc_data_get(pl, ia)
...

See Also loc_pdata_set
loc_cdata_get
loc_cdata_set

Category Location: Data Manipulation

loc_pdata_set
Description Packs the precision data in ia into the (should this be a ploc) gloc pl. The int[8]

array corresponds to the motor pulse values for the 8 motors, in order.
Syntax sub loc_pdata_set(var gloc pl, var int[8] ia)

Parameter pl gloc (should this be a ploc) to be packed with the motor pulse counts in ia
ia integer array packed with the motor pulse counts

Example ...
gloc gl
int[8] ia = {
loc_data_get(gl, ia)
...

RAPL-II POINT

RAPL-3 Reference Guide 221

See Also loc_pdata_get
loc_cdata_get
loc_cdata_set

Category Location: Data Manipulation

loc_re_check
Description Recalculates and re-sets the checksum of a generic location gl.

Syntax sub loc_re_check(var gloc gl)

Parameter gl the location to be checked

Example gloc gl
...
loc_re_check(gl)

See Also loc_check

Category Location: Data Manipulation

lock
Description Locks a specified axis.

Not to be confused with flock() which locks a file.

Syntax command lock(int axis)

Parameter axis the axis to be locked: an int

Returns Success >= 0
Failure < 0

Example int axis
...
lock(axis)

RAPL-II Same as LOCK

Category Motion

log
Description Calculates the common (base 10) logarithm of a float. Takes a positive argument.

Syntax func float log(float x)

Returns Success >= 0. The common logarithm of the argument.
Failure < 0

Example float x = 7.5
float y
y = log(x)

Result 0.875061

RAPL-II LOG

See Also ln calculates the natural logarithm
pow calculates a value raised to a power

Category Math

222 Subprograms: Alphabetical Listing

MAJOR
Description Extracts the major number from device dev.

Syntax func int MAJOR(int dev)

Parameters dev specifies the device - an int

Returns Success >= 0
Failure < 0

Example int dev, major = 23, minor = 1
...
dev = BUILD_DEV(major, minor)
major = MAJOR(dev)
minor = MINOR(dev)

See Also MINOR extracts the minor number from a device

Category File and Device System Management

malarm
Description Requests that the system send the current process a specified signal after a

specified delay. This can be used to implement timeouts and periodic events in a
fairly simple fashion.

Syntax command malarm(int delay, int sig)

Parameters There are two required parameters:

delay How long to wait, in milliseconds, before sending signal sig
to the current process. If delay == 0, then we are canceling
a signal request. Note that each time we call malarm() for a
given sig, we reset the time remaining to delay.

sig The signal to send after delay milliseconds has passed.

Returns

>= 0 Success; returns the number of milliseconds that were left
until sig would have been sent. Returns 0 if no previous
signal was requested.

< 0 Failure.

Example1 ;; This demonstrates an interrupt that will occur at about
;; once per second:
sub alarm_handler(int n)

malarm(1000, SIG20) ;; send a SIG20 after 1 second
printf(“Beep\n”)

end sub

main
signal(SIG20, alarm_handler, NULL) ;; set the signal handler
malarm(1000, SIG20) ;; start the periodic event going
loop

printf(“Hello!\n”) ;; loop forever, saying Hello
delay(500)

end loop
end main

RAPL-3 Reference Guide 223

Result1 The output will look something like this:
Hello!
Hello!
Beep
Hello!
Hello!
Beep
...

Example2 ;; This demonstrates using a signal with malarm() to implement
;; a read with a timeout:
;;
sub alarm_handler(int n)

;; doesn’t actually need to do anything but catch the signal
end sub

main
int fd, t
string[32] s
...
open(fd, “/dev/sio1”, O_RDWR, 0) ;; open sio1
...
;; read with timeout:
malarm(SIGALRM, 1000) ;; 1 second timeout
t = reads(fd, s, 32) ;; read!
malarm(SIGALRM, 0) ;; cancel the signal
;; NOW if t is –EINTR, we timed out with no data read
;; if t > 0, we read that many characters
...

end main

See Also signal(), kill(), sigsend()

Category Signals

maxvel_get
Description For one axis, gets maxvel, the maximum angular velocity of the motor, in

revolutions per minute. The maxvel is set to ensure proper output by the
encoder.

Syntax func float maxvel_get (int axis)

Parameter axis the axis being inquired: an int

Returns Success: >= 0 Returns the maximum motor velocity in RPM
Failure: < 0

Example int ax3vel[8]
ax3vel[3] = getmaxvel(3)

See Also maxvels_get gets the maximum velocities of all motors
maxvel_set sets the maximum velocity of one motor
maxvels_set sets the maximum velocities of all motors

Category Robot Configuration

maxvel_set
Description For one axis, sets maxvel, the maximum angular velocity of the motor in

revolutions per minute. The maxvel is set to ensure proper output by the

224 Subprograms: Alphabetical Listing

encoder. If the velocity specified is greater than limits set in the robot kinematics
the value is truncated to the set limits.

Syntax command maxvel_set(int axis, float maxvel)

Parameters axis the axis being set: an int
maxvel the maximum velocity: a float

Returns Success: >= 0
Failure: < 0

Example ;;Example to set maximum velocity for system axis
;;It would be simpler to use maxvels_set
int axis, count
float[8] vel_max {180, 180, 180, 171.089, 172.800, 172.089,
2368.57, 350.002)
for count = 1 to 8

maxvel_set(count ,vel_max[count-1])
end for

RAPL-II Similar to @XMAXVEL.

See Also maxvel_get gets the maximum velocity of one motor
maxvels_set sets the maximum velocities of all motors
maxvels_get gets the maximum velocities of all motors
configaxis configures an axis including sets maxvel

Category Robot Configuration

maxvels_get
Description For all axes, gets maxvels, the maximum angular velocities of the motors.

Maxvels are set to ensure proper outputs by the encoders.

Syntax command maxvels_get(var float[8] maxvel)

Parameter maxvel the maximum velocities in rpm: an array of floats

Returns Success: parameter is packed
Failure: < 0

Example float[8] vel_max
...

maxvels_get(vel_max)

See Also maxvels_set sets the maximum velocities of all motors
maxvel_get gets the maximum velocity of one motor
maxvel_set sets the maximum velocity of one motor

Category Robot Configuration

maxvels_set
Description For all axes, sets maxvels, the maximum angular velocities of the motors.

Maxvels are set to ensure proper outputs by the encoders. If the velocity specified
is greater than limits set in the robot kinematics the value is truncated to the set
limits.

Syntax command maxvels_set(var float[8] maxvel)

Parameter maxvel the maximum velocities in revolutions per minute: an array of floats

Returns Success: >= 0
Failure: < 0

RAPL-3 Reference Guide 225

Example float[8] new_velocities = { 180, 180, 180, 171.089, 172.800,
171.089, 0, 0}
maxvels_set(new_velocities)

Result The maximum velocities are set to the preset limits for the A465
robot arm. The extra axes are set to a zero velocity.

RAPL-II Similar to @XMAXVEL.

See Also maxvels_get gets the maximum velocities of all motors
maxvel_set sets the maximum velocity of one motor
maxvel_get gets the maximum velocity of one motor
* configaxis configures an axis including sets maxvel

Category Robot Configuration

mem_alloc
Description Allocates an area of free memory of length size, sets ptr to point to the area, and

initializes the area to zeros, i.e. "clears" it. Also tries to allocate more heap space
if required.

Along with mem_free(), the user can allocate and de-allocate space repeatedly.

Syntax command mem_alloc(var void@ ptr, int size)

Parameters size a number of words (4 byte units)

Returns Success >= 0
Failure < 0

Example ;; Define a new structure “element” and allocate memory to create
a
;;
;; define the new type
;;
typedef element struct

int val
element@ previous ;; pointer to struct of type element
element@ next ;; pointer to struct of type element

end struct

element@ tmp_ptr = NULL ;; pointer used to create new element

;; create new element with pointer ‘tmp_ptr’
mem_alloc(tmp_ptr,sizeof(tmp_ptr@))
...

RAPL-II ALLOC not only allocated memory but performed other tasks with its parameters.

See Also mem_free de-allocates an area of memory
heap_space determines largest area before failure of malloc
heap_set

Category Memory

mem_free
Description Frees memory space. Returns an area of memory, previously allocated by

mem_alloc(), to the pool of free space. Should never be used with space that has
not previously been allocated by mem_alloc(), although freeing space with a null
pointer is acceptable.

226 Subprograms: Alphabetical Listing

Syntax command mem_free(void@ ptr)

Returns Success >= 0
Failure < 0

Example ;;de-allocate memory for list of elements (structure see
mem_alloc)

printf ("* Deleting list elements\n\n")
while (head_ptr)

tmp_ptr = head_ptr@.previous
printf (" head_ptr addr:{}\n",head_ptr)
printf (" tmp_ptr addr:{}\n\n",tmp_ptr)
mem_free (head_ptr)
head_ptr = tmp_ptr

end while

RAPL-II Different from the RAPL-II command FREE which displayed the status of
memory.

See Also mem_alloc allocates an area of memory and initializes it

Category Memory

memcopy
Description Copies a block of words of length len from src to dst.

Syntax command memcopy(void @dst, void @src , int len)

Parameter dst a pointer to the copy destination
src a pointer to the copy source
len the integer value of the length to be copied

Returns Success >= 0
Failure < 0

Example int[100] x
int[8] y
...
;; get elements 20 to 27 from x into y
...
memcopy(&y, &(x[20]), sizeof(y))

See Also memset

Category Memory

memset
Description Sets a block of words of length len at dst to contain value v.

Syntax command memset(void @dst, int v, int len)

Parameter dst pointer to the memory destination to be set
v an int value to be set
len the length of memory to be set to v

Returns Success >= 0
Failure < 0

Example int[100} x
teachable int new
...

RAPL-3 Reference Guide 227

;; Set elements of x all to value new
memset(&x, new, sizeof(x)

 See Also memcopy

Category Memory

memstat
Description Gets information about the current system memory status.
Syntax command memstat(int@ run_0, int@ run_1)

Parameters If run_0 does not equal NULL, then run_0 is assigned the length of the longest
run of unallocated blocks. If run_1 does not equal NULL, then run_1 is assigned
the length of the longest run of allocated blocks.

Returns Success >= 0 Returns the number of free clicks .
Failure < 0

Example int r0, r1, num_blocks
...
num_blocks = memstat(&r0, &r1)

See Also mem_alloc
heap_set
heap_size
heap_space

Category Memory

MINOR
Description Extracts the minor number from device dev.
Syntax func int MINOR(int dev)

Returns Success >= 0
Failure < 0

Example int dev, major = 23, minor = 1

dev = BUILD_DEV(major, minor)
major = MAJOR(dev)
minor = MINOR(dev)

See Also MAJOR extracts the major number from a device
Category File and Device System Management

mkdir
Description Creates a new, empty directory specified by path with permissions defined by

mode. The entries for dot and dot-dot are automatically created. A common
mistake is to specify the same mode as for a file (read and write only), but for a
directory normally one of the execute bits must be enabled to allow access to the
filenames within the directory.

Syntax command mkdir(var string[] path, int mode)

Returns Success >= 0
Failure < 0

-EEXIST if dir already exists
-ENOENT if the parent dir or a component of it doesn't exist
-EINVAL if the file name is invalid
-ENOTDIR if a component of the path is not a directory

228 Subprograms: Alphabetical Listing

-ENOSPC out of space on the device
-EIO an I/O error occurred

Example string[] path = “/usr/name/new_dir”
int mode = M_READ|M_EXEC
...
mkdir (path, mode)

System Shell mkdir
See Also mknod Makes special node (device, fifo, socket, directory)
Category File and Device System Management

mknod
Description Makes a special node.

Syntax command mknod(var string[] path, node_type vt, int mode, int dev)

Parameters path path to the node location
vt the node to be made, of type node_type, one of:

NT_NON no entry
NT_REG regular file
NT_DIR directory
NT_DEV device
NT_LNK symbolic link
NT_SOCK inter-process communication socket
NT_FIFO fifo

mode the modes of access, of type mode_flags, any combination of:
M_READ read allowed
M_WRITE write allowed
M_EXEC executable *

dev the MAJOR and MINOR device numbers

Returns Success >= 0
Failure < 0

-EINVAL if an invalid argument
-EEXIST if it already exists
-ENOENT if the parent dir or a component of it doesn't exist
-ENOTDIR if a component of the path is not a directory
-ENOSPC out of space on the device
-EIO an I/O error occurred

System Shell Same as mkdev, mkfifo, mksock, mkdir.

See Also mkdir makes a new directory

Category File and Device System Management
Device Input and Output

module_name_get
Description Gets the name of the module performing this subroutine call and places it into

name, up to maxlen characters.

Allows a library to retrieve its own invocation name.

Allows multiple machine instances using only one library.

Syntax sub module_name_get(var string[] name, int maxlen)

RAPL-3 Reference Guide 229

Parameter name the name of the module: a string of variable length
maxlen the maximum number of characters: an int

Returns Success >= 0
Failure < 0

Example int length = 25
string[] module
...
module_name_get(module, length)
...

Result string module is packed with the module name

Category System Process Control: Single and Multiple Processes

motor
Description Rotates a motor by a defined number of encoder pulses.

There is a third, optional parameter for a specific condition. Under most
conditions, no specifier or 0 (zero) is used. If the third parameter is used, the
system monitors for the specified state. Motion terminates when the input
transitions to (or is in) this state or after the specified number of pulses (second
parameter) have been counted, whichever is first. The third parameter is typically
used when seeking for homing or limit switches during homing or calibrating
operations.

Syntax command motor(int axis, int pulses [, int cond])

Parameters axis the axis being moved: an int
pulses the number of pulses to move: an int

Parameter (Optional) cond the condition: one of type motor_stop_mode_t or an int:
MSTOP_NONE = 0 no specific condition
MSTOP_ONHOME = 32000 stops when homing switch goes on
MSTOP_OFFHOME = -32000 stops when homing switch goes off
+1 stops when GPIO 1 is on
-1 stops when GPIO 1 is off
... ...
+16 stops when GPIO 1 is on
-16 stops when GPIO 1 is off

Returns Success >= 0
Failure < 0

Example motor(3, 1000, 0)

RAPL-II Similar to MOTOR.

See Also joint moves by joint degrees
jog moves by cartesian increment

Category Motion
Calibration

motor_to_joint
Description Converts a location from motor pulses to joint angles. Used if a location of one

type needs to be converted to another type for checking or other use within the
program.

230 Subprograms: Alphabetical Listing

Syntax command motor_to_joint(ploc motor, var float[8] joint)

Parameters motor the location in motor pulses: a ploc
joint an array of floats is packed with the location i joint
angles

Returns Success >= 0
 joint is packed
Failure < 0

Example ploc motor1
float[8] joints1
motor_to_joint(motor1, joints1)

Result joints1 is packed with the appropriate joint positions

RAPL-II Similar to SET with different location types.

See Also joint_to_motor converts joint angles to motor pulses
motor_to_world converts motor pulses to world coordinates

Category Location: Kinematic Conversions

motor_to_world
Description Converts a location from motor pulses to world coordinates. Used if a location of

one type needs to be converted to another type for checking or other use within
the program.

Syntax command motor_to_world(ploc motor, var cloc world)

Parameters motor the location in motor pulses: a ploc
world the location in world coordinates: a cloc

Returns Success >= 0
 world is packed
Failure < 0

Example teachable ploc motor1
teachable cloc world1
motor_to_world(motor1, world11)

Result world1 is packed with the appropriate world coordinate location
values

RAPL-II Similar to SET with different location types.

See Also world_to_motor converts world coordinates to motor pulses
motor_to_joint converts motor pulses to joint angles

Category Location: Kinematic Conversions

mount
Description Mounts a filesystem of type t on directory dir, with options flags. Special

filesystem-specific arguments are passed using the data pointer.

Syntax command mount(mount_type t, var string[] dir, \
mount_flags flags, void@ data)

Parameter t the type of filesystem, of type mount_type, one of:
MOUNT_MFS Memory File System
MOUNT_CFS CROSnt File System
MOUNT_RFS Remote File System

RAPL-3 Reference Guide 231

MOUNT_HOSTFS Host File System
dir the mount point of the CROS directory: a string of var length
flags the option, of type mount_flags:

MOUNTF_RDONLY *
data file-system specific arguments

(none; data = NULL) for MFS
char FAR * points to path of server socket for RFS
char FAR * points to host filesystem path for HOSTFS

Returns Success >= 0
Failure < 0

-EPERM must be a privileged process to mount()
-EINVAL invalid argument
-ENOTDIR the mount point is not a directory
-ENOENT a component was not found
-EIO an I/O error occurred
-EAGAIN temporarily out of resources needed to do this
-EBUSY the mount point is busy

Example .define PATHLEN 32
mount_type type = MOUNT_HOSTFS
string[PATHLEN] dir = "/app/this_app"
mount_flags flags = MOUNTF_RDONLY
c_statfs stat

int check

check = mount(type, dir, flags, NULL)

 System Shell Same as mount

RAPL-II No equivalent.

See Also unmount unmounts a mounted file system

Category File and Device System Management

move
Description Moves the tool centre-point to the specified location in joint-interpolated mode.

Individual robot joints start and stop at the same time. The speed of the joint that
has to move the farthest is governed by the speed setting, and other joints rotate
slower according to joint interpolation. The resulting path is not straight.

The location can be either a cartesian location or a precision location.

Syntax command move(gloc location)

Parameter location the destination location: a gloc (can be cloc or ploc)

Returns Success >= 0
Failure < 0

Example teachable ploc pick_1
teachable cloc place_1
move(pick_1)
...
move(place_1)

RAPL-II Similar to MOVE, without the S parameter.

See Also moves same as move(), but in straight line
appro moves to an approach position

232 Subprograms: Alphabetical Listing

depart moves to a depart position
finish finishes current motion before another motion

Category Motion

moves
Description Moves the tool centre-point to the specified location in cartesian-interpolated

mode. The result is straight-line motion. Individual robot joints start and stop at
the same time.

The location can be either a cartesian location or a precision location.

Syntax command moves(gloc location)

Parameter location the destination location: a gloc

Returns Success >= 0
Failure < 0

Example teachable ploc pick_2
teachable cloc place_2
...
moves(pick_2)
...
moves(place_2)

RAPL-II Similar to MOVE, with optional S (straight-line) parameter.

See Also move same as moves(), but joint-interpolated
appro moves to an approach position
depart moves to a depart position
finish finishes current motion before another motion

Category Motion

msleep
Description Sleeps for the number of milliseconds specified in milliseconds and then returns

to the main program. Can be terminated by an EINTR error. To avoid this, use
delay().

Syntax command msleep(int milliseconds)

Returns Success >= 0
Failure < 0

EOK no error; timed out normally

EINTR if interrupted by a signal

Example loop
print (“Waiting for GPIO input 1. \n”)
if (input(1) == 1)

break
end if
msleep(250)

end loop

RAPL-II Similar to DELAY.

See Also delay sleeps without being terminated by EINTR

Category System Process Control: Single & Multiple Processes

RAPL-3 Reference Guide 233

mtime
Description Obtains the number of milliseconds since system start-up.

The data type, c_mtime_t is an array of ints, int[2], a 64-bit number, like an
unsigned long in C. In the array, [0] holds the least significant bit and [1] holds
the most significant bit. There is space for approximately 584,942,417.4 years,
after which the bits “roll over” to zero.

Syntax command mtime(c_mtime_t@ ctp)

Parameter ctp the number, of type c_mtime_t: an int[2]

Returns Success >= 0
Failure < 0
-EOK success

Example ;; print the elapsed time of a delay determined by a random number
;; the time is limited to 65 seconds since only the first element
;; of the mtime array is used

main
int num_rndm
int[2] start_tm, end_tm
srand (10)
num_rndm = rand_in (1000,65000) ;; limit range of

random number
printf ("random number = {}\n",num_rndm)
mtime(&start_tm) ;; get start time
delay (num_rndm)
mtime(&end_tm) ;; get end time
printf ("time elapsed = {} milliseconds\n”,end_tm[0]-

start_tm[0])
end main

RAPL-II TIME, but mtime() is in milliseconds

Category Date and Time

net_in_get
Description Reads input data from the F3 end of arm I/O boards.

Syntax func int net_in_get(int in)

Parameter in the number of the input to be read (1..32)

Returns Success: 0 -> input off, 1 -> input on
Failure: net_in_get() raises an exception

Example ;; Read input 3 from the end of arm I/O board:
if (net_in_get(3))

;; the output is set...
end if

See Also net_ins_get(), net_outs_get(), net_out_set(), net_outs_set()

Category Digital Input and Output

234 Subprograms: Alphabetical Listing

net_ins_get
Description Reads all input data from the F3 end of arm I/O boards.

Syntax func int net_ins_get(int mask)

Parameter mask bit mask with a “1” for each input whose value is to be
read. The least significant bit represents channel 1, the most
significant bit represents channel 32.

Returns Success: an integer with a “1” in each bit corresponding to each input that is on.
Failure: net_ins_get() raises an exception.

Example int t
;; Check the status of input 1 through 8:
t = net_ins_get(0x000000ff) ;; bottom 8 bits set
printf(“Inputs 1 to 8 are: {02x}\n”, t)

See Also net_in_get(), net_outs_get(), net_out_set(), net_outs_set()

Category Digital Input and Output

net_out_set
Description Sets a specified F3 end of arm output to a specified value.

Syntax command net_out_set(int outnum, int value)

Parameters outnum -- end of arm output to change (1..4)
value -- 0 => off, 1 => on

Warning if the F3 is configured for an air gripper, then end of arm
outputs 1 and 2 are reserved, and must not be used.

Returns Success >= 0
Failure < 0 (-ve error code)

Example int t
;; read input 3 and output the opposite of its value to output 3:
t = net_in_get(3)
if (t < 0)

;; error...
end if
net_out_set(3, !t)

See Also net_in_get(), net_ins_get(), net_outs_get(), net_outs_set()

Category Digital Input and Output

net_outs_get
Description Gets the current state of a set of F3 end of arm outputs.

Syntax func int net_outs_get(int mask)

Parameters mask indicates which outputs to read; the least significant
bit corresponds to output 1, the most significant bit corresponds
to output 32. F3 currently only supports 4 outputs

Returns Success: an integer with a “1” in each bit corresponding to each output that is
on.
Failure: net_outs_get() raises an exception

RAPL-3 Reference Guide 235

Example ;; Flip the state of outputs 1 through 4:
t = net_outs_get(0x0000000f) ;; get the old values
;; now set the new values, using “xor” to flip the bits:
net_outs_set(t xor 0x0000000f, 0x0000000f)

See Also net_in_get(), net_ins_get(), net_out_set(), net_outs_set()

Category Digital Input and Output

net_outs_set
Description Allows several F3 end of arm outputs to be set to a specified state at the same

time.

Syntax command net_outs_set(int state, int mask)

Parameters state -- each bit represents what state to set an output to
mask -- each “1” corresponds to each output to change.
Both “state” and “mask” are sets of bits corresponding to outputs.
The least significant bits correspond to output 1; the most
significant bits correspond to output 32. When the net_outs_set()
command is executed, each output with a corresponding 1 in mask
will be set to the value of the corresponding bit in state.

Returns Success >= 0
Failure < 0 (-ve error code)

Example see the example for net_outs_set(), above.

See Also net_in_get(), net_ins_get(), net_out_set(), net_outs_get()

Category Digital Input and Output

nolimp
Description Re-engages the servo control of a motor which unlimps that joint. A single axis or

several axes can be specified. All axes are specified by an empty parameter.

Used after the command limp().

Syntax command nolimp([int axis] [, int axis] ...)

Parameter (Optional) axis axis being unlimped
(empty) all axes unlimped

Returns Success >= 0
Failure < 0

Example limp(4, 5, 6) ;; limps axes 4, 5, and 6
...
nolimp(4, 5, 6) ;; unlimps axes 4, 5, and 6

Application Shell nolimp

RAPL-II Similar to NOLIMP.

See Also limp limps axes

Category Motion

obs_get
Description Gets point of observation.

236 Subprograms: Alphabetical Listing

Syntax command obs_get()

Returns Success >= 0
Failure < 0. Will fail only due to communications.

Example obs_get()

RAPL-II There is no corresponding construct.
See Also obs_rel releases point of observation
Category System Process Control: Points of Control and Observation

obs_rel
Description Releases point of observation.
Syntax command obs_rel()

Returns Success >= 0
Failure < 0. Will fail only due to communications.

Example obs_rel()

RAPL-II There is no corresponding construct.
See Also obs_get gets point of observation
Category System Process Control: Points of Control and Observation

onbutton
Description Waits for a button specified by b to be pressed. If the argument blink is True, the

corresponding light blinks until the button is pushed. After execution the light is
returned to the state it was in before the command call. The command utilizes
the panel_button_wait subprogram.

Syntax command onbutton(int b, int blink)

Parameter b specifies the button to be pressed button_enum type one of
B_F1 = 1
B_F2 = 2
B_PAUSE_CONT = 4
B_HOME = 8

blink TRUE to blink the light while waiting, otherwise FALSE
Returns Success >= 0

Failure < 0 Returns an error.
Example ;;Program to demonstrate Panel Button subroutines.

;;Move the robot to a position aa when the F1 button is pressed
;;While the robot is moving turn on the F1 light. Set status
;;window AA after move. Then, after F2 is pressed it moves to
;;second position, turns on the F2 light, sets the status window
;;to BB
main
teachable cloc aa, bb
panel_lights_set(0xf,0x0) ;; turn off the panel lights
online(ON)
;;Wait for button F1 to be pushed before moving to location AA
printf("Press F1 to move robot to AA/n")
loop

if(onbutton(B_F1, ON))
panel_light_set(B_F1, ON)
move(aa)
break

else
delay(250)
continue

RAPL-3 Reference Guide 237

end if
end loop
;;Finish move to location aa, Set AA in status window
finish()
panel_status(OxAA)
panel_light_set(B_F1,OFF) ;; turn off the F1 light
;;Wait for button F2 to be pushed before moving to location bb no
;;time out
printf("Press F2 to move to BB/n")
loop

if(panel_button_wait(B_F2, -1))
panel_light_set(B_F2, ON)
move(bb)
break

else
delay(250)
continue

end if
end loop
finish() ;;Set Status to BB when robot is in location BB
panel_status(0xBB)
panel_lights_set(0xff, 0x00) ;;Turn off lights
end main

See Also panel_button_wait
panel_button_set

Category Front Panel

online
Description Sets the online mode to one of the values: OFF, ON, WAIT, PROCEED, TRACK,

NOTRACK.

With OFF, there is only space in the queue for one motion command. The
command is taken from the queue to be processed, and must be taken out for the
next command to be put in. In effect, flow proceeds in a manner similar to having
a finish() command after each motion command.

With ON, there is space in the queue for 8 motion commands.

With WAIT, the queue fills up with motion commands. Commands are calculated
while execution of the motion waits. Execution begins when the queue is full or
PROCEED is encountered.

With PROCEED, the motions are executed. The robot moves through the
locations without stopping at each location.

Syntax command online(int online_flag)

Parameters online_flag
OFF
ON
WAIT
PROCEED
ENA_TRACK
DIS_TRACK

Returns Success >= 0
Failure < 0

Example online(ON) ;; turn mode on
online(WAIT) ;; wait while queue fills
move(a) ;;

238 Subprograms: Alphabetical Listing

move(b) ;; fill queue with these motions
move(c) ;;
move(d) ;;
online(PROCEED) ;; flush motion queue

RAPL-II Similar to ONLINE.

See Also finish finishes current arm motion command before next arm motion
gripfinish finishes current gripper motion command before next gripper

 motion
robotisdone gets the robot done state for non-control processes

Category Motion
Robot Configuration

open
Description Opens an object in the file system, a file or device specified in name, with access

mode given in flags. At successful completion (a positive value), the command
returns the file descriptor fd, which is used to access the file throughout the
program. If there is a problem, the command returns a negative error code.

O_BINARY is the default mode. O_TEXT allows CROS to create DOS compatible
text file, ie., with CR-LF line terminations instead of CROS’ LF-only line
terminations. O_TEXT does not affect sockets.

An open() command with O_CREAT and O_EXCL on a file that already exist
returns an error, -EEXIST. This allows standard file locking to work.

Syntax command open(var int fd, var string[] name, o_flags flags, int
mode)

Parameters fd the file descriptor: an integer

name the file to be opened: a variable length string

flags flags, of type o_flags, one or more of:

with files O_RDONLY read only
O_WRONLY write only
O_RDWR read and write
O_NONBLOCK non-blocking mode
O_APPEND always append to EOF on writing
O_BINARY binary mode; all writes of ‘\n’ get converted

to line feed
O_TEXT text mode; all writes of ‘\n’ get converted to

carriage return and line feed ‘\r\n’
O_CREAT create file if it doesn’t exist
O_TRUNC truncate file to 0 bytes
O_EXCL give error if file already exists

with sockets O_SERVER server
O_CLIENT client

The two flags, O_CLIENT and O_SERVER, can only be used for sockets and
they are mutually exclusive.
The other flags can only be used for files and can all be used together.
Examples:

O_RDONLY | O_NONBLOCK read only, non-blocking reads
 O_CREATE | O_TRUNC | O_RDWR create a new file (or truncate an old one)

RAPL-3 Reference Guide 239

and open for reading and writing
O_APPEND | O_CREAT | O_WRONLY append to an existing file, or create a

new file if one doesn't exist, and write it
O_RDWR is the same as O_RDONLY | O_WRONLY

With any value for flags other than one including O_CREAT, opening a non-
existent file is an error.
If flags contains O_CREAT, then the file is created if it doesn’t exist and is
given permissions specified in mode.

mode access mode, of type mode_flags, one or more of:
M_READ readable
M_WRITE writeable
M_EXEC executable

The modes limit the ways in which programs opening the file can access it. For
example, if mode is only M_READ, a program can read the file, but cannot
write to it. Modes may be combined with the bitwise OR operator, represented
by | (a single vertical bar/pipe), to form any desired combination.

M_READ
M_READ | M_EXEC
M_READ | M_WRITE
M_READ | M_WRITE | M_EXEC

Returns
>= 0 Success
-EAGAIN The system does not presently have the resources

needed to carry out this operation. For example,
there may be too many files open.

-EINVAL The flags are inconsistent or the name is invalid.
-EEXIST Tried to open a file with O_EXCL | O_CREAT, and

the file already existed.
-ENOENT Some component of the path did not exist, or we are

not O_CREATing and the file did not exist.
-EISDIR Tried to open a directory for writing.
-ENXIO Tried to open an unsupported device.
-ETXTBSY Tried to open an executing program for writing.
-ENOTDIR A component of the path to the file was not a directory.
-EIO An I/O error occurred
-EBUSY
(sockets only)

Tried to open a socket as server, but a server had
already opened the socket. There can be at most 1
server.

-ENOSERV
(sockets only)

Tried to open a socket as client, but no server was
present.

Example int fd
...

open (fd, “filename.txt”, O_RDONLY, 0)

See Also close closes the file or device
chmod change the mode
write writes to the file
read reads from the file
send sends to the socket
rcv receives from the socket
chmod change the mode

Category File and Device System Management
Device Input and Output

240 Subprograms: Alphabetical Listing

opennp
open named pipe

Description Opens a named pipe in the Windows NT domain.
Servers must specify a pipe on the local machine.
The maximum number of named pipes that can be open at one time is 9.

Syntax command opennp(var int fd, string[] pipename, o_flags flags, int
mode, var int signal)

Parameters fd the file descriptor: an int
pipename the pipe name: a string of maximum length [128]
flags flags, of type o_flags, one or more of:

O_RDONLY read only
O_WRONLY write only
O_RDWR read and write
O_SERVER open as server
O_CLIENT open as client

modes access modes specific to named pipes, one or more of:
M_READ_MESSAGE readable
M_WRITE_MESSAGE writable

signal the signal to send when overlapped i/o is complete: an int
Returns Success >= 0

Failure < 0
Example opennp(pd, //./pipe/pipe_on_this_machine, O_SERVER|O_RDWR,

M_READ_MESSAGE|M_WRITE_MESSAGE, 13)

opennp(NT_app_pipe, //lab/pipe/app2_pipe, O_SERVER|O_RDWR,
M_READ_MESSAGE|M_WRITE_MESSAGE, 22)

RAPL-II No equivalent.

See Also closenp closes a named pipe
connectnp connects to a named pipe
disconnectnp disconnects a client from a named pipe
statusnp checks the status of a named pipe

Category Win 32

output
Alias output_set

Description Sets the single specified output channel to the specified state. The Boolean
parameter bypass is optional. If set TRUE the execution of the output command
bypasses the online motion queue.

Syntax command output(int channel, int state [, boolean bypass])

Parameters

channel the GPIO channel: an int. Channels 1 to
16 correspond to actual GPIO output
points; channels 17 to 24 are “virtual
outputs” that act exactly like real outputs
but do not connect to a phyical signal. By
watching virtual outputs, a process can
synchronize itself to the motion queue.

RAPL-3 Reference Guide 241

state the state: an int, one of 0 -> off or 1 -> on

bypass True (1) -> execution bypasses the online
queue and is not synchronized to robot
motion
False (0) -> output execution is queued in
the motion queue. This is the default if
this argument is omitted.

Returns Success >= 0
Failure < 0

Example output(0, 0) ;; Turns off output 0 command is queued in the
;; online

motionoutput(0,1,True) ;; Turns on output 0 independent of the
;; online motion queue

output_set(1,0,False) ;; Turns off output 1- queued in the
;; online motion queue

RAPL-II Similar to OUTPUT, but OUTPUT used a positive or negative sign for the state.

See Also outputs sets the entire bank of output channels to states
output_pulse sets a channel to one state, waits, then sets to opposite state
output_get gets the current state of an output channel
input queries an input channel for its state

Category Digital Input and Output

output_get
Description Gets the current state of the specified output channel.

Syntax func output_get(int channel)

Parameters There is one parameter:

channel the GPIO channel : an int. Channels 1 to 16 correspond
to actual GPIO output points; channels 17 to 24 are
“virtual outputs” that act exactly like real outputs but
do not connect to a phyical signal. By watching virtual
outputs, a process can synchronize itself to the motion
queue.

Returns Success >= 0
the state: an int, one of:

0 = off
1 = on

Failure < 0

Example int state
int channel
...
state = output_get(channel)

Result state = 1 if output is on, state = 0 if output is off

RAPL-II No equivalent.

See Also output sets an output channel to a state
output_pulse sets and reverses an output for its state

242 Subprograms: Alphabetical Listing

input queries an input channel for its state
outputs_get queries the entire bank of output channels for their states

Category Digital Input and Output

output_pulse
Description Sets the specified output channel to the specified state, waits 50 milliseconds and

then sets the channel to the opposite state. The Boolean parameter bypass is
optional. If set TRUE the execution of the output command bypasses the online
motion queue.

Outputs can be pulsed on or pulsed off.

If the initial state of the output is different from the first state of this command,
the output is set to that first state and then set to the opposite (the output’s
initial) state. If the initial state of the output is the same as the first state of this
command, the setting of the first state makes no change and the output is then
set to the opposite state.

Syntax command output_pulse(int channel, int state[, boolean bypass])

Parameters channel the GPIO channel: an int
state the state: an int, one of:

0 off
1 on

bypass boolean either
TRUE (1) execution bypasses the online queue
FALSE (0) default option - output execution is queued

Returns Success >= 0
Failure < 0

Example int state
int channel
...
state = output_pulse(channel, state, 1)

Result output defined by int channel is pulsed, the command is not queued

RAPL-II No equivalent.

See Also output sets an output channel to a state
outputs sets the entire bank of output channels to states
output_get gets the current state of an output channel
input queries the state of an input channel

Category Digital Input and Output

output_set
Alias output

Syntax command output_set(int channel, int state [, . . .])

Category Digital Input and Output

outputs
Alias outputs_set

RAPL-3 Reference Guide 243

Description Sets the entire bank of output channels to the specified states with a bitmask.
The Boolean parameter bypass is optional. If set TRUE the execution of the
output command bypasses the online motion queue.

Syntax command outputs(int fieldstate, int mask[, boolean bypass])

Parameters There are three parameters, one of which is optional:

fieldstate a bit mapped state of the outputs

mask the output state of each bit will only be updated by the
“new_val” if the corresponding mask bit is high.

bypass True (1) -> execution bypasses the online queue and is
not synchronized to robot motion
False (0) -> output execution is queued in the motion
queue. This is the default if this argument is omitted.

Returns Success >= 0
Failure < 0

Example
int mask = 0xFFFF ;;bit mask all 1’s
int state = 0
...

outputs(state, mask, 0)

Result All outputs are set low, the command is queued in the online
motion queue

RAPL-II No equivalent.

See Also output sets an output channel to a state
outputs_get queries the entire bank of output channels for their states
inputs queries the entire bank of input channels for their states

Category Digital Input and Output

outputs_get
Description Gets the current state of all the output channels.

Syntax func outputs_get()

Parameters none

Returns Success >= 0
the state: an int, which is a bit map of the channel output states:

0 = off
1 = on

Failure < 0

Example int state ;;present outputs
int state2 ;;desired outputs

int channel = 0xffff ;; selects all outputs (1111111111111111)

state = outputs_get()
if state == state2 ;;what is wanted

else ;; set outputs to the state specified in state2
outputs_set(channel,state2)

end if

Result Set outputs to the state specified in state2

RAPL-II No equivalent.

244 Subprograms: Alphabetical Listing

See Also outputs sets the entire bank of output channels to states
output_get gets the current state of an output channel
inputs queries the state of all input channels

Category Digital Input and Output

outputs_set
Alias outputs

Syntax command outputs_set(int fieldstate, int mask[, boolean bypass])

Category Digital Input and Output

panel_button
Description Determines the status of the button specified by argument b. The return will be

0, unless the button is pressed. While the button is pressed the returned value
is TRUE.

Syntax func int panel_button(button_enum b)

Parameter b button_enum type -one of:
B_F1 = 1
B_F2 = 2
B_PAUSE_CONT = 4
B_HOME = 8

Returns Success >= 0 Returns TRUE if the button specified is pressed.
Failure < 0 Error descriptor

Example printf(“Press F1 to move the robot”)
loop

t=panel_button(B_F1)
if t

move(position)
break

else
delay(250)
continue

end if
end loop

Refer also to the onbutton command description for further example
of the panel button subprograms.

See Also panel_buttons
on_button
panel_button_wait

Category Front Panel

panel_button_wait
Description Command waits for a particular button to be pressed. If the time specified by the

timeout (seconds) argument is exceed an error descriptor is returned.

Syntax command panel_button_wait(button_enum b, int timeout)

RAPL-3 Reference Guide 245

Parameter b button_enum type one of:
B_F1 = 1
B_F2 = 2
B_PAUSE_CONT = 4
B_HOME = 8

timeout waiting time in seconds, -1 (TM_FOREVER) means no time limit

Returns Success >= 0
Failure < 0 ETIMEOUT if waiting time is exceed

Example ;;Wait for button F2 to be pressed then move
loop

if(panel_button_wait(B_F2, -1))
panel_light_set(B_F2, ON)
move(bb)
break

else
delay(250)
continue

end if
end loop

Refer to the onbutton command description for an example of the
panel button subprograms

See Also onbutton
panel_button
panel_buttons

Category Front Panel

panel_buttons
Description Gets the status of the panel buttons. The status is returned as a bit vector. The

bits which are high (1) indicate which buttons are pressed. The value returned is
zero if no buttons are pressed. If the value 3 (0...0011) is returned then panel
buttons F1 and F2 are pressed.

Syntax func int panel_buttons()

Returns Success >= 0 Returns an integer high bits indicate which buttons were pressed.
Failure < 0 Returns an error descriptor

Example printf(“Press F1 and F2 to move the robot)
loop

t=panel_buttons()
if t ==3 ;;F1 and F2 must be pressed together

move(position)
break

else
delay(250)
continue

end if
end loop

Also refer to the onbutton command description for further example
of the panel button subprograms

Result When buttons F1 and F2 are both pressed at the same time the robot
will move.

See Also panel_buttons
on_button
panel_button_wait

246 Subprograms: Alphabetical Listing

Category Front Panel

panel_light_get
Description The function returns the status of the front panel light specified. Returns TRUE if

the light is on FALSE if it is off.

Syntax func int panel_light_get(button_enum b)

Parameter b Specifies the light to check, button_enum type one of:
B_F1 = 1
B_F2 = 2
B_PAUSE_CONT = 4
B_HOME = 8

Returns Success >= 0 Returns ON if the light specified if the light is on.
Failure < Error descriptor

Example int light_stat
...
;;Get status of the HOME light
light_stat = panel_light_get(B_HOME)

Refer to the onbutton command description for an example of the panel button
subprograms

See Also panel_lights_get
panel_light_set
panel_lights_set

Category Front Panel

panel_light_set
Description The command causes the light specified with the button_enum type to be set to

the status specified by the int on. Use this command to link light status to
conditions in robot applications.

Syntax command panel_light_set(button_enum b, int on)

Parameter button Refer to the Front Panel section for the button_enum definitions
on If ON (ON = 1) turns light on, if OFF (OFF = 0) sets light off

Returns Success >= 0
Failure < 0

Example panel_light_set(B_F1,OFF) ;; turn off the F1 light

Refer to the onbutton command description for an example of the
front panel subprograms.

See Also panel_light_get
panel_lights_get
panel_lights_set

Category Front Panel

RAPL-3 Reference Guide 247

panel_lights_get
Description Returns the status of the four panel lights in bit vector format. If the light is ON

the corresponding bit in the return integer is high. For example if the return
value is 10 (0.. 01010), the F2 and HOME lights are ON.

Syntax func int panel_lights_get()

Returns Success >= 0 An integer with high bits corresponding to the ON lights.
Failure < 0 error descriptor

Example t=panel_lights_get() ;; returns the lights that are on
if t ;; at least on light is ON

panel_lights_set(0xff, 0x00) ;;turn lights off
end if

Also refer to the onbutton command description for a further
example of the front panel subprograms.

See Also panel_light_get
panel_light_set
panel_light_set

Category Front Panel

panel_lights_set
Description Set the panel lights selected by the argument mask to the corresponding values

as specified by the argument value.
Syntax command panel_lights_set(int mask, int value)

Parameter mask integer used for selecting the lamps. For each high bit (1) the
corresponding light is selected. For example mask = 9 (0...01001) the
F1 and Home lights are selected.

value Specifies the values for the selected lights. For example 0 sets all the
selected lights to OFF, 9 sets the F1 and HOME lights to ON.

Returns Success >= 0
Failure < 0 Returns an error descriptor

Example panel_status(0xBB)
panel_lights_set(0xff, 0x00) ;;Turn off lights

Refer to the onbutton command description for an example of the
front panel subprograms.

See Also panel_lights_get
panel_light_get
panel_light_set

Category Front Panel

panel_status
Description Sets the front panel status window to display the argument value. Note the

command is intended to test the function of the window. Changing the display
does not change the actual system status.

Syntax command panel_status(int value)

248 Subprograms: Alphabetical Listing

Parameter value the value to be displayed in the status window. The window can
display 2 hexadecimal integers, therefore only the 8 LS bits are
meaningful in the argument value.

Returns Success >= 0
Failure < 0

Example int i
for i=0 to 255

delay(100) ;;short delay
panel_status(i) ;;display window combinations in sequence

end for

Also refer to the onbutton command description for an example of the front panel
subprograms.

Category Front Panel

pdp_get
Description The function gets the private data area pointer for the current thread.

Syntax func void@ pdp_get()

Parameters no parameters

Returns Success >= 0 Returns void pointer to the data area for current thread.
Failure < 0

Example void@ ptr
if !(ptr=pdp_get())

;;error in function call
else

;;program commands
end if

Category Memory

pdp_set
Description A subroutine to set the private area memory for the current thread

Syntax sub pdp_set(void@ ptr)

Parameters ptr is a void ptr which points to the private data area for the current thread.

Returns subroutines do not return a value

Example void@ ptr
pdp_set(ptr)

Category Memory

pendant_bell
Description The serial teach pendant has a small speaker that may be used to signal events.

There are three sounds which can be sent to the speaker. The sound is specified
by the type pendant_bell_t argument passed in the command call with.

Library stp

Syntax export command pendant_bell(pendant_bell_t bell_type)

RAPL-3 Reference Guide 249

Parameter The pendant_bell_t bell_type has the following definition:

typedef pendant_bell_t enum
pendant_bell_short = 1,
pendant_bell_long,
pendant_bell_alert ;; stuttering beep

end enum

Returns Success >= 0
Failure < 0

Example ...

stp:pendant_bell(pendant_bell_alert)

...

RAPL-II Same as PRINTF 0,”\e[0q or \e[1q or \e[2q or \e[3q”

Category Pendant

pendant_chr_get
Description Reads a character from the pendant. This command does not wait until a return

is entered and thus yields a null string if data is not ready.

Library stp

Syntax export command pendant_chr_get(var string[] buffer)

Parameter buffer the character is stored in the buffer string

Returns Success >= 0 buffer is packed with character
Failure < 0

Example stp:pendant_chr_get(answer)

Result Reads character at teach pendant

RAPL-II Same as INPUT <string_number(&1-4)>,<Device_zero(0)>
Category Pendant

pendant_close
Description Close the pendant in preparation for shutting down a program or the controller.

The command disables the liveman switch.

Library stp

Syntax export command pendant_close()

Parameter None

Returns Success >= 0
Failure < 0

Example stp:pendant_close()

RAPL-II Same as PENDANT OFF

See Also shutdown

Category Pendant

250 Subprograms: Alphabetical Listing

pendant_cursor_pos_set
Description Move the cursor to the position specified by the row and column arguments. If

the position specified is not a valid position an error is returned. The pendant
screen has 4 rows and 18 columns.

Library stp

Syntax export command pendant_cursor_pos_set(int row, int column)

Parameter row1-4 are valid rows
column 1-18 are valid columns

Returns Success >= 0
Failure < 0

Example ...
stp:pendant_cursor_pos_set(4,1) ;;set the cursor to the

;;bottom row first column
...

RAPL-II Same as PRINTF 0,”\e[row_num; colum_num”

See Also pendant_home
pendant_home_clear

Category Pendant

pendant_cursor_set
Description Enables or disables the pendant cursor, depending on the argument passed. A

disabled cursor is not visible on the pendant screen. The enabled cursors, default
setting, causes the cursor to blink on the screen.

Library stp

Syntax export command pendant_cursor_set(Boolean new_cursor)

Parameter new_cursor 1 enabled
new_cursor 0 disabled

Returns Success >= 0
Failure < 0

Example ...
pendant_cursor_set(1)
...

Category Pendant

pendant_flush
Description Flushes any 'junk' characters in the incoming buffer.

Library stp

Syntax export command pendant_flush()

Parameter None

Returns Success >= 0
Failure < 0

RAPL-3 Reference Guide 251

Example ...
stp:pendant_flush()
stp:pendant_close()
...

Result Flushes

See Also pendant_chr_get
pendant_close

Category Pendant

pendant_home
Description Moves the pendant cursor to the top left side of the pendant screen, row 1,

column 1. The home position.

Library stp

Syntax export command pendant_home()

Parameter None

Returns Success >= 0
Failure < 0

Example ...
stp:pendant_home()
...

Category Pendant

pendant_home_clear
Description Moves the pendant screen cursor to the home position and clears the screen.

Library stp

Syntax command pendant_home_clear()

Parameter None

Returns Success >= 0
Failure < 0

Example ...
stp:pendant_home_clear()
...

RAPL-II Same as PRINTF 0,”\e[1;1f\e[1s”

See Also pendant_home

Category Pendant

pendant_open
Description Prepare the pendant for access and initialize it to defaults.

Library stp

Syntax command pendant_open()

Parameter None

252 Subprograms: Alphabetical Listing

Returns Success >= 0
Failure < 0

Example pendant_open()

RAPL-II Same as PENDANT ON

See Also startup

Category Pendant

pendant_write
Description Writes a string to the pendant. The string can include standard ansi escape

codes to format the display on the screen. The pendant_write command calls the
writes command from the File and Device Input and Output category.

Library stp

Syntax stp:export command pendant_write(var string[] buffer)

Parameter buffer the text to be displayed on the pendant screen

Returns Success >= 0
Failure < 0

Example ...
pendant_write(“. . .”)
...

RAPL-II Same as PRINTF Device_0,” Text”

See Also writes

Category Pendant

pipe
Description Creates a single stream pipe between two file descriptors. In a pipe, data can

flow only in one direction. Calling pipe() creates a file descriptor rd_fd that is
mode RD_ONLY and another file descriptor wr_fd that is mode WR_ONLY.
Closing the write end is the only way of sending an EOF indication to the read
end. Also, writing to the write end of a pipe whose read end is closed results in a
SIGPIPE being sent to the writer.

Generally, pipe() is called prior to a split, and then the pipe is used between
parent and child communication. The parent then closes either the write or the
read descriptor, depending on the direction of flow wanted, and the child closes
the remaining descriptor.

Syntax command pipe(var int rd_fd, var int wr_fd)

Parameter rd_fd an int- file descriptor for the read end of the pipe
wr_fd an int- file descriptor for the write end of the pipe

Returns

>= 0 Success
-EINVAL the arguments were invalid
-EAGAIN The system does not have sufficient resources to carry

out this operation at this time.
Example main

int ps_id,i,status

RAPL-3 Reference Guide 253

int fd_pipe_rd, fd_pipe_wr
pipe (fd_pipe_rd, fd_pipe_wr) ;; pipe file is opened in

;; blocking mode for reads
ps_id = split()
if ps_id == 0

close (fd_pipe_wr) ;; child will read
;;data

for i = 1 to 5
read (fd_pipe_rd,&i,1) ;; if data is not available

;; the read will be blocked
printf ("\nchild read - {}",i)

end for
close (fd_pipe_rd)

else
close (fd_pipe_rd) ;; parent will write

;; data
for i=1 to 5

write (fd_pipe_wr,&i, 1)
delay (500)

end for
close (fd_pipe_wr)
waitpid (ps_id,&status,0) ;; wait for child to

;; complete
end if
printf ("\n")

end main

Result child read - 1
child read - 2
child read - 3
child read - 4
child read - 5

Category File and Device System Management:

pitch
Alias jog_t ...

alias same as
pitch jog_t(TOOL_PITCH, ...)

Description In the tool frame of reference, rotates around the orientation axis, the Y axis, by
the specified number of degrees.

Motion axis

common name F3
coordinate
system

A465/A255
coordinate
system

pitch orientation Y Y

This command, pitch(), is joint-interpolated. The end position is determined and
the tool travels to it as a result of various joint motions. The start point and end
point for the tool centre point are the same (no change in distance along the axis
or angle between the axis and the tool), but the start position and end position of
the tool are different by the amount of rotation.

For cartesian-interpolated (straight line) motion, see pitchs().

Syntax command pitch(float distance)

Parameter distance the amount of rotation in degrees: a float

254 Subprograms: Alphabetical Listing

Returns Success = 0
Failure < 0

Example pitch(22.5)

pitch(-90)

Application Shell Same as pitch.

RAPL-II No equivalent. In RAPL-II, PITCH performed a different motion. See yrot.

See Also pitchs moves around the tool orientation axis, but in straight line motion
roll moves around the tool approach/depart axis, joint-interpolated
yaw moves around the tool normal axis, joint-interpolated

Category Motion

pitchs
Alias jog_ts ...

alias same as
pitchs jog_ts(TOOL_PITCH, ...

)

Description In the tool frame of reference, rotates around the orientation axis, the Y axis, by
the specified number of degrees.

Motion axis

common name F3
coordinate
system

A465/A255
coordinate
system

pitch orientation Y Y

This command, pitchs(), is cartesian-interpolated (straight-line) motion. The tool
centre point stays on the axis, in the same place, while the tool rotates around
the axis.

For joint-interpolated motion, see pitch().

Syntax command pitchs(float distance)

Parameter distance the amount of rotation in degrees: a float

Returns Success = 0
Failure < 0

Example pitchs(22.5)

pitchs(-90)

Application Shell Same as pitchs.

RAPL-II No equivalent. In RAPL-II, PITCH performed a different motion. See yrots.

See Also pitch moves around the tool orientation axis, but joint-interpolated
rolls moves around the tool approach/depart axis in straight line motion
yaws moves around the tool normal axis in straight line motion

Category Motion

RAPL-3 Reference Guide 255

pos_axis_set
Description Sets a specified axis to a specified position. Similar to zero(), but with a non-zero

value.

Syntax command pos_axis_set(int axis, int pos)

Parameter axis the axis ... : an int
pos motor pulse count ... : an int

Returns Success >= 0
Failure < 0

Example int pulses
int axis
...
pos_axis_set(axis, pulses)

Result Moves the joint “axis” by “pulses” pulse counts in the positive
direction

See Also pos_get

Category Location: Data Manipulation

pos_get
Description Gets the location information from the position registers.

Syntax command pos_get(position_t postype, var ploc position)

Parameter postype the type of robot position:
POSITION_ACTUAL the actual robot position
POSITION_COMMANDED the commanded robot position
POSITION_ENDPOINT the end-point robot position
POSITION_HOLD the hold robot position

position: the position of the robot: a ploc

Returns Success > 0, position is packed with the precision location
Failure < 0

Example int test
ploc place
...
test = pos_get(POSITION_ACTUAL, place) ;; use test for error check

RAPL-II Similar to:
W0, W1 pos_get(POSITION_COMMANDED)
W2, W3 pos_get(POSITION_ACTUAL)
W4 pos_get(POSITION_ENDPOINT)
ACTUAL pos_get(POSITION_ACTUAL)
except that RAPL-II generated output and ACTUAL also gave cartesian.

See Also here stores the current location in a location variable
pos_set sets the position registers of the robot

Category Location: Data Manipulation
Calibration

256 Subprograms: Alphabetical Listing

pos_set
Description Loads the robot position registrers with location or pose inforamtion. Similar to

zero(), but with a non-zero value. Does not move the arm.

Syntax command pos_set(ploc pos)

Parameter pos : a ploc

Returns Success >= 0
Failure < 0

Example ...
teachable ploc there
...
pos_set(there)

Result Sets all axes to the position specified by the teachable ploc
“there”.

RAPL-II Same as @LOCATE

See Also pos_get

Category Location: Data Manipulation
Calibration

pow
Description Calculates a value raised to a power. Takes a non-negative value and a non-

negative power.

Syntax func float pow(float a, float b)

Arguments a the value
b the power

Returns Success >= 0. The value a raised to the power b.
Failure < 0

Example float a = 2.5, b = 3.0
float y
y = pow(a, b)

Result 15.625

RAPL-II POW

See Also ln calculates the natural logarithm
log calculates the common (base 10) logarithm
sqrt calculates the square root

Category Math

print
print

Description Writes the specified data to standard output device, normally the terminal
screen. Two types of arguments can be given in the variable argument list:
constants and variables. The constants are printed exactly as they are given.

RAPL-3 Reference Guide 257

The variable's value is what is copied to the output device. The method used in
printing is to print the arguments in the exact order that they were given.

Syntax command print (...)

Returns

>= 0 Success.

-EIO An I/O error occurred.

-EINTR This operation was interrupted by a signal.

Example count_cycle = 1048
print ("Robot has worked ",count_cycle," cycles.\n")

Result Robot has worked 1048 cycles.
displayed at the terminal screen and the cursor advanced to a newline.

See Also printf format print command to the standard output

Category File Input and Output: Unformatted Output

printf
print formatted

Description Converts and writes output to the standard output device, normally the terminal
screen, under the control of a specified format fmt.

Format specifications are detailed in the Formatted Output section of File Input
and Output

Syntax command printf(var string[] fmt, ...)

Format Specifiers The format string may consist of two different objects, normal characters, which
are directly copied to the file descriptor, and conversion braces which print the
arguments to the descriptor. The conversion braces take the format:

{ [flags] [field width] [.precision] [e|E|f|g|G|x|X |] }

Flags

Flags that are given in the conversion can be the following (in any order):

• – (minus sign) specifies left justification of the converted argument in its field.

• + (plus sign) specifies that the number will always have a sign.

• 0 (zero) in numeric conversions causes the field width to be padded with
leading zeros.

Field width

The field width is the minimum field that the argument is to be printed in. If the
converted argument has fewer characters than the field, then the argument is
padded with spaces (unless the 0 (zero) flag was specified) on the left (or on the
right if the – (minus sign) was specified). If the item takes more space than the
specified field width, then the field width is exceeded.

.precision

The precision number specifies the number of characters to be printed in a
string, the number of significant digits in a float, or the maximum number of
digits to be printed in an integer.

e or E

258 Subprograms: Alphabetical Listing

[For floating point numbers only]
This flag indicates that a floating point number should be printed in exponential
notation, which looks like:

[-]d.dddddde+dd (e format)
or [-]d.ddddddE+dd (E format)

The .precision refers to the number of digits after the decimal point, and defaults
to 6 if it is omitted.

f
[For floating point numbers only]
This flag indicates that a floating point number should be printed in ordinary
floating point notation, which looks like:

[-]d.dddddd
The .precision refers to the number of digits after the decimal point, and defaults
to 6 if it is omitted.

g or G
[For floating point numbers only. This is the default format for floating point.]
This flag indicates that a floating point number should be printed either in f or
e|E format, whichever is more compact. (e|E type is used if the exponent is less
than –4 or the exponent is >= the .precision.) Note that for this mode only, the
.precision indicates the number of significant digits to be printed, not the
number of digits after the decimal point.

x or X

This is the hexadecimal flag which specifies whether or not an integer argument
should be printed in hexadecimal (base 16)or not. The lowercase x specifies
lowercase letters (abcdef) are to be used in the hexadecimal display and the
uppercase X specifies uppercase letters (ABCDEF).

A character sequence of {{ means to print the single { (opening brace) character.

Returns

>= 0 Success.
-EINVAL The arguments were invalid.
-EIO An I/O error occurred.
-EINTR This operation was interrupted by a signal.

Example float a = 1.23, b = 12.345, c = 1.234
float d = 98.7, e = -987654.3210, f = 9876.5
printf(“a = {5.2}, b = {+08.3}, c = {-8.3} \n”, a, b, c)
printf(“d = {5.2}, e = {+08.3}, f = {-8.3} \n”, d, e, f)

Result a = 1.2, b = +00012.3, c = 1.23
d = 99, e = -9.88e+005, f = 9.88e+003 *

Category File Input and Output: Formatted Output

rad
Description Converts degrees to radians.
Syntax func float rad(float x)

Returns The angle converted to radians.
Example float x = 45.0

float y
y = rad(x)

Result 0.785398

RAPL-II RAD

RAPL-3 Reference Guide 259

See Also deg converts radians to degrees
Category Math

rand
Description A function for generating random numbers (integers). The function uses a seed

value which can be set using the rand_next function.
Syntax func int rand()

Returns Returns a random number.
Example int r =5

int seed = 13
int[] random
int j
...
srand(int seed) ;; sets the seed value rand_next = 13
...

;; generate a 5 element array of random
;; numbers

for j = 1 to r
random[j-1] = rand()

end for

Result A 5 element array of random number integers.

See Also rand_in generates random numbers within a specified range
srand sets the random generator seed value

Category Math

rand_in
Description A function for generating random numbers (integers) which fall in the range

specified. The function uses a seed value which can be set using the rand_next
function.

Syntax func int rand_in(int min, int max)

Parameters min, max are integer values which define the range of random numbers returned.

Returns Returns a random number in the range [min..max].

Example int r =5
int seed = 13
int min = {expression}
int max = {expression}
int[] random(min max)
int j
...
srand(int seed) ;; sets the seed value rand_next = 13
;;generate a 5 element array of random numbers
for j = 1 to r

random[j-1] = rand_in(min, max)
end for

Result A 5 element array of random number integers with values between
min and max. .

See Also rand generates random numbers
srand sets the random generator seed value

Category Math

260 Subprograms: Alphabetical Listing

rcv
Description Receives words from a socket. If the rcv() command succeeds, it returns the

(positive) number of words (4 byte entities) read. This may be less than nwords,
the length of the receive buffer. If the rcv() command fails, it returns a negative
error code. If the timeout is specified, rcv() will try to read for timeout
milliseconds before returning. Words that are read are placed into buf, which
must be at least of size nwords. If ppid is a NULL pointer, the receive can be from
any process. If ppid is not a NULL pointer, the value of the variable being pointed
to is the pid of the process from which you are trying to receive. If that ppid@ is
0, it receives from any process and returns the pid of that process.

If a server tries to receive from a client with a timeout of TM_NOWAIT and the
client is non-existent, the error code -ENOCLIENT is returned.

rcv() is similar to read() which is used for all other (non-socket) entities.

Syntax command rcv(int fd, void @buf, int nwords, int timeout, int@
ppid)

Parameters

fd The file descriptor referring to the open socket.

buf Points to where to store the received data.

nwords The number of word to receive, maximum. Note
that it is not an error for the sending process to
send fewer than nwords words.

timeout How long to wait for the transaction, in
milliseconds. There are two special values,
TM_NOWAIT (don’t wait at all) and TM_FOREVER
(wait forever.)

ppid If this is NULL, then we are trying to rcv() from any
other process. If non-NULL, then this is a pointer
to an integer in which the desired process id (pid)
of the sender is stored (with 0 meaning any). On
success, rcv() stores the actual sending process id
in ppid@.

Returns

>= 0 Success. Returns the number of words received.

-EINVAL The arguments were invalid (eg., fd was –ve)

-EBADF The file descriptor does not correspond to an open
object.

-ENOTSOCK The object open on fd is not a socket.

-EAGAIN Too large a receive was attempted; also returned
when a TM_NOWAIT rcv() does not immediately
succeed.

-ETIMEOUT The timeout expired.

-EINTR The operation was interrupted by a signal.

-ENOSERV
(client only)

There is no server serving this socket.

-ENOCLIENT There is no client matching the parameters of the

RAPL-3 Reference Guide 261

(server only) rcv().

Example int sock_fd
string[30] mbuf
...
;; Open a socket for a client.
open (sock_fd, “/mydev”, O_CLIENT, 0)
...
;; Receive message from the socket.
rcv (sock_fd, &mbuf, sizeof(mbuf), TM_FOREVER, NULL)

See Also send sends words to a socket
open opens a socket and other entities

Category Device Input and Output

read
Description Attempts to read nwords from the file descriptor fd and store the result in buf. If

the number of words specified in nwords cannot be read the command will
perform a blocking read, unless the file descriptor was opened with mode
O_NONBLOCK. After reading, the file position is moved by the number of words
read. This provides a sequential move through the file.

The read() command reads 4-byte words (32 bits). The reads() command reads
characters (8 bits).

Similar to rcv() which is used for sockets.

Syntax command read(int fd, void@ buf, int nwords)

Parameters fd the open file descriptor
buf a pointer to where to store the read data
nwords the number of 4-byte words to be read: an int

Returns

> 0 Success; the number of words actually read.

0 The end of file was encountered.

-EINVAL The arguments were invalid.

-EBADF fd does not correspond to an open file.

-EACCESS The file is not open for reading.

-ESPIPE Attempted to read a socket.

-EIO An I/O error occurred.

-EAGAIN (nonblocking I/O) No bytes were ready for reading.

-EINTR This operation was interrupted by a signal.

 Example int fd
int[10] buf
...
open (fd, “filename.txt”, O_RDONLY, 0)
read (fd, buf, sizeof(buf))

Example int a ;; reads four characters from keyboard
read (stdin, &a, 1) ;; and stores them as an int
print (a,”\n”) ;; returns only when four characters are
entered

RAPL-II GETCH

262 Subprograms: Alphabetical Listing

See Also reads reads a string from a file
readsa reads a string from a file and appends it to a string
write writes to a file
writes writes a string to a file
open opens a file to read, write, etc.

Category File Input and Output: Unformatted Input

readdir
Description Reads a directory entry and stores the structure in buf. Reading from the

directory automatically increments the file pointer for fd.

Syntax command readdir(int fd, var c_dirent buf)

Parameters buf a c_dirent structure with the following fields:
string[32] de_name
int de_type
int de_links
mode_flags de_mode
int de_size
int de_mtime
int de_dev
int de_ident

fd The file descriptor to read from.

Returns

1 Success.

0 The end of the directory was encountered.

-EINVAL The arguments were invalid.

-EBADF fd does not correspond to an open file.

-EACCESS The file is not open for reading.

-ENOTDIR fd does not correspond to an open directory.

-EIO An I/O error occurred.

-EINTR This operation was interrupted by a signal.

Example string[] dir = “/temp”
c_dirent buf
int fd
...
open (fd, dir, O_RDONLY, 0)
...
result = readdir(fd, buf)
while result > 0

print (buf.de_name,”\n”)
result = readdir(fd, buf)

end while

Category File and Device System Management

RAPL-3 Reference Guide 263

readline
Description Interactively reads a line of up to maxlen characters from stdin to s and echos to

stdout. The line terminator can be either a carriage return or a line feed. Returns
the number of characters actually read including the terminator. A value of 0
means EOF.

Syntax command readline (var string[] s, int maxlen)

Parameters s Where to store the read data
maxlen The maximum number of characters to read.

Returns

> 0 Success; the number of words actually read.

0 The end of file was encountered.

-EINVAL The arguments were invalid.

-EIO An I/O error occurred.

-EINTR This operation was interrupted by a signal.

Example int maxlen
string[32] safe = myfile.txt
...

readline (safe, maxlen)

Results Reads “maxlen” characters from the standard input and writes them
to “myfile.txt, and to stout.

See Also reads
read

Category File Input and Output: Unformatted Input

reads
Description Reads a string from a file of at most maxlen characters. This is different from the

read command in that a string is used, and the length of the string is updated.
The number of characters read is returned, or a negative error code if the read
fails.

The reads() command reads characters (8 bits). The read() command reads 4-byte
words (32 bits).

Syntax command reads(int fd, var string[] s, int maxlen)

Parameters

s Where to store the read data.

maxlen The maximum number of characters to read.

fd The file descriptor to read from.

Returns

> 0 Success; the number of words actually read.

0 The end of file was encountered.

-EINVAL The arguments were invalid.

264 Subprograms: Alphabetical Listing

-EBADF fd does not correspond to an open file.

-EACCESS The file is not open for reading.

-ESPIPE Attempted to read a socket.

-EIO An I/O error occurred.

-EAGAIN (nonblocking I/O) No bytes were ready for reading.

-EINTR This operation was interrupted by a signal.

 Example string[20] buf
int fd
open (fd, “/temp/reads_test”, O_RDONLY, 0)
reads (fd, buf, 20)
print (buf,”\n”)

Example string[1] a ;; reads a string of 1 character
reads (stdin, a, 1) ;; when a key is pressed, the command
returns
print (a,”\n”) ;; useful for keyboard input

See Also read read words (4 byte units) from a file
readsa read a string from a file and append it to a string

Category File Input and Output: Unformatted Input

readsa
Description Reads a string (of at most maxlen characters) from a file, and appends it on the

end of string s.

Syntax command readsa(int fd, var string[] s, int maxlen)

Parameters

s Where to store the read data.

maxlen The maximum number of characters to read.

fd The file descriptor to read from.

Returns

> 0 Success; the number of words actually read.

0 The end of file was encountered.

-EINVAL The arguments were invalid.

-EBADF fd does not correspond to an open file.

-EACCESS The file is not open for reading.

-ESPIPE Attempted to read a socket.

-EIO An I/O error occurred.

-EAGAIN (nonblocking I/O) No bytes were ready for reading.

-EINTR This operation was interrupted by a signal.

Example
string[MAXLEN] results
int fd
int length, check

open(fd, “mydirectory\\result.txt”, O_READ,0)

RAPL-3 Reference Guide 265

check = readsa(fd, results, length)

Result “check” is equal to the numbercharacters appended to string
“results”

See Also read read words (4 byte units) from a file
reads read a string from a file

Category File Input and Output: Unformatted Input

ready
Description Moves the arm to the READY position.

Syntax command ready()

Returns Success >= 0
Failure < 0

Example if (ready() >= 0)
move (a)

end if

RAPL-II Similar to READY.

See Also home homes the axes

Category Calibration
Motion

rmdir
Description Deletes an empty directory.

Syntax command rmdir(var string[] path)

Parameters path full path name of the directory to delete

Returns Success >= 0
Failure < 0

-EINVAL invalid argument
-ENOTDIR the path is not a directory
-ENOENT a component was not found
-EIO an I/O error occurred
-EAGAIN temporarily out of resources needed to do this
-EBUSY the directory is busy
-ENOTEMPTY the directory is not empty

Example string[20] path =/mydirectory
...
rmdir(path)

Result The directory /mydirectory is deleted

See Also mknod
mkdir

Category File and Device System Management

robot_abort
Description Stops current motion and discards the contents of the motion queue.

266 Subprograms: Alphabetical Listing

robot_abort() operates by locating the pid of the server (by a zero-length rcv() on
the /dev/robot socket) and sending the server a SIGABRT. If the rcv() fails, then
robot_abort() opens /dev/estop, which forces arm power off.

Syntax command robot_abort()

Parameter empty

Returns Success = 0
Failure < 0

Example ...
robot_abort()
. .

Category Motion

robot_cfg_save
Description Re-writes the “/conf/robot.cfg” file with the current robot configuration

information, which includes:
1. whether or not the robot has a track
2. the number of axes on the controller
3. the tool transform
4. the base offset
5. the positive and negative track travel limits
6. the gripper type
7. the robot units (metric or English)

It must be pointed out that changing one of these parameters in your program
does not change the default for when the system is rebooted; you must perform a
robot_cfg_save() to make the changes permanent.

Syntax command robot_cfg_save()

Returns Success >= 0
Failure < 0 (-ve error code)

Example ;; “permanently” set a tool transform:
tool_set(cloc{0, 0, 0, 1, 0, 0, 0, 0, 0})
robot_cfg_save()

See Also tool_set(), base_set(), griptype_set()
/diag/setup (system shell command)

Category Motion

robot_error_get
Description Returns the current (latest) error state of the robot.

Syntax command robot_error_get(var int[5] error)

Parameter error * : an array of up to 5 ints

Returns Success >= 0
Failure < 0

Category Robot Configuration
System Process Control: Single and Multiple Processes

RAPL-3 Reference Guide 267

robot_flag_enable
Description Enables flags.

Syntax command robot_flag_enable(enable_flag_t flag, int state)

Parameter flag a variable of the enumerated type enable_flag_t an
state an int

Returns Success >= 0
flag is packed with one of :

EFLAG_INVALID 0
EFLAG_TRAPEZOID 1
EFLAG_TRIGGER 2

Failure < 0

Category Robot Configuration

robot_info
Description Returns robot info in the variables “homed”, and “done” whether the robot is

done moving and homed.

Syntax command robot_info(var int homed, var int done)

Parameter homed packed with the homed status
done packed with the robot motion status

Returns Success = 0
Failure < 0

Example int homed, done

robot_info(homed, done)
if (homed != 0 && done != 0)

printf(“robot is homed and not moving\n”)
else

if (done ==0)
printf(“robot in motion \n”)

end if

if (homed == 0)
printf(“robot is not homed\n”)

end if
end if

Result Reports if the robot is homed and if it is in motion

See Also server_info
robotisfinished

Category Robot Configuration
Motion

robot_mode_get
Description Gets the current mode of motion and packs it into a variable of an enum type.

Syntax command robot_mode_get(var motion_mode_t mmode)

268 Subprograms: Alphabetical Listing

Parameters mmode the variable for mode information: a motion_mode_t enumerated type

Returns Success >= 0,
 mmode is packed with one of:

MODE_NONE
MODE_ONLINE

Failure < 0

Example int retval
motion_mode_t current_mode
...
online(ON)
retval = robot_mode_get(current_mode)
print(“retval is “, retval, “\n”)
if(current_mode == MODE ONLINE)

print(“Current mode is online\n”)
else

print(“Current mode is none\n”)
end if

Result retval is 0
current_mode is online

Category Robot Configuration

robot_move
Description Allow the user to move the robot using the pendant

Library stp

Syntax export command robot_move()

Parameter None
Returns Success >= 0

Failure < 0

Example string[10] name = “my_app_23”
stp:startup
stp:app_open(name, 0)
...

stp:robot_move() stp:app_close()
...

stp:app_close()

...

Category Pendant

robot_odo
Description Gets the current value of the robot arm power odometer, which indicates the

number of seconds that arm power has been turned “on” for.

Syntax command robot_odo(var int seconds)

Returns Success >= 0; seconds gets the odometer value.
Failure < 0 (-ve error code)

Example int otime
...
robot_odo(otime)
printf(“The robot arm power has been on for {} seconds.\n”, otime)

RAPL-3 Reference Guide 269

See Also odometer (system shell command)

Category Robot Configuration
Status

robot_servo_stat
Description Returns the status of the F3 servo controllers.

Syntax command robot_servo_stat(var int netstat, var int[8] axisstat)

Parameter netstat an int
axisstat an int

Returns Success >= 0
Failure < 0

Category Robot Configuration

robot_type_get
Description Gets the current robot code for the installed kinematics.

Syntax func int robot_type_get()

Returns Success >= 0. Returns the robot code for the kinematics.
Failure < 0 Returns error code

Example robot_code = getmachtype()

See Also setmachtype sets the robot code for the kinematics

Category Robot Configuration

robotisdone
Description Returns the current robot done state. The function checks all transform axes for

a done state and returns the logical AND of these states. All transform axes must
be done for this routine to return TRUE (>0). It is different from finish because it
does not require point of control and so does not force the robot to stop before
continuing. It is also a non-blocking operation. It is best used to synchronize
other (non-controlling) processes to robot motion.

Syntax func int robotisdone()

Returns Success
> 0 all axes of arm are done
= 0 at least one axis is not done

Failure < 0

Example done_state = robotisdone()

RAPL-II FINISH

See Also robotisfinished
finish allows robot motions to catch up to process

Category Motion
System Process Control: Single and Multiple Processes

270 Subprograms: Alphabetical Listing

robotisfinished
Description The robotisfinished function uses the same finish service as the finish()

command except now a mode flag is passed into the service. The finish_mode_t is
a global enum. The function returns 1, if the robot is finished, 0 if not finished
and a error code if error occurs.

Syntax func int robotisfinished()

Parameter no parameter is required

Returns Success >= 0 1 robot is finished move
0 robot is not finished move

 Failure < 0 error code

Example ;; Use command to synchronize robot motion
.define PALLET_NUM 25
teachable ploc[10] pallet
teachable ploc safe_pallet
int i

for i = 0 to PALLET_NUM
move(pallet[i])

loop
if robotisfinished()

grip_close(50)
else

msleep(250)
end if

end loop

move (safe_pallet)
...

end for

Result Program waits until robot is at pallet location before closing
gripper

RAPL-II Similar to FINISH

See Also robotisdone
finish

Category Status

robotishomed
Description Returns the current robot home state. This function checks all transform axes

for a home state and returns the logical AND of these states. All transform axes
must be homed for this routine to return TRUE (>0)

Syntax func int robotishomed()

Returns Success
> 0 all axes of arm are homed
= 0 at least one axis is not homed

Failure < 0

Example home_state = robotishomed()
if (home_state)

:;; robot is homed continue

RAPL-3 Reference Guide 271

else
;;home the robot
home(i,2,3,4,5,6)

end if

See Also calibrate calibrates the robot
home homes the robot

Category Home

robotislistening
Description A function to determine if the robot server is responding to queries. The function

returns TRUE if the robot responds to the arm power query. If no response, it
returns FALSE.

Syntax funct int robotislistening()

Returns Success >= 0 TRUE or FALSE
Failure < 0 Does not return a negative error code.

Example if robotislistening()
printf("Robot is ready begin")
;; program here

else
printf("Robot is not listening")

end if

See Also robotisfinished
robotishomed

Category Robot Configuration
Status

robotispowered
Description Returns the current state of the robot arm power. Useful for checking arm power

status before proceeding to further program execution.

Syntax func int robotispowered()

Returns Success
> 0 arm power is ON
= 0 arm power is OFF

Failure < 0

Example if robotispowered() == 0
print "Waiting for arm power.\nTurn on arm power.\n"
do

msleep 1000
until robotispowered() > 0

end if

RAPL-II Similar to ONPOWER.

Category Status

roll
Alias jog_t ...

alias same as

272 Subprograms: Alphabetical Listing

roll jog_t(TOOL_ROLL, ...)

Description In the tool frame of reference, rotates around the approach/depart axis, by the
specified number of degrees.

motion axis

common name F3
coordinate
system

A465/A255
coordinate
system

roll approach/depart Z X

This command, roll(), is joint-interpolated. The end position is determined and
the tool travels to it as a result of various joint motions. The start point and end
point for the tool centre point are the same (no change in distance along the axis
or angle between the axis and the tool), but the start position and end position of
the tool are different by the amount of rotation.

For cartesian-interpolated (straight line) motion, see rolls().

Syntax command roll(float distance)

Parameter distance the amount of rotation in degrees: a float

Returns Success = 0
Failure < 0

Example roll(11.25)

roll(-45)

Application Shell Same as roll

RAPL-II No equivalent. In RAPL-II, ROLL performed a different motion. See xrot.
See Also rolls moves around the tool approach/depart axis,

but in straight line motion
pitch moves around the tool orientation axis
yaw moves around the tool normal axis

Category Motion

rolls
Alias jog_ts ...

alias same as
rolls jog_ts(TOOL_ROLL, ...)

Description In the tool frame of reference, rotates around the approach/depart axis, by the
specified number of degrees.
motion axis

common name F3
coordinate
system

A465/A255
coordinate
system

roll approach/depart Z X

This command, rolls(), is cartesian-interpolated (straight-line) motion. The tool
centre point stays on the axis, in the same place, while the tool rotates around
the axis.
For joint-interpolated motion, see roll().

Syntax command rolls(float distance)

RAPL-3 Reference Guide 273

Parameter distance the amount of rotation in degrees: a float
Returns Success = 0

Failure < 0
Example rolls(45)

rolls(-10.5)

Application Shell Same as rolls.
RAPL-II No equivalent. In RAPL-II, ROLL performed a different motion. See xrots.
See Also roll moves around the tool approach/depart axis, but joint-interpolated

pitchs moves around the tool orientation axis in straight line motion
yaws moves around the tool normal axis in straight line motion

Category Motion

rotacc_get
Description Returns the value of the maximum rotational acceleration parameter. This

parameter is used to regulate rotational accelerations when performing straight-
line motions in online mode and when using the teach pendant. Units are in
degrees/second/second.

Syntax command rotacc_get(var float rotaccel)

Parameter rotaccel a float into which the current rotational acceleration
value is placed

Returns Success >= 0
Failure < 0

Example float rotaccel
...
rotacc_get(rotaccel)
printf(“Max. rotational accel is set to {} deg/sec/sec”, rotaccel)

See Also rotacc_set, rotspd_set, rotspd_get

Category Robot Configuration

rotacc_set
Description Sets the value of the maximum rotational acceleration parameter. This

parameter is used to regulate rotational accelerations when performing straight-
line motions in online mode and when using the teach pendant. It is not possible
to set the value of this parameter higher than the default value. which is robot
dependent. Units are in degrees/second / second.

Syntax command rotacc_set(var float rotacc)

Parameters rotacc a float which carries the new rotational acceleration value

Returns Success >= 0
Failure < 0

Example float rotacc
if nextpart == KRUMHORN

rotacc = 20
rotacc_set(rotspeed)

end if

See Also rotacc_get, rotspd_set, rotspd_get

Category Robot Configuration

274 Subprograms: Alphabetical Listing

rotspd_get
Description Retrieves the current value of the maximum rotational speed parameter. This

parameter is used to regulate rotational velocities when performing straight-line
motions in online mode and when using the teach pendant. Units are in
degrees/second.

Syntax command rotspd_get(var float rotspeed)

Parameter rotspeed a float into which the rotational speed value is placed

Returns Success >= 0
Failure < 0

Example float rotspeed, dispensing_limit
...

dispensing_limit = 155
rotspd_get(rotspeed)
if rotspeed > dispensing_limit

rotspd_set(dispensing_limit)
end if
...

See Also rotspd_set, rotacc_set, rotacc_get

Category Robot Configuration

rotspd_set
Description Sets the value of the maximum rotational speed parameter. This parameter is

used to regulate rotational velocities when performing straight-line motions in
online mode and when using the teach pendant. It is not possible to set the
value of this parameter higher than the default value. which is robot dependent.
Units are in degrees/second.

Syntax command rotspd_set(var float rotspeed)

Parameters rotspeed a float which carries the new rotational speed value
Returns Success >= 0

Failure < 0
Example float rotspeed

if nextpart == DASHBOARD
rotspeed = 100
rotspd_set(rotspeed)

end if

See Also rotspd_get, rotacc_set, rotacc_get

Category Robot Configuration

seek
Description Provides a method to move through a file arbitrarily rather than sequentially (see

read() and write().) The position is moved to a place in the file specified by offset
from the base given in whence. Subsequent reading and writing begin at this new
position.

Syntax command seek(int fd, int offset, seek_base whence)

RAPL-3 Reference Guide 275

Parameters fd identifies the file
whence can be one of

SEEK_SET = 0 move from beginning of file
SEEK_CUR = 1 move from current position
SEEK_END = 2 move from end of file

offset offset position form the base specified by whence

Returns Success >= 0
Failure < 0

-EINVAL the arguments were invalid (ie., -ve fd), or this operation is not
legal on this device.

-EBADF the file descriptor isn't open
-ESPIPE can't seek on a pipe or socket

Example int fd
string[] buffer = “seek test”
...
open (fd, ”filename”, O_RDWR, 0) ;; Open the file
write (fd, buffer, 9) ;; Write to the file
seek (fd, 0, SEEK_SET) ;; Rewind the file

See Also read read from a file
write write to a file

Category File Input and Output: Unformatted Input

select_menu
Description Displays the three lines s1, s2 and s3 on the pendant screen. Show key labels k1

to k4 and then wait for the user to select a function key. The integer number of
the key selected is returned.
Note that if any of the function key labels (k1 - k4) are null strings then the
corresponding key will NOT be enabled. The kn strings are printed literally; but
they must be limited by the programmer to 4 characters.

Syntax stp:func int select_menu(var string[] s1, var string[] s2, var
string[] s3,\
var string[] k1, var string[] k2, var string[] k3, var string[] k4)

Parameters s1 string displayed in the top line of the pendant
s2 string displayed in the second line of the pendant
s3 string displayed in the third line of the pendant
k1 Function key 1 label (max 4 characters)
k2 Function key 2 label (max 4 characters)
k3 Function key 3 label (max 4 characters)
k4 Function key 4 label (max 4 characters)

Returns Success >= 0 Returns the integer number of the Function key selected, 0 if the
user exits the pendant menu

Failure < 0
Example int ctrl = 0

 ...
stp:startup()
... .
ctrl=stp:select_menu(“Welcome”, “Just Call me Teach”, “Do you want to”, \
“Cont”,“Exit”,””,””)
if ctrl == 1

;;continue
... .

end if
 if ctrl == 2

;;exit
... .

276 Subprograms: Alphabetical Listing

end if
 ...

Category Pendant

sem_acquire
Description Attempts to acquire a semaphore specified by key. If the semaphore is granted

the command returns successful, otherwise a negative error code is returned. A
timeout can be specified which causes the function to wait to acquire the
semaphore until timeout has been reached. Timeout is in milliseconds.

Syntax command sem_acquire(int key, int timeout)

Parameter key an int
timeout an int time in milliseconds

Returns Success >= 0
Failure < 0 Returns negative error code

-EOK success
-EAGAIN the system is out of semaphore slots, or TM_NOWAIT was

 specified and we did not acquire the semaphore right away.
-ETIMEOUT timed out
-EINTR the operation was interrupted by a signal.

Example int result, key = 1
int timeout = 50
...
result = sem_acquire(key, timeout)
if result == EOK

;; enter critical section
sem_release(key, timeout)

end if

Category System Process Control: Single and Multiple Processes

sem_release
Description Releases the semaphore specified by key. If the semaphore can be successfully

released, the command returns successful, otherwise the command returns an
error code. If the timeout is specified, the command will keep attempting to
release the semaphore until timeout value is reached.
Trying to release a semaphore that has not be acquired will result in the
command attempting to acquire it first, and then release it.

Syntax command sem_release(int key, int timeout)

Parameter key an int
timeout an int time in milliseconds

Returns Success >= 0
Failure < 0 Returns negative error code.

-EOK success
-EAGAIN the system is out of semaphore slots, or TM_NOWAIT was

 specified and we did not acquire the semaphore right away.
-ETIMEOUT timed out
-EINTR the operation was interrupted by a signal.

Example int result, key = 1
int timeout = 50
...
result = sem_acquire(key, timeout)
if result == EOK

;; enter critical section

RAPL-3 Reference Guide 277

sem_release(key, timeout)
end if

Category System Process Control: Single and Multiple Processes

sem_test
Description Tests the semaphore specified by key.

Syntax command sem_test(int key)

Parameter key an int specifies the semaphore

Returns Success >= 0 Returns 1 if the semaphore is set, 2 if it is set and is owned by
the calling process, and 0 if it is clear.
Failure < 0

Example int result, key = 1
int timeout = 50
...
loop

result = sem_test(key)
if result == EOK

break
end if

end loop
result = sem_acquire(key, timeout)
if result == EOK

;; enter critical section
sem_release(key, timeout)

end if

Category System Process Control: Single and Multiple Processes

send
Description Sends nwords words into the socket described by d. The number of words

actually written is returned. If timeout is not TM_FOREVER, send will only
attempt to write words for timeout milliseconds. If pid is not 0, the message is
sent to a client process specified by pid. (This must be the server). Otherwise, the
sender is the client.

If a server tries to send to a client with a timeout of TM_NOWAIT and the client is
non-existent, the error code -ENOCLIENT is returned.

send() is similar to write() which is used for all other (non-socket) entities.

Syntax command send(int d, void @buf, int nwords, int timeout, int pid)

Parameters d an int -specifies the socket
nwords an int - number of words
pid an int- specifies the process (must be server or 0)

TM_NOWAIT
TM_FOREVER

Returns Success >= 0 the number of words written
Failure < 0

-EINVAL the arguments were invalid (ie., -ve fd)
-EBADF the file descriptor isn't open
-ENOTSOCK the file was not a socket

278 Subprograms: Alphabetical Listing

-EAGAIN too large a write; also returned on TM_NOWAIT sends
that immediately time out.

-ETIMEOUT the timeout expired
-EINTR the operation was interrupted by a signal

Client only:
-ENOSERV there is no server

Server only:
-EBUSY there is already a server waiting to send
-ENOCLIENT there is no client that fits the send()

Example int sock_fd
string[] mbuf = “1 client”
...
;; Open a socket for a client
open (sock_fd, “/mydev”, O_CLIENT, 0)

;; Send Message to the socket.
send (sock_fd, &mbuf, sizeof(mbuf), TM_FOREVER, 0)

See Also rcv receives words from a socket

Category Device Input and Output

server_get
Description Used with multi-robot systems.

Gets the name of the current server socket device, the socket/robot server that
the library is communicating with.

Syntax command server_get(var string[] currserver)

Parameter currserver string a variable for the name of the current server: a variable length
string

Returns Success = 0 EOK if successful
name of current server packed in currserver

Failure < 0
-EIO server is not connected

Example ;; An inefficient example program to show function of
;; server_get, server_info, server_set commands.
;; In the end prints the Machine type and Product code data
;; for the machine talking to the server "serve"...

string[32] cur_serve, serve
int pcode, mach_type, tran_ax, act_ax, mach_ax,power
int t
...
serve = "robot1"
t= server_get(cur_serve)

if (t >= 0 && cur_serve == serve)
server_info(mach_type,pcode, mach_ax,\

tran_ax, act_ax, power)
printf("Robot is {}/n Product Code is {}/n", mach_type,

pcode)
else

server_set(serve)
server_info(mach_type, pcode, mach_ax,\

tran_ax, act_ax, power)
printf("Robot is {}/n Product Code is {}/n", mach_type, pcode)
end if

RAPL-3 Reference Guide 279

See Also server_info
server_protocol
server_version

Category File and Device System Management
Robot Configuration

server_info
Description Similar to robot_info. Obtains: machine type, product code, machine axes,

transform axes, actual axes, arm power.

Syntax global command server_info(var int mtype, var int pcode,
\

var int axm, var int axt, var int axa, \
var int power)

Parameter mtype a string for machine type data
pcode a string for product code data
axm an int for machine axis data
axt an int for transform axis data
axa an int for actual axis data
power an int for the arm power status

Returns Success >= 0 Variables are packed with the server info
Failure < 0

Example ;; An inefficient example program to show function of
;; server_get, server_info, server_set commands.
;; In the end prints the Machine type and Product code data
;; for the machine talking to the server "serve"...

string[32] cur_serve, serve
int pcode, mach_type, tran_ax, act_ax, mach_ax,power
int t
...
serve = "robot1"
t= server_get(cur_serve)

if (t >= 0 && cur_serve == serve)
server_info(mach_type,pcode, mach_ax,\

tran_ax, act_ax, power)
printf("Robot is {}/n Product Code is {}/n", mach_type,

pcode)
else

server_set(serve)
server_info(mach_type, pcode, mach_ax,\

tran_ax, act_ax, power)
printf("Robot is {}/n Product Code is {}/n", mach_type, pcode)
end if

See Also server_get
server_set

Category File and Device System Management
Robot Configuration

server_protocol
Description Server_protocol function returns the protocol designator from the robot server.

Syntax func int server_protocol()

280 Subprograms: Alphabetical Listing

Returns Success >= 0 Returns integer.
Failure < 0 Returns error descriptor if the command fails.

Refer to error handling section for details.

See Also server_version Returns the server version.

Category File and Device System Management
Robot Configuration

server_set
Description Used with multi-robot systems.

Sets the robot server socket connection in the library to the specified new server
value, changing the socket/robot server that the library is communicating with.
Any existing socket connection is closed and the new socket opened.

A parameter of DEFAULT sets the socket connection back to /dev/robot.

If the command fails to open the new socket, any subsequent attempts to access
the robot server fail with an -EIO.

Syntax command server_set(var string[] newserver)

Parameter newserver the name of the new server: a variable length string
[path] the path of any valid socket
DEFAULT the default socket, /dev/robot

Returns Success = 0
Failure < 0

-EIO failed to open new socket

Category File and Device System Management
Robot Configuration

server_version
Description The server_version function returns an integer which specifies the robot server

version.

Syntax func int server_version()

Returns Success >= 0 Returns integer which specifies the version.
Failure < 0 Returns negative error code if command fails.

See Also server_protocol Returns the protocol designator from the server.

Category File and Device System Management
Robot Configuration

setenv
Description Creates / redefines an environment variable’s value. (See the section on environ()

for more explanation.) (C500C only)

Syntax command setenv(string[] key, string[] value, int rewrite)

Parameters There are three required parameters:

key The key to define / change. (This is the portion on the

RAPL-3 Reference Guide 281

left hand side of the “=” symbol in the environment
string.)

value The value to set the right hand side of the “=” in the
environment string to.

rewrite If False (0), do not modify an existing environment
string; only create a new one if one does not yet exist.
If True (1), rewrite the environment string if it already
exists.

Returns Success: returns 0. Not rewriting an existing string (rewrite == 0) is also
considered success.
Failure: returns -1

Example ;; Define a new variable called “TestMode”, whose value is “yes”
setenv(“TestMode”, “yes”, True)

See Also environ(), getenv(), unsetenv()

Category Environment Variables

setprio
Description Sets the priority of a process by adjusting the priority by an increment, delta.

Also, gets the current priority of a process.

There are three priority levels: high (3), normal (2), and low(1). The normal level is
the usual priority level. During processing, the system alternates among
processes. A process at a higher level can exclude a process at a lower level.
Improper use of setprio() could starve other processes including the robot server.
The setprio() command is useful, for example, to do independent calculations at a
low priority without slowing down processing for robot activity, or to respond
immediately to a GPIO input by adjusting a process to a higher priority. The
system can raise or lower a priority across the entire range. A user can lower a
process below normal and raise it back to normal.

To change the priority of the current process, pid is 0 (zero).

To get the current priority level, use 0 (zero) for the increment, delta. A child
process is created with whatever priority level the parent had.

Returns the new priority as an absolute integer (not an increment).

Syntax func int setprio(int pid, int delta)

Parameter pid the process id number (0 is current process)
delta amount of adjustment of priority

Returns Success > 0
The new priority: an absolute int.

1 is PR_LOW
2 is PR_NORM
3 is PR_HIGH

Failure < 0
-EINVAL the arguments were not valid
-EPERM a non-privileged process can only change its

 OWN priority

Example setprio(26, 0) ;; get process 26 priority
setprio(26,-1) ;; set process 26 priority down 1 level
setprio(0,-1) ;; set current process priority down 1 level
setprio(26,+1) ;; set process 26 priority up 1 level
(0,+1) ;; set current process up 1 level

282 Subprograms: Alphabetical Listing

See Also getpid gets the id number of the process of the calling program
getppid gets the id number of the parent process of the calling program

Category System Process Control: Single and Multiple Processes

shift_t
Description In the tool frame of reference, alters the cartesian coordinates of a location. A

precision location cannot be changed with this command. There are two possible
formats: using a cloc type or using individual displacements. In both formats, the
first argument is the location to be shifted.

If a cloc type is used, the displacement values are earlier stored in a cloc which is
used as a parameter in shift_t.

If individual displacements are used, a displacement for each axis is listed. From
1 to 6 displacements can be listed, but only in the order X, Y, Z, roll, pitch, yaw.
A displacement of 0.0 value can be used as a placeholder in the list.

cloc type

Syntax command shift_t(var gloc location, cloc displacement_amount)

Parameter location the location to be shifted: a cloc
displacement_amount the amounts of the shift, in current units: a cloc

Example teachable cloc place
cloc difference_a = {0.0, 0.0, 10.0, 0.0, 45.0, 0.0}
...
shift_t(place, difference_a)

Example teachable cloc place
cloc difference_b
float[6] b = {10.0, 0.0, 0.0, 0.0, 45.0, 0.0}
...
difference_b = {b[0], b[1], b[2], b[3], b[4], b[5]}
shift_t(place, difference_b)

displacements

Syntax command shift_t(var gloc location, float x, [float y, [float z,
\

[float yaw, [float pitch, [float roll]]]]])

Parameter location the location to be shifted: a cloc
x the displacement along the X axis, in current units: a float

Parameter (Optional) y the displacement along the Y axis, in current units: a float
z the displacement along the Z axis, in current units: a float
yaw the displacement around the Z axis, in degrees: a float
pitch the displacement around the Y axis, in degrees: a float
roll the displacement around the X axis, in degrees: a float

Example teachable cloc place
...
shift_t(place, 0.0, 0.0, 10.0, 0.0, 45.0, 0.0)
...
shift_t(place, 0.0, 0.0, -10.0)

Example teachable cloc place
float displace = 2.5
...

RAPL-3 Reference Guide 283

shift_t(place, 0.0, displace)
...
displace = displace + 2.5
shift_t(place, 0.0, displace)

Returns Success >= 0
Failure < 0

Application Shell Same as tshift

See Also shift_w shifts a location in the world frame of reference
tool_set sets a tool transform
base_set sets a base offset

Category Location: Data Manipulation

shift_w
Description In the world frame of reference, alters the cartesian coordinates of a location. A

precision location cannot be changed with this command. There are two possible
formats: using a cloc type or using individual displacements. In both formats, the
first argument is the location to be shifted.

If a cloc type is used, the displacement values are earlier stored in a cloc which is
used as a parameter in shift_w.

If individual displacements are used, a displacement for each axis is listed. From
1 to 6 displacements can be listed, but only in the order X, Y, Z, X-rotation, Y-
rotation, Z-rotation. A displacement of 0.0 value can be used as a placeholder in
the list.

cloc type

Syntax command shift_w(var gloc location, cloc displacement_amount)

Parameter location the location to be shifted: a cloc
displacement_amount the amounts of the shift, in current units: a cloc

Example teachable cloc place
cloc difference_a = {0.0, 0.0, 20.0, 0.0, 45.0, 0.0}
...
shift_w(place, difference_a)

Example teachable cloc place
cloc difference_b
float[6] b = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}
...
difference_b = {b[0], b[1], b[2], b[3], b[4], b[5]}
shift_w(place, difference_b)
...
b[2] = b[2] + 2.5
difference_b = {b[0], b[1], b[2], b[3], b[4], b[5]}
shift_w(place, difference_b)

displacements

Syntax command shift_w(var gloc location, float x, [float y, [float z,
\

[float z-rot, [float y-rot, [float x-rot, \
[float e1, [float e2,]]]]]]])

284 Subprograms: Alphabetical Listing

Parameter location the location to be shifted: a cloc
x the displacement along the X axis, in current units: a float

Parameter (Optional) y the displacement along the Y axis, in current units: a float
z the displacement along the Z axis, in current units: a float
z-rot the displacement around the Z axis, in degrees: a float
y-rot the displacement around the Y axis, in degrees: a float
x-rot the displacement around the X axis, in degrees: a float
e1 the displacement of the first extra axis: a float
e2 the displacement of the second extra axis: a float

Example teachable cloc place ;; 6 DOF arm with track and carousel
... ;; in millimetres
shift_w(place, 0.0, 300.0, 100.0, 0.0, 0.0, 0.0, 1500.0)
...
shift_w(place, 0.0, -300.0, -100.0)

Returns Success = 0
Failure < 0

Application Shell Same as wshift

RAPL-II Same as SHIFT and SHIFTA

See Also shift_t shifts a location in the tool frame of reference
base_set sets a base offset
tool_set sets a tool transform

Category Location: Data Manipulation

shutdown
Description Shuts down the pendant subsystem.

This command differs from pendant_close() which closes the pendant in
preparation for shutting down a program or the controller.

Library stp

Syntax export command shutdown()

Parameter None

Returns Success >= 0
Failure < 0

Example stp:startup()
;...
stp:shutdown()

RAPL-II Same as PENDANT OFF

See Also pendant_close

Category Pendant

sig_arm_set
Description Set the signal which will be issued to the controlling process in the event of an

arm state change. Signals are listed in the Appendices

Syntax command sig_arm_set(int signal)

RAPL-3 Reference Guide 285

Parameter signal an int it can be any of the unreserved signals except for SIGKILL which
cannot be masked

Returns Success >= 0 EOK =0
Failure < 0 error descriptor

Example signal_arm = 13
...

ctrl=sig_arm_set(signal_arm)

Result signal 13 is used to notify the process of change in arm power
status

Category Signals

sig_mask_set
Description Sets the current process’s signal mask, and returns the old one. If the bit

corresponding to a given signal is 1, then that signal is ignored. All signals
except SIGKILL are maskable. Signals are listed in the Appendices

Syntax func int sig_mask_set(int mask)

Parameter mask an int defines the signal mask

Returns Success >= 0
Failure < 0

Example int mask, old_mask
...
old_mask = sig_mask_set(-1)
mask = sigmask(SIGHUP)|old_mask
sig_mask_set(mask)
...
old_mask = sig_mask_set(-1)
mask = old_mask & ~ (sigmask(SIGHUP)|sigmask(SIGINT))
sig_mask_set(mask)

See Also sigarm_set Set the signal for change in arm power status

Category Signals

sigfifo
Description Sends the signal sig to all of the readers at the other end of the fifo fd. The

different types of signals are found in the Appendix.
Syntax command sigfifo(int fd, signal_code sig)

Parameters fd an int identifies the fifo
sig an enumerated type specifying the signal. The integer corresponding to

the signal is listed in the Appendices.
Returns Success >= 0

Failure < 0
Example signal_code sig = 13 ;; SIG_13 to notify impending closure

int fd, check
string[32] thisfifo = "this_device.txt"
open(fd, thisfifo, O_RDWR | O_CREAT, M_READ | M_WRITE)

;;Prepare to close fd
check = sigfifo(fd, sig)

286 Subprograms: Alphabetical Listing

See Also signal
sigmask
sigsend

Category Signals
Device Inputs and Outputs

sigmask
Description Returns the correct mask for the signal sig, which is used in conjunction with

sig_mask_set.

Syntax func int sigmask(signal_code sig)

Parameter sig signal_code enumerated type specifies the signal (see Appendix)

Returns Success >= 0
Failure < 0

Example int mask, old_mask
...
old_mask = sigsetmask(-1)
mask = sigmask(SIGHUP)|old_mask
sigsetmask(mask)
...
old_mask = sigsetmask(-1)
mask = old_mask & ~ (sigmask(SIGHUP)|sigmask(SIGINT))
sigsetmask(mask)

See Also signal
sigmask
sigfifo

Category Signals

signal
Description Sets an action that is to be performed whenever the current process receives

signal sig. sigsub is the address of a subroutine which takes 1 integer
parameter, (signal number sig). If oldsigsub is not NULL, then oldsigsub@ is set
to the previous handler’s routine. If sigsub is NULL, then the default action is
given to the signal.

Syntax command signal(signal_code sig, void@ sigsub, void@@ oldsigsub)

Returns Success >= _-EOK
Failure < -EINVAL bad signal code

Example sub on_HUP(int sig)
print (“Got SIGHUP!\n”)

end sub

main
signal(SIGHUP, on_HUP, NULL)

end main

Category Signals

RAPL-3 Reference Guide 287

sigsend
Description Sends the signal sig to the process specified in pid. Valid signals are listed in the

Appendix.

Syntax command sigsend(int pid, signal_code sig)

Returns Success >= 0
Failure < 0

Example int pid
...
pid = split()
...
if (... && pid==0)

sigsend (pid, SIGHUP) ;; Stop the child process
end if

Category Signals
System Process Control: Operating System Management

sin
Description Calculates the sine of an angle. Takes an argument in degrees.

Syntax func float sin(float x)

Parameters x a float angle in degrees

Returns Success >= 0. The sine of the argument.
Failure < 0

Example float x = 25.0 ;; value is 25.0 degrees
float y
y = sin(x)

Result y is 0.422618

RAPL-II SIN

See Also cos calculates the cosine
tan calculates the tangent
asin calculates the arc sine

Category Math

size_to_bytes
Description Converts the output of sizeof() (which is the number of RAPL-3 words occupied by

a data structure) to the corresponding number of bytes. It is typically used with
binary data files and seek() (which expects a byte offset) for seeking to a specified
record in the file.

Syntax func int size_to_bytes(int words)

Returns Success >= 0
Failure < 0 (-ve error code)

288 Subprograms: Alphabetical Listing

Example ;; if fd is an open data file full if mystruct records,
;; this seeks to the third record in the file:
seek(fd, size_to_bytes(2 * sizeof(mystruct)), SEEK_SET)

See Also seek(), sizeof()

Categories File Input and Output,

sizeof
Description The sizeof() operation is built in to the RAPL-3 compiler, and returns the size, in

RAPL-3 words, of its argument. It differs from ordinary functions in that it does
not require a value as its argument; instead it can accept any variable or any
type.

Syntax sizeof(any data object or type)

Returns the number of words occupied by the data object, or the number of words a data
object of the specified type would occupy.

Example if we have:
int x
int[10] y
ploc@ pp
string[10] s
string[100]@ sp

then:
sizeof(int) returns 1
sizeof(float) returns 1
sizeof(ploc) returns 9
sizeof(int[20]) returns 20
sizeof(float[2,5]) returns 10
sizeof(string[10]) returns 4
sizeof(string[100]) returns 26
sizeof(x) returns 1
sizeof(pp) returns 1
sizeof(pp@) returns 9
sizeof(y) returns 10
sizeof(y[x]) returns 1
sizeof(s) returns 4
sizeof(sp@) returns 26

See Also sizeof_str()

Category File Input and Output
String Manipulation

snprint
Description Writes the specified data into the string buf, up to a maximum of maxlen

characters. Two types of arguments can be given in the variable argument list:
constants and variables. The constants are printed exactly as they are given.
The variable's value is what is copied to the file descriptor. The method used in
printing is to print the arguments in the exact order that they were given.

Syntax command snprint (var string[] buf, int maxlen,...)

Parameters buf a string - the write destination
maxlen an int - the maximum number of characters written

Returns Success >= 0
Failure < 0

RAPL-3 Reference Guide 289

Example .define MAXLEN 128
int speed, check

string[MAXLEN] store

check = speed_get(speed)
snprint(store, MAXLEN, "Current speed is: ", speed)
printf("{128}\n", store)

Result Current speed is: “speed”

RAPL-II ENCODE

See Also snprintf

Category File Input and Output: Unformatted Output

snprintf
string number print formatted

Description Converts and writes output into the string buf to a maximum length of maxlen
under the control of a specified format fmt.

Format specifications are detailed in the Formatted Output section of File and
Device Input and Output

Syntax command snprintf(var string[] buf, int maxlen, var string[] fmt,
...)

Parameters buf a string - the write destination
maxlen an int - the maximum number of characters written

Returns Success >= 0
Failure < 0

Example .define MAXLEN 128
int speed, check

string[MAXLEN] store

check = speed_get(speed)
snprintf(store, MAXLEN, "Current speed is:{4} m/s", speed)
printf("{128}\n", store)

Result Current speed is: “speed” m/s

RAPL II ENCODE

See Also snprint

Category File Input and Output: Formatted Output

socketpair
Description Gets a pair of file descriptors for a private client and server socket. client_fd is

set to the file descriptor opened as O_CLIENT, and server_fd is set to the file
descriptor opened as O_SERVER.

Syntax command socketpair(var int client_fd, var int server_fd)

Parameters client_fd an int -packed with the client file descriptor
server_fd an int- packed with the server file descriptor

290 Subprograms: Alphabetical Listing

Returns Success >= 0 Returns 0.
Failure < 0

-EINVAL the arguments were invalid
-EAGAIN there are no free fd's or related resources.

Example int client, server
...
socketpair(client, server)

See Also open opens a device

Category Device Input and Output
System Process Control: Operating System Management

speed
Alias of speed_set

alias same as
speed(...) speed_set(...)

Description Sets or gets the speed of arm motions. Takes an integer value. The value is the
percentage (from 1 to 100) of full speed.

A value of –1 returns the current speed without changing it.

Example speed(25) ;; sets the speed to 25%

Example speed_now = speed_get() ;; gets the current speed
if (speed_now > 50)

speed(50)
end if

RAPL-II Similar to SPEED.

See Also speed_set sets the current speed
speed_get gets the current speed (can pass variable by reference)

Category Motion

speed_get
Description Gets the current speed setting. Can be used in two ways.

First, a parameter can be passed by reference. If a variable is used in the
command call, the command packs the value of the current speed in the variable.

Second, the return value can be used. The command returns the value of the
current speed. In the command call, use -1 instead of a variable.

Syntax command speed_get(var int currspeed)

Parameter currspeed: the variable to store the current speed setting: an int

Returns Success >= 0
currspeed has the value of the current speed
returns the current speed value

Failure < 0

Example int cspeed
...
speed_get(cspeed) ;; parameter passed by reference

RAPL-3 Reference Guide 291

...
if (cspeed > 50)

speed_set(50)
end if

Example int cspeed
...
cspeed = speed_get(-1) ;; assign the return value

RAPL-II Similar to SPEED.

See Also speed_set sets the speed

Category Motion

speed_set
Alias speed

alias same as
speed(...) speed_set(...)

Description Sets the speed for all subsequent motions. Takes an integer value. The value is
the percentage (from 1 to 100) of full speed.

Syntax command speed_set(int newspeed)

Parameter newspeed the new speed setting: an int

Returns Success >= 0
the speed is set to newspeed

Failure < 0

Example speed_set(10)
...
speed_set(100)

RAPL-II Similar to SPEED.

See Also speed_get gets the current speed setting

Category Motion

split
Description Creates a duplicate child process of the current process. The parent process (the

one that issued the split) receives the child’s process id, and the child process
receives 0.
The parent and child share all resources: text, data, and heap (entities such as
open files, memory allocated at run time, outer-frame variables) except that the
parent and child have separate stacks (local variables are not shared).

Syntax func int split()

Returns Success >= 0. The child gets returned value 0. The parent gets the (positive)
child process id.
Failure < 0. No child process generated. Split returns:
–EAGAIN if the process table is full or the memory allocation tables are full
–ENOMEM if there is not enough memory for the new process’s stack

Example int pid
...
pid = split()
if pid == 0 then

292 Subprograms: Alphabetical Listing

;; any code for the child process to perform
else

;; any code for the parent process to perform
end if

Example int enable = 0
main

string[80] cmd
int pid
int counter
int result

...
pid = split()

...
if pid == 0 then

;; Child
printf("I am the child, and my pid is {}. \

My parent is {}.\n", getpid(), getppid())
loop ;; forever

result = msleep(1000)
if enable == 1 then

printf("Count = {}\n\n", counter)
counter = counter + 1

end if
end loop

else
;; Parent
printf("I am the parent, and my pid is {}. \

My child is {}.\n", getpid(), pid)
msleep(500) ;; Give the child time to speak
loop ;; forever

printf("start, stop, terminate, or quit> ")
readline(cmd,80)
if cmd == "start" then

enable = 1
elseif cmd == "stop" then

enable = 0
elseif cmd == "terminate" then

;; Terminate child
sigsend(pid, SIGHUP)
pid = 0

elseif cmd == "quit" then
break

else
printf("I don't understand!")

end if
end loop
;; Terminate child
if pid != 0 then

sigsend(pid, SIGHUP)
end if

end if
end main

Category System Process Control: Single and Multiple Processes

sqrt
Description Calculates the square root of a float. Takes a positive argument.

Syntax func float sqrt(float x)

Parameter x a float

RAPL-3 Reference Guide 293

Returns Success >= 0. The square root of the argument.
Failure < 0

Example float x = 50.0
float y
y = sqrt(x)

Result 7.071068

RAPL-II SQRT

See Also pow calculates a value raised to a power
Category Math

srand
Description A subroutine for setting the seed value for the random number generating

functions rand and rand_in.
Syntax sub srand(int seed)

Parameters seed an int - the seed value for random number generation

Example ;;Set the seed value and generate an array of 5 random numbers.
;;
int r =5
int seed = 13
int[10] random
int j
...
srand(int seed) ;; sets the seed value rand_next = 13
;;generate a 5 element array of random numbers
for j = 1 to r

random[j-1] = rand()
end for

Result A 5 element array of random number integers

See Also rand_in generates random numbers within a specified range
rand generates a random number

Category Math

stance_get
Description Gets the current requested or physical stance of the arm. A stance is a specific

configuration of one or more joints.

Syntax command stance_get(stance_type_t type, var shoulder_t reach, /
var elbow_t elbow, var wrist_t wrist)

Parameters type enumerated type stance_type_t
STANCE_REQUESTED requested stance, not necessarily the physical stance
STANCE_PHYSICAL current actual stance

reach enumerated type shoulder_t stance of shoulder, joint 2
elbow enumerated type elbow_t stance of elbow, joint 3
wrist enumerated type wrist_t stance of wrist, joints 4, 5, and 6

Returns Success: parameters are packed.
reach, one of:

REACH_FREE shoulder, joint 2, free (robot picks best)
REACH_FORWARD shoulder, joint 2, forward (toward front of robot)
REACH_BACKWARD shoulder, joint 2, backward

elbow, one of:
ELBOW_FREE elbow, joint 3, free (robot picks best)

294 Subprograms: Alphabetical Listing

ELBOW_UP elbow, joint 3, up (away from base)
ELBOW_DOWN elbow, joint 3, down

wrist, one of:
WRIST_FREE joint 4 and joint 6, free (robot picks best)
WRIST_FLIP joint 4 and joint 6 rotated 180 degrees, and

 joint 5 reversed
WRIST_NOFLIP no rotation or reversal

Failure < 0
Example stance_type_t mode = 0 ;; STANCE_REQUESTED

shoulder_t reach
elbow_t elbow
wrist_t wrist

stance_get(mode, reach, elbow, wrist)
if (reach != REACH_FREE || wrist != WRIST_FREE)

reach = REACH_FREE
wrist = WRIST_FREE
elbow = ELBOW_FREE

stance_set(reach, elbow, wrist)
else
;; Continue
end if

Result Returns the requested stance in the var variables reach, elbow,
wrist.
If the stance is not right sets the stance.

RAPL-II Similar to POSE
REACH FORWARD|BACKWARD|XFREE
ELBOW UP|DOWN|XFREE
WRIST NOFLIP|FLIP|XFREE

See Also stance_set sets the stance of the robot

Category Stance

stance_set
Description Specifies a stance of the arm. A stance is a specific configuration of one or more

joints.

Syntax command stance_set(shoulder_t reach, elbow_t elbow, wrist_t wrist)

Parameters reach
REACH_FREE shoulder, joint 2, free (robot picks best)
REACH_FORWARD shoulder, joint 2, forward (toward front of robot)
REACH_BACKWARD shoulder, joint 2, backward

elbow
ELBOW_FREE elbow, joint 3, free (robot picks best)
ELBOW_UP elbow, joint 3, up (away from base)
ELBOW_DOWN elbow, joint 3, down

wrist
WRIST_FREE joint 4 and joint 6, free (robot picks best)
WRIST_FLIP joint 4 and joint 6 rotated 180 degrees, and

joint 5 reversed
WRIST_NOFLIP no rotation or reversal

Returns Success >= 0
Failure < 0

Example stance_type_t mode = 0 ;; STANCE_REQUESTED
shoulder_t reach

RAPL-3 Reference Guide 295

elbow_t elbow
wrist_t wrist

stance_get(mode, reach, elbow, wrist)
if (reach != REACH_FREE || wrist != WRIST_FREE)

reach = REACH_FREE
wrist = WRIST_FREE
elbow = ELBOW_FREE

stance_set(reach, elbow, wrist)
else
;; Continue
end if

Result Returns the requested stance in the var variables reach, elbow,
wrist.
If the stance is not right sets the stance.

RAPL-II Similar to POSE
REACH FORWARD|BACKWARD|XFREE
ELBOW UP|DOWN|XFREE
WRIST NOFLIP|FLIP|XFREE

See Also stance_get gets the stance of the robot

Category Stance

startup
Description Initializes the pendant i/o in preparation for invoking menus. This command

MUST be called before other high-level commands are invoked.

This command differs from pendant_open() which prepares the pendant for
access and initializes it to defaults.

Library stp

Syntax export command startup()

Parameter None
Returns Success >= 0

Failure < 0
Example stp:startup()

RAPL-II Same as PENDANT ON
See Also pendant_open
Category Pendant

stat
Description Obtains information about a particular object in the file system.
Syntax command stat(var string[] path, var c_dirent buf)

Parameter path a string -identifies the device
buf c_dirent structure has the following fields:

string[32] de_name
int de_type
int de_links
mode_flags de_mode
int de_size
int de_mtime

296 Subprograms: Alphabetical Listing

int de_dev
int de_ident

The options for mode_flags type are:
M_READ readable
M_WRITE writable
M_EXEC executable *

Modes may be combined with the bitwise OR operator, represented by | (a single
vertical bar/pipe).

M_READ
M_READ | M_EXEC
M_READ | M_WRITE
M_READ | M_WRITE | M_EXEC

Returns Success >= 0 buf is packed with the data
Failure < 0

-EINVAL the arguments were invalid
-ENOTDIR a component is not a directory
-ENOENT a component was not found
-EIO an I/O error occurred
-EAGAIN temporarily out of resources needed to do this

Example int fd, check
c_dirent dev_info
string[32] thisfifo = "this_device.txt"
open(fd, thisfifo, O_RDWR | O_CREAT, M_READ | M_WRITE)
...
check = stat(thisfifo, dev_info)

Result Fields of c_dirent type dev_info is packed with data

See Also statfs Gets information about mounted file system
statusnp Gets status of named pipe

Category File and Device System Management

statfs
Description Gets information about a mounted filesystem.

Syntax command statfs(var string[] path, var c_statfs buf)

Parameter path a string specifying the path to the file
buf a variable of type c_statfs - the struct to hold the information:

mount_type fs_type filesystem type code, one of:
MOUNT__MFS memory file system
MOUNT_CFS CROSnt file system
MOUNT_RFS remote file system
MOUNT_HOSTFS host file system

int fs_bsize size of 1 block, in bytes
int fs_free number of free blocks

Returns Success >= 0
Failure < 0

-EOK success
-EINVAL invalid argument
-ENOTDIR a component of the path was not a directory
-ENOENT the specified file was not found
-EIO an I/O error occurred
-EAGAIN temporarily out of resources needed to do this

Example .define PATHLEN 32
mount_type type = MOUNT_HOSTFS

RAPL-3 Reference Guide 297

string[PATHLEN] dir = "/app/this_app"
mount_flags flags = MOUNTF_RDONLY
c_statfs stat

int check

check = mount(type, dir, flags, NULL)
...
check = statfs(dir, stat)

Result c_statfs type stat is packed with the data

System Shell Application Shell mount

See Also mount mount a file system

Category File and Device System Management

statusnp
status named pipe

Description Returns the current status of a named pipe.

Also returns how far the pending operation has completed, or the completed
transfer length.

Syntax func int statusnp(int fd, var int nwords)

Parameter fd the file descriptor: an int
nwords the number of words: an int

Returns >0
the current status of the named pipe

NPIPE_OPENED 0x0001
NPIPE_CONNECTED 0x0002
NPIPE_CONNECT_PENDING 0x0100
NPIPE_READ_PENDING 0x0200
NPIPE_WRITE_PENDING 0x0400
NPIPE_TRANSACT_PENDING 0x0800

the number of words transferred thus far in the current i/o
 operation

the number of words in the last i/o operation
=0 no previously pending i/o operation waiting for pick-up
<0 error

Example statusnp(pd, stat)

statusnp(NT_app_pipe, words)

RAPL-II No equivalent.

See Also opennp opens a named pipe
closenp closes a named pipe
connectnp connects to a named pipe
disconnectnp disconnects a client from a named pipe

Category Win 32

298 Subprograms: Alphabetical Listing

str_append
Description Takes string src and appends it onto string dst. String length of dst must be of

sufficient length to contain the string being appended.

Syntax sub str_append(var string[] dst, var string[] src)

Parameter dst a string the destination string
src string appended to string dst

Example string[20] dst = “Name:”
...
print (dst, “\n”)
str_append(dst, “J. Doe”)
print (dst, “\n”)

Result Name:
Name: J. Doe

Category String Manipulation

str_chr_find
Description Finds the first occurrence of c in string src. Returns the index of the character.

If not found, returns -1.

Syntax func int str_chr_find(string[] src, int c)

Parameter src a string
c an int - the character to be found in string src.

Returns Success >= 0
Failure < 0

Example .define MAXLEN 128
string[MAXLEN] indata, str, newstr
int cmd, outnum, outval,i
. .

cmd=str_chr_get(indata,0) ;; find command type
case cmd

of 'O': ;; O<outnum>,<state><lf> this will set outputs
i=str_chr_find(indata,',') ;; find position of ","

if i>=2 then
;; make new "str" with data <outnum>
str_substr(str,indata,1,i-1)

;;convert "str" to int outnum
str_to_int(outnum,str)
;; newstr is <state>
str_substr(newstr,indata,i+1,MAXLEN)
;; convert newstr to int
str_to_int(outval,newstr)
;; set output "outnum" to "outval"
output_set(outnum,outval)
end if

end case

Result Outputs set as defined in the command line input

RAPL-II STRPOS found substring (not character) in a string.
See Also str_chr_rfind

Category String Manipulation

RAPL-3 Reference Guide 299

str_chr_get
Description Returns the ASCII value of the character indexed by index in string s. Reminder:

string indexes begin at 0.

Syntax func int str_chr_get(var string s, int index)

Parameters s a string
index an int - specifies the character in the string

Returns Success >= 0
Failure < 0

Example string[] s = “str_chr_get example”
...
print (“Letter ‘e’ has ASCII value ”)
ch = str_chr_get(s, 9)
...
print (ch,”\n”)

Result Letter ‘e’ has ASCII value 101

See Also str_chr_find
str_chr_rfind

Category String Manipulation

str_chr_rfind
Description Finds the last occurrence of c in string src. Returns the index of the character.

If not found, returns -1.

Syntax func int str_chr_rfind(string[] src, int c)

Parameter src astring, searched for the int c
c an int, the character to be located in the string src

Returns Success >= 0 Returns the index of the last occurrence of the character c.
Failure < 0 -1 if character is not found

Example ;;Does a sentence end with proper punctuation "." or "?"
.define MAXLEN 128
string[MAXLEN] sentence
int i, length, j, count

;; prompt for sentence
printf("Enter a sentence (max 128 characters)\n")

;; Read sentence
count=readline(sentence,MAXLEN)

length = str_len(sentence) ;;sentence length starts from 0
i = str_chr_rfind(sentence, '.')
j = str_chr_rfind(sentence, '?')

if i == length-1 || j == length-1 ;; proper punctuation
printf("Good punctuation\n")

else
printf("Sentence punctuation incorrect\n")

end if

RAPL-II STRPOS found substring (not character) in a string
See Also str_chr-find
Category String Manipulation

300 Subprograms: Alphabetical Listing

str_chr_set
Description Sets the value of the character indexed by index in string s to ch. Reminder:

string indexes begin with 0.

Syntax sub str_chr_set(var string[] s, int index, int ch)

Example string[] s = “str_chr_set example”
...
print (s, “\n”)
str_chr_set(s, 13, ‘e’)
...
print (s, “\n”)

Result str_chr_set example
str_chr_set eeample

See Also str_edit
str_chr_find
str_chr-rfind

Category String Manipulation

str_cksum
Description Computes a 32-bit bytewise checksum of the characters of string, for characters

from start to start + len - 1.

Syntax func int str_cksum(var string[] s, int start, int len)

Parameters s string for which the cksum is calculated
start int the start character for the check sum
len the string length for the checksum

Returns Success >= 0
Failure < 0

Example .define MAXLEN 128
string[MAXLEN] the_string = "What is the checksum of the_string?"
int len, check

len = sizeof(the_string)
check = str_cksum(the_string, 0, len)
printf("{} \nChecksum = {} \n", the_string, check)

Result What is the checksum of the_string
Checksum = 3145

Category String Manipulation

str_dup
Description Allocates space for a string, copies it into the allocated space and returns a

pointer to the new string. This is principally useful for constructing dynamic
data structures.

Syntax func string[]@ str_dup(string[] str)

Parameter str the string to allocate space for and copy,

Returns a pointer to the new string. Raises an exception if the memory allocation fails.

RAPL-3 Reference Guide 301

Example string[]@sp
...
sp = str_dup(“This is a test string...”)
printf(“The new string is ‘{}’\n”, sp@)

Result “The new string is ‘This is a test string...’” is printed out.

See Also mem_alloc()

Category String Manipulation

str_edit
Description Replaces the characters in dst at position start and len characters with the string

src. This subroutine can be used to both delete characters (if src == "") and
insert substrings (if len == 0, for example.) Note that if dst doesn't have a startth
character, then src is simply appended to the end of dst.

Syntax sub str_edit(var string[] dst, string[] src, int start, int len
)

Parameter dst a string to be edited
src the string to be used to places in dst
start the start character index of dst
len the length (number) of characters to be replaced

Returns Success >= 0
Failure < 0

Example ;; Remove vowels from a string
string[128] sentence
int i = 0
int count = 0
int len

;; prompt for sentence
printf("Enter a sentence (max 128 characters)\n")

;; Read sentence
count=readline(sentence,128)
len = str_len(sentence) ;;sentence length starts from 0
;; find and remove vowels

while (i <= len)&& (count != NULL)
count= str_chr_get(sentence, i)

if count=='a'||count=='e'||count=='i'||count=='o'||count=='u'
str_edit(sentence,"",i,1)

else
i++

end if
end while
printf("\n{}\n", sentence)

Result Prints the string sentence with the vowels removed.

RAPL-II CUT deleted characters. PASTE inserted characters.
See Also str_chr_find
Category String Manipulation

str_error
Description Returns a pointer to a string that describes a given error code specified in n.

302 Subprograms: Alphabetical Listing

A failed command or function returns a negative integer (error descriptor) which
corresponds to a particular error. The message strings, corresponding to the
error descriptor , are stored in a string array indexed by positive integers. The
negative return value of the failed command or function must be converted to a
positive value for str_error() to access the array.

Refer to the section Error Handling for a description of the error descriptor and
the error codes.

Syntax func string[]@ str_error(int n)

Parameters n an int error descriptor

Returns Success >= 0
Failure < 0

Example int t, fd
...
t = open(fd, “myfile”, O__RDONLY, 0)
if (t < 0) ;; error

print(“Error is:”, str_error(-t), “\n”)
... exit(1)
end if

Result Error is: not found

RAPL-II No equivalent.

See Also str_signal returns a pointer to a string describing a signal code

Category String Manipulation
Error Message Handling

str_len
Description Returns the length of string s or 0 (zero) if no limit. Reminder: the length is

different from the initial declared size.
Syntax func int str_len(var string[] s)

Parameter s a string

Returns Success >= 0
positive, the size of the string
zero, no limit

Failure < 0

Example string[20] s = “str_len example”
int i
...
i = str_len(s)
print (i, “\n”)

Result 15

See Also str_limit Returns string limit

Category String Manipulation

str_len_set
Description Sets the length of string s to len. This subroutine is equivalent to truncating a

string to length len, if s is longer than len and extending a string s to length len,
if s is shorter than len.

RAPL-3 Reference Guide 303

Length, len, of 0 (zero) allows any length. This is useful with dynamic allocation
where length is controlled by mem_alloc().

Syntax sub str_len_set(var string[] s, int len)

Example string[] s = “str_len_set example”
...
print (s, “\n”)
str_len_set(s, 11)
print (s, “\n”)

Result str_len_set example
str_len_set

See Also str_len
str-limit

Category String Manipulation

str_limit
Description Returns the limit on the length of a string.

Syntax func int str_limit(var string[] s)

Parameter s A string

Returns Success >= 0 Returns integer value of the string length limit.
Failure < 0

Example .define MAXLEN 128

string[MAXLEN] sentence = "This is a string"
int length

length = str_limit(sentence)
printf("str_limit is {}\n",length)

Result str_limit is 128

See Also str_len actual string length

Category String Manipulation

str_limit_set
Description Sets the limit on the length of a string.

Syntax sub str_limit_set(var string[] s, int len)

Parameter s A string
len an int the limit for the string

Returns Success >= 0
Failure < 0

Example .define MAXLEN 128

string[MAXLEN] sentence = "This is a string"
int length =32
int len

str_limit_set(sentence, length)
len = str_limit(sentence)
printf("str_limit is {}\n",len)

Result str_limit is 32

304 Subprograms: Alphabetical Listing

See Also str_len
str_limit

Category String Manipulation

str_scanf
string scan formatted

Description Parses (separates) the contents of string s according to fmt into a list of pointers
to variables. Returns the number of items matched. Scanning may stop before
the end of s if str_scanf() runs out of format specifiers.

Syntax command str_scanf (var string[] s, var string fmt, ...)

Parameters The string fmt can contain:
field description

{} (opening brace and
closing brace)

any item (float or int; not string) preceded
and followed by any amount of whitespace

{10F
}

fixed field of 10 characters wide (no extra
whitespace before or after)

{10} an item of given maximum width (not fixed;
whitespace ignored)

(blank space) space means 0 or more spaces
\\ (two backslashes) means exactly 1 space
, (comma) means exactly 1 comma
x (any other character) means exactly 1 of that character

Returns Success >= 0
Failure < 0

Example 1 str_scanf (buf, "{}{} {}", &intvar1, &intvar2, &floatvar)

will scan for:
any whitespace
an integer (stored in intvar1)
any whitespace
an integer (stored in intvar2)
any whitespace
a float (stored in floatvar)
any whitespace

Example 2 str_scanf (buf, "{20}, {}", &stringvar, &intvar)

will scan for:
any whitespace
a non-whitespace string (first 20 chars stored in stringvar)
any whitespace
a comma
any whitespace
an integer (stored in intvar)
any whitespace

Example 3 str_scanf (buf, "{10F},{10F},{20F} ", &floatvar, &intvar,
&stringvar)

will scan for:
exactly 10 characters to be converted to a float and stored in floatvar
exactly 1 comma
exactly 10 characters to be converted to an int and stored in intvar
exactly 1 comma
exactly 20 characters to be converted to a string and stored in stringvar
any amount of whitespace

RAPL-3 Reference Guide 305

Category String Manipulation

str_signal
Description Returns a pointer to a string that describes a given signal code specified in n.

Valid signal codes are found in the Appendix.

Syntax func string[]@ str_signal(int n)

Parameter n an int specifies the signal number

Returns Success >= 0
Failure < 0

Example string[]@ sig_msg
...
sig_msg = str_signal(SIGHUP)
print (sig_msg,”\n”)

Result SIGHUP

RAPL-II No equivalent.

See Also str_error returns a pointer to a string describing an error code

Category String Manipulation
Signals

str_sizeof
Description Returns the number of words it takes to store a string of length n.

Syntax func int str_sizeof(int n)

Parameters n an int the size of the string (# of characters)

Returns Success >= 0. Returns 1 + ((n + 3) >> 2)
Failure < 0

Example int size, max_size
int words, max_words
string[128] gnirts = “How much memory to store this string”

size = str_len(gnirts)
max_size = str_limit(gnirts)

words = str_sizeof(size)
max_words = str_sizeof(max_size)

printf(“memory for string is:{}\n”, words)
printf(“max memory for string is: {} \n”, max_words)

Result memory for string is 10
max memory for string is 33

See Also str_limit
str_limit_set

Category String Manipulation
Memory

306 Subprograms: Alphabetical Listing

str_substr
Description Copies the substring of src starting at the startth character and len characters

long into dst. Only as much of the substring as actually exists is copied.
Characters are numbered from 0.

Syntax sub str_substr(var string[] dst, string[] src, int start, int
len)

Parameter dst the destination string
src the source string
start an int the start point in the src string
len an int the length to be copied

Returns Success >= 0
Failure < 0

Example str_substr(d,s,0,10)
;; copies the first 10 characters of s into d.

See Also str_edit

Category String Manipulation

str_subsys
Description The str_subsys function, given a specific error descriptor returns a string giving

the name of the subsystem origination the error. For details on the error
descriptor refer to the Error Handling section.

Syntax func string[]@ str_subsys(int descriptor)

Parameters descriptor an int - value returned when error occurs in subprogram

Returns Success >= 0 Returns a string with specifying the subsystem.
Failure < 0

Example int t, err_des
t = open(fd, “myfile”, O__RDONLY, 0)
if (t < 0) ;; error

err_des = -t...
printf(“The error occurred in the {} subsystem \n”,

str_subsys(err_des))
exit(1)

end if

Result The error occurred in the [kernel] subsystem

See Also err_get_subsys
str_error

Category Error Message Handling
String Manipulation

str_to_float
Description Converts an ASCII string in src to a floating point number and places the result

in dst. If the string is not a proper floating point number, the command fails.

Syntax command str_to_float(var float dst, var string[] src)

RAPL-3 Reference Guide 307

Parameters dst a float - the value of the string src
src a string - string to be converted to a float value

Returns Success >= 0
Failure < 0

Example string[] s = “12345.67”
float f
...
str_to_float (f, s)
print (f, “\n”)

Result 12345.67

Category String Manipulation
Math

str_to_int
Description Converts string src into a hexadecimal integer if there is a leading 0x or 0X, octal

integer if there is a leading 0, or decimal integer otherwise. Stores the result in
dst. LONG_MAX or LONG_MIN are stored if overflow occurred, depending on the
sign of the value.

Syntax command str_to_int(var int dst, var string[] src)

Parameters dst an int - the value of the string src
src a string - string to be converted to a integer value

Returns Success >= 0
Failure < 0
-EINVAL if error occurred during conversion.

Example string[] s = “12345”
int i
...
str_to_int (i, s)
print (i,”\n”)

Result 12345

RAPL-II DECODE

Category String Manipulation
Math

str_to_lower
Description For a string specified by the variable str, converts the letters in the string from

upper case to lower case. If a letter is already lower case, does not change it.

Syntax sub str_to_lower(var string[] str)

Parameter str the string to be converted: a variable length string

Example string[128] path = “MY_DIRECTORY\\MY_FILE
. .

str_lower(path)
printf(“{}\n”, path)

Result my_directory\my_file

308 Subprograms: Alphabetical Listing

See Also str_to_upper converts a string to upper case
chr_to_lower converts a character to lower case

Category String Manipulation

str_to_upper
Description For a string specified by the variable str, converts the letters in the string from

lower case to upper case. If a letter is already upper case, does not change it.

Syntax sub str_to_upper(var string[] str)

Parameter str the string to be converted: a variable length string

Example sentence = "emphasis here"
str_to_upper(sentence)
. .
printf("{}\n",sentence)

Result EMPHASIS HERE

See Also str_to_lower converts a string to lower case
chr_to_upper converts a character to upper case

Category String Manipulation

sync
Description Flushes all the file system buffers of their contents.

Syntax command sync()

Returns commands do not return a value

Example int fd
string[] buffer = “sync test”
...
open (fd, “filename”, O_WRONLY, 0);; Open file
fprint (fd, buffer) ;; Write value
sync() ;; Force writing

Category File and Device System Management
Memory

sysconf
Description Obtains system configuration information and places it in a struct (c_sysconf).

The data is a struct of ints, 32 bit numbers. The sc_items parameter must be
initialized to indicate how many items to transfer/accept.
The sysid_string() command is used to print the system identifier.

Syntax command sysconf(var c_sysconf scp)

Parameter scp the system configuration data: a struct of type c_sysconf
int sc_items number of entries to transfer/accept
int sc_sysid system identifier word
int sc_version version code, major.minor where

major == upper 16 bits
minor == lower 16 bits

int sc_click_size bytes per click

RAPL-3 Reference Guide 309

int sc_msec_per_tick milliseconds per scheduled tick
int sc_build

Returns Success >= -EOK success
Failure < 0

-EINVAL the argument was invalid (improperly initialized buffer)

Example c_sysconf sysconf_buf
int[4] datain
int[8] dataout
int value
...
sysconf_buf.sc_items = sizeof(sysconf_buf)
sysconf(sysconf_buf)
...

print("\nSystem type: '", sysid_string(sysconf_buf.sc_sysid),
"'\n")

print("Version: ", (sysconf_buf.sc_version >> 16), ".", \
(sysconf_buf.sc_version & 0xffff), ".", \
sysconf_buf.sc_build, "\n")

print("Click size: ", sysconf_buf.sc_click_size, "\n")
print("msec/tick: ", sysconf_buf.sc_msec_per_tick, "\n")

...

...

Category System Process Control: Operating System Management

sysid_string
Description Returns a string describing a specified system id.
Syntax func string[]@ sysid_string(int sysid)

Parameter sysid an int - specifies the system
Returns Success >= 0.

Returns 1 CROS on a C500
Returns 2 CROS on a C500B
Returns 3 CROS on a C600
Returns 4 CROS under Windows NT
Returns 5 CROS under MSDOS

Failure < 0

Example c_sysconf sysconf_buf
int[4] datain
int[8] dataout
int value
...
sysconf_buf.sc_items=sizeof(sysconf_buf)
sysconf(sysconf_buf)
...
print("\nSystem type: '", sysid_string(sysconf_buf.sc_sysid),
"'\n")
print("Version: ", (sysconf_buf.sc_version >> 16), ".",\

(sysconf_buf.sc_version & 0xffff), ".",\
sysconf_buf.sc_build, "\n")

print("Click size: ", sysconf_buf.sc_click_size, "\n")
print("msec/tick: ", sysconf_buf.sc_msec_per_tick, "\n")

Category System Process Control: Operating System Management

tan
Description Calculates the tangent of an angle. Takes an argument in degrees.

310 Subprograms: Alphabetical Listing

Syntax func float tan(float x)

Parameter x a float - angle in degrees
Returns Success >= 0. The tangent of the argument.

Failure < 0
Example float x = 65.0 ;; value is in degrees

float y
y = tan(x)

Result 2.144507

RAPL-II TAN

See Also cos calculates the cosine
sin calculates the sine
atan2 calculates the arc tangent

Category Math

teach_menu
Description Use this command to select and teach variables for an application. Note that you

cannot use this command unless there is an open v3 file.
Library stp

Syntax export sub teach_menu()

Parameter None
Returns Success >= 0

Failure < 0
Example stp:teach_menu()

Category Pendant

time
Description Returns the current calendar time, or -1 if the time is not available. The calendar

time is given as a 32 bit integer and represents the number of elapsed seconds
since the beginning of Jan. 1, 1970.

Syntax func int time()

Returns Success >= 0 Returns the time
Failure < 0 -1

Example int t

t = time()
print (t, “\n”)

Result 834539842

See Also time-set sets the current time
time_to_str converts a system time code to an ASCII string

Category Date and Time

time_set
Description Sets the current time to the calendar time contained in now. The calendar time

represents the elapsed number of seconds since the beginning of Jan. 1, 1970.

Syntax command time_set(int now)

RAPL-3 Reference Guide 311

Parameter now an int - calendar time

Returns Success >= 0
Failure < 0

-EOK success

Example int t

t = time() ;; Get the current system time
t = t - 24 * 3600 ;; Set the time back to

;; same time yesterday
time_set (t)

See Also time returns the current calendar time
time_to_str converts a system time code to an ASCII string

Category Date and Time

time_to_str
Description Converts a system time code to an ASCII string of the form:

Day Mth DD HH:MM:SS YYYY
For example, time = 836211600 returns

Mon Jul 1 09:00:00 1996
The result is stored in dst, which must have space for at least 25 characters.

Syntax command time_to_str(var string[] dst, int time)

Parameter dst a string for storing date and time
time an int the system time

Returns Success >= 0
Failure < 0

Example int check
int time = 836211600
string[128] time_date

check = time_to_str(time_date, time)
printf(“{}\n”,time_date)

Result Mon Jul 1 09:00:00 1996

See Also set_time sets the current time
time returns the current calendar time

Category Date and Time
String Manipulation

tool_get
Description Gets the current tool transform, the redefinition of the origin point and the

orientation of the tool coordinate system.

The default origin is the centre of the surface of the mechanical interface (tool
flange). The transform has translational coordinates, x, y, and z, and rotational
coordinates, yaw, pitch, and roll. The data type used is a cloc which also has an
integer flag.

Syntax command tool_get(var cloc toolloc)

Parameter toolloc a cloc packed with the tool transform data

312 Subprograms: Alphabetical Listing

Returns Success >= 0 toolloc is packed with current transform data
Failure < 0

Example teachable cloc tool_trsfrm
cloc old_tool

tool_get(old_tool)
if old_tool != tool_trsform

tool_set(tool_trsform)
end if

Result Tool transform is set to the teachable cloc “tool_trsfrm”

RAPL-II Similar to TOOL

See Also tool_set re-defines the current tool offset
base_get gets the current base offset

Category Tool Transform and Base Offset

tool_set
Description Sets a tool transform, a redefinition of the origin point and the orientation of the

tool coordinate system.

The default origin is the centre of the surface of the mechanical interface (tool
flange).

The tool_set() command has the capacity for a 6 degree-of-freedom
transformation. The origin can be re-defined by translational coordinates: x, y,
and z. The orientation can be re-defined by rotational coordinates: yaw, pitch,
and roll. A cloc data type is used which requires an integer constant flag followed
by float constant coordinates.

Syntax command tool_set(var cloc toolloc)

Parameter toolloc the transform with flag, x, y, z, yaw, pitch, roll information: a cloc
flag the *: an int
x the distance along the X axis, in current units: a float
y the distance along the Y axis, in current units: a float
z the distance along the Z axis, in current units: a float
yaw the rotation around the Z axis, in degrees: a float
pitch the rotation around the Y axis, in degrees: a float
roll the rotation around the X axis, in degrees: a float

Returns Success >= 0
Failure < 0

Example tool_set(0, 2.0, 0.0, 3.0, 0.0, 0.0, 0.0)
;; for a tool with a tool centre-point 2.0 units along the X axis
;; and 3.0 units along the Z axis from the default origin

tool(0, 2.0, 0.0, 3.0, 0.0, 90.0, 0.0)
;; for the same tool as the previous example oriented with
;; a 90 degree pitch

RAPL-II Similar to TOOL.

See Also tool_get gets the current tool offset
shift_t alters coordinate(s)/orientation(s) in the tool frame of reference
base_set re-defines the world coordinate system

Category Tool Transform and Base Offset

RAPL-3 Reference Guide 313

tx
Alias jog_t ...

alias same as
tx(...) jog_t(TOOL_X, ...)

Description In the tool frame of reference, moves the tool centre point to the end point which
is a specified distance along the X axis, in current units (millimetres or inches).

The following table describes the positive X axis for each tool coordinate system.

arm position F3 coordinate system A465/A255 coordinate system

any (see below) X is perpendicular to (arises out of)
the tool flange.

ready X is vertical pointing down
parallel to negative world Z.

X is horizontal, pointing ahead,
past the front of the arm,
parallel to world X.

straight up X is horizontal, pointing ahead,
past the front of the arm
parallel to world X.

X is vertical pointing up
parallel to world Z.

This command, tx() is joint-interpolated. The tool centre point travels as a result
of various joint motions, not in a straight line.

For cartesian-interpolated (straight line) motion, see txs().
Syntax command tx(float distance)

Parameters distance the distance of travel, in current units: a float
Returns Success = 0

Failure < 0
Example move(base_point)

tx(200) ;; millimetres

RAPL-II No equivalent.
See Also txs jogs like tx, but in straight line motion

jog_t alias of tx and moves along other axes
ty jogs like tx, but along Y axis
tz jogs like tx, but along Z axis
depart moves along approach/depart axis
jog_w jogs like tx, but in world frame of reference

Category Motion

txs
Alias jog_ts ...

alias same as
txs() jog_ts(TOOL_X, ...)

Description In the tool frame of reference, moves the tool centre point along the X axis by the
specified distance in current units (millimetres or inches).
The following table describes the positive X axis for each tool coordinate system.

arm position F3 coordinate system A465/A255 coordinate system

314 Subprograms: Alphabetical Listing

any (see below) X is perpendicular to (arises out of)
the tool flange.

ready X is vertical pointing down
parallel to negative world Z.

X is horizontal, pointing ahead,
past the front of the arm,
parallel to world X.

straight up X is horizontal, pointing ahead,
past the front of the arm
parallel to world X.

X is vertical pointing up
parallel to world Z..

This command, txs(), is cartesian-interpolated (straight line).
For joint-interpolated (not straight) motion, see tx()

Syntax command txs(float distance)

Parameters distance the distance of travel, in current units or degrees: a float
Returns Success = 0

Failure < 0
Example move(base_point)

txs(200) ;; millimetres

RAPL-II No equivalent.
See Also tx jogs like txs, but joint interpolated

jog_ts alias of txs and moves along other axes
tys jogs like txs, but along Y axis
tzs jogs like txs, but along Z axis
depart moves along approach/depart axis
jog_ws jogs like txs, but in world frame of reference

Category Motion

ty
Alias jog_t ...

alias same as
ty(...) jog_t(TOOL_Y, ...)

Description In the tool frame of reference, moves the tool centre point to the end point which
is a specified distance along the Y axis, in current units (millimetres or inches).

The following table describes the positive Y axis for each tool coordinate system.

arm position F3 coordinate system A465/A255 coordinate system

any (see below) (see below)

ready Y is horizontal, pointing out to
one side of the arm,
parallel to positive world Y.

Y is horizontal, pointing out to
one side of the arm,
parallel to positive world Y.

straight up Y is horizontal, pointing out to
one side of the arm,
parallel to positive world Y.

Y is horizontal, pointing out to
one side of the arm,
parallel to positive world Y

This command, ty() is joint-interpolated. The tool centre point travels as a result
of various joint motions, not in a straight line.

For cartesian-interpolated (straight line) motion, see tys().

Syntax command ty(float distance)

Parameters distance the distance of travel, in current units: a float

RAPL-3 Reference Guide 315

Returns Success = 0
Failure < 0

Example move(base_point)
ty(200) ;; millimetres

RAPL-II No equivalent.

See Also tys jogs like ty, but in straight line motion
jog_t alias of ty and moves along other axes
tx jogs like ty, but along X axis
tz jogs like tx, but along Z axis
depart moves along approach/depart axis
jog_w jogs like ty, but in world frame of reference

Category Motion

tys
Alias jog_ts ...

alias same as
tys(...) jog_ts(TOOL_Y, ...)

Description In the tool frame of reference, moves the tool centre point along the Y axis by the
specified distance in current units (millimetres or inches).

The following table describes the positive Y axis for each tool coordinate system.

arm position F3 coordinate system A465/A255 coordinate system

any (see below) (see below)

ready Y is horizontal, pointing out to
one side of the arm,
parallel to positive world Y.

Y is horizontal, pointing out to
one side of the arm,
parallel to positive world Y.

straight up Y is horizontal, pointing out to
one side of the arm,
parallel to positive world Y.

Y is horizontal, pointing out to
one side of the arm,
parallel to positive world Y

This command, tys(), is cartesian-interpolated (straight line).

For joint-interpolated (not straight) motion, see ty()

Syntax command tys(float distance)

Parameters distance the distance of travel, in current units or degrees: a float

Returns Success = 0
Failure < 0

Example move(base_point)
tys(200) ;; millimetres

RAPL-II No equivalent.

See Also ty jogs like tys, but joint interpolated
jog_ts alias of tys and moves along other axes
txs jogs like tys, but along X axis
tzs jogs like tys, but along Z axis
depart moves along approach/depart axis
jog_ws jogs like tys, but in world frame of reference

Category Motion

316 Subprograms: Alphabetical Listing

tz
Alias jog_t ...

alias same as
tz(...) jog_t(TOOL_Z, ...)

Description In the tool frame of reference, moves the tool centre point to the end point which
is a specified distance along the Z axis, in current units (millimetres or inches).

The following table describes the positive Z axis for each tool coordinate system.

arm position F3 coordinate system A465/A255 coordinate system

any Z is perpendicular to (arises out of)
the tool flange.

(see below)

ready Z is horizontal, pointing ahead,
past the front of the arm,
parallel to world X.

Z is vertical pointing up,
parallel to positive world Z.

straight up Z is vertical pointing up,
parallel to positive world Z.

Z is horizontal, pointing back,
parallel to negative world X.

This command, tz() is joint-interpolated. The tool centre point travels as a result
of various joint motions, not in a straight line.

For cartesian-interpolated (straight line) motion, see tzs().

Syntax command tz(float distance)

Parameters distance the distance of travel, in current units: a float

Returns Success = 0
Failure < 0

Example move(base_point)
tz(200) ;; millimetres

RAPL-II No equivalent.

See Also tzs jogs like tz, but in straight line motion
jog_t alias of tz and moves along other axes
tx jogs like ty, but along X axis
ty jogs like ty, but along Y axis
depart moves along approach/depart axis
jog_w jogs like tz, but in world frame of reference

Category Motion

tzs
Alias jog_ts ...

alias same as
tzs(...) jog_ts(TOOL_Z, ...)

Description In the tool frame of reference, moves the tool centre point along the Z axis by the
specified distance in current units (millimetres or inches).

The following table describes the positive Z axis for each tool coordinate system.

RAPL-3 Reference Guide 317

arm position F3 coordinate system A465/A255 coordinate system

any Z is perpendicular to (arises out of)
the tool flange.

(see below)

ready Z is horizontal, pointing ahead,
past the front of the arm,
parallel to world X.

Z is vertical pointing up,
parallel to positive world Z.

straight up Z is vertical pointing up,
parallel to positive world Z.

Z is horizontal, pointing back,
parallel to negative world X.

This command, tzs(), is cartesian-interpolated (straight line).

For joint-interpolated (not straight) motion, see tz()

Syntax command tzs(float distance)

Parameters distance the distance of travel, in current units or degrees: a float

Returns Success = 0
Failure < 0

Example move(base_point)
tzs(200) ;; millimetres

RAPL-II No equivalent.

See Also tz jogs like tzs, but joint interpolated
jog_ts alias of tzs and moves along other axes
txs jogs like tzs, but along X axis
tys jogs like tzs, but along Y axis
depart moves along approach/depart axis
jog_ws jogs like tzs, but in world frame of reference

Category Motion

units_get
Description Gets the current setting of units of linear measure, either metric (millimetres) or

English (inches).

Syntax command units_get(var unit_type linear_measure)

Parameter linear_measure the variable

Returns Success >= 0
the parameter is loaded with one of:

UNITS_METRIC
UNITS_ENGLISH

Failure < 0

Example unit_type units
units_get(units)
if units == UNITS_METRIC

print(“Using metric units”)
else

print(“Using English units”)
end if

Result prints the current units

See Also units_set sets the current units
Category Robot Configuration

318 Subprograms: Alphabetical Listing

units_set
Description Sets current units to metric (millimetres) or English (inches).

Sets the system of measurement for linear distances. Does not affect the system
of measurement for rotational distances.

The default units are:
F3 Metric
A465, A255, earlier models English

If a cartesian location was taught in one system of units, it cannot be used in a
program with the other system of units. The units setting does not affect
precision locations.

Syntax command units_set(unit_type linear_measure)

Parameter linear_measure the system of units, of type unit_type, one of:
UNITS_METRIC
UNITS_ENGLISH

Returns Success >= 0
Failure < 0

Example unit_type units = UNITS_METRIC
...

units_set(units)

Result Configures robot for metric units

See Also units_get gets the current units

Category Robot Configuration

unlink
Description The unlink command removes a link to the file specified by path. If the link count

is zero, the file is deleted.
Syntax command unlink(var string[] path)

Parameter path A string defining the file and the path to the file
Returns Success >= 0

Failure < 0
-EINVAL the arguments were invalid
-ENOTDIR a component is not a directory
-ENOENT a component was not found
-EIO an I/O error occurred
-EAGAIN temporarily out of resources needed to do this
-EISDIR tried to unlink a directory
-EBUSY the file is presently open

Example string[32] path =”my_directory\\myfile”
int check, fd

check = open(fd, path,O_RDWR, M_READ|M_WRITE)
if (check) =

;; continue ...
end if

...
unlink(path)

Result Opens the file “path” - deletes it later

RAPL-3 Reference Guide 319

System Shell Same as: rm, del.

RAPL-II DELETE, DPROG

See Also link
open

Category File and Device System Management

unlock
Description Unlocks a specified axis.
Syntax command unlock(int axis)

Parameter axis the axis to be unlocked: an int
Returns Success >= 0

Failure < 0
Example ;;Unlock joint 1, move robot, lock joint 1

unlock(1)
... robot motion

lock(1)
RAPL-II Same as UNLOCK
See Also lock
Category Motion

unmount
Description Unmounts a mounted filesystem from directory dir.

Syntax command unmount(var string[] dir)

Parameter dir the mount point of the CROS directory: a string of var length

Returns Success >= 0
Failure < 0

-EPERM must be a privileged process to unmount()
-EINVAL invalid argument
-ENOTDIR the mount point is not a directory
-ENOENT a component was not found
-EIO an I/O error occurred
-EAGAIN temporarily out of resources needed to do this
-EBUSY the mounted filesystem is busy

Example string[32] directory = “my_directory”
unmount(directory)

System Shell Same as unmount.

RAPL-II No equivalent.

See Also mount mounts a file system on a directory

Category File and Device System Management

unsetenv
Description Deletes the selected environment string. (See the section on environ() for more

explanation.) (C500C only)

320 Subprograms: Alphabetical Listing

Syntax command unsetenv(string[] key)

Parameter There is one required parameter:

key The key (left hand side before the ‘=’ character) of the string
to delete.

Returns Sucess: 0. (even if the key is not found, 0 is returned.)
Failure < 0 (-ve error code)

Example ;; Delete “MyString” from the environment
unsetenv(“MyString”)

See Also environ(), getenv(), setenv()

Category Environment Variables

utime
Description Changes the modification time of a filesystem object.

Library syslib

Syntax command utime(string [] path, int modtime)

Parameters There are two required parameters:

path the path of the object to modify

modtime what time to reset the object’s modification
time to.

Returns >= 0 � Success
< 0 � Failure
Possible failure return codes are:
-EINVAL Invalid argument
–EBADF There is no open file corresponding to fd.
–EACCESS Access denied
–EIO I/O error
–ENOTDIR a component was not a directory
–ENOENT the object was not found

Example int t
t = time() ;; get the time NOW
...
utime(“/tmp/xfile”, t - 60) ;; reset the timestamp to one minute
ago
...

See Also mtime()

Category File and Device System Management

v3_save_on_exit
Description Sets the RAPL-3 interpreter so that when the program exits, all of its final v3

variable values will be saved to the specified v3 file. Note that the automatic save
will fail if the file is not a valid v3 file with entries corresponding to each
teachable variable in the current program.
The v3_save_on_exit() mechanism can be used to simulate persistent variables
like the RAPL-II language had.

RAPL-3 Reference Guide 321

Syntax command v3_save_on_exit(int fd)

Parameter fd -- file descriptor of the open v3 file (must be open for both reading and
writing.) If fd == -1, then the call cancels a previously requested save-on-exit.

Returns Success >= 0
Failure < 0 (-ve error code)

Example int fd
open(fd, “whatever.v3”, O_RDWR, 0) ;; open my v3 file
v3_save_on_exit(fd)

Category v3 files

v3_vars_save
Description Writes the current program’s teachable variables to the file open on fd. The

command will fail if the file is not a valid v3 file with entries corresponding to the
current programs teachable variables. Note that the file (fd) is always closed after
the command call whether the command succeeds or fails.

Syntax command v3_vars_save(int fd)

Parameter fd the file open

Returns Success =0
Failure < -ve error descriptor

Example int fd
open(fd, "myname.v3", O_RDWR, 0)
v3_vars_save(fd)

See Also vars_save

Category v3 Files

va_arg_get
Description Gets the next argument into dst (converting to vat if required), advances

va_next_ptr, and decrements va_count.

Used for subroutines and functions that have a variable number of arguments.

Syntax command va_arg_get(var int va_count, var void@ va_next_ptr, \
va_types vat, void@ dst)

Parameters va_count an int
va_next_ptr void pointer
vat one of

global typedef va_types enum
va_t_void, ;; void
va_t_int, ;; int
va_t_float, ;; float
va_t_string, ;; string[]; (can't happen)
va_t_ploc, ;; ploc
va_t_cloc, ;; cloc
va_t_gloc, ;; gloc
va_t_unknown, ;; unknown; (can't happen)

va_t_void_p = 0x10, ;; void@
va_t_int_p, ;; int@

322 Subprograms: Alphabetical Listing

va_t_float_p, ;; float@
va_t_string_p, ;; string[]@
va_t_ploc_p, ;; ploc@
va_t_cloc_p, ;; cloc@
va_t_gloc_p, ;; gloc@

va_t_ptr ;; other pointer type
end enum

dst void pointer

Returns Success >= 0
Failure < 0
-ERANGE if there are no arguments left to get
-EINVAL if there is a problem getting the type of argument

Category System Process Control: Operating System

va_arg_type
Description Returns a type descriptor for the next varargs argument.

Used for subroutines and functions that have a variable number of arguments.
Syntax func va_types va_arg_type(void@ va_next_ptr)

Parameters va_next_ptr void pointer
Returns Success >= 0. An enumeration constant (type va_types)

va_t_void ;; void
va_t_int ;; int
va_t_float ;; float
va_t_string ;; string[] (can’t happen)
va_t_cloc ;; cloc
va_t_ploc ;; ploc
va_t_gloc ;; gloc
va_t_unknown ;; unknown (can’t happen)
va_t_void_p ;; void@
va_t_int_p ;; int@
va_t_float_p ;; float@
va_t_string_p ;; string[]@
va_t_cloc_p ;; cloc@
va_t_ploc_p ;; ploc@
va_t_gloc_p ;; gloc@
va_t_ptr ;; other pointer type

Failure < 0
Example sub do_something(int a, ...)

int b
...
case va_count:
of 0:

b = 0 ;; default
else

if (va_type_arg(va_next_ptr) == va_t_int)
va_get_arg(va_count, va_next_ptr, va_t_int, &b)

else ;; wrong type passed
b = 0 ;; use default

end if
end case

...
end sub

Category System Process Control: Operating System

RAPL-3 Reference Guide 323

var_teach
Description Teach the variable whose name is “name”. Returns True if successful, False if

not correctly taught or negative if not found or otherwise in error. Refer also to
the var_teach_v command.

Library stp

Syntax export command var_teach(var string[] name, int index_1, int
index_2)

Parameter name name of the variable to be taught
index_1 first argument of an array
index_2 second argument in a two dimensional array

Returns Success >= 0 True if taught, False if not taught
Failure < 0 error descriptor

Example ...
stp:var_teach(“new_array”,1,1)

...

See Also var_teach_v

Category Pendant

vars_save
Description Invokes the v3_vars_save() operation on the currently open application v3 file.

This presupposes that the calling program is open application and that the
variables in the open application are actually desired variables. If this
assumption is false the command will likely fail or do something unpredictable
(and NOT useful.).

Library stp

Syntax export command var_save()

Parameter No parameters

Returns Success >= 0 Returns 0 if successful
Failure < 0

-1 no application open
Returns error descriptor

Example int fd
open(fd, "myname.v3", O_RDWR, 0)
...

stp:vars_save()
...

Result Saves the open application’s variables to file fd.

See Also v3_vars_save

Category Pendant

verstring_get
Description Gets the current kinematics version string.

324 Subprograms: Alphabetical Listing

Syntax command verstring_get(var string[] s)

Parameters s the string variable for the kinematics version

Returns Success >= 0
the variable is packed

Failure < 0

Category Status
Robot Configuration

waitpid
Description Waits for the child process wpid to complete. If wpid=W_ANY, waits for any child

process to complete. If status is not NULL, the child process status is stored in
status@..

Syntax func int waitpid(int wpid, int@ status, int options)

Parameters wpid an int - the child process
status pointer to an int
options

0
W_ANY waits for any child
W_NOHANG waitpid checks for child completion and returns immediately

Returns Success >= 0
 positive pid the pid of the child, if the requested child terminated
 0 (–EOK) if W_NOHANG is in effect and no child has terminated
Failure < 0

-ESRCH no process with that pid exists
-ECHILD no child process exists
-EINTR was interrupted by a signal

Example int pid
...
pid = split()
if pid == 0
 ;; Child process
 execl(“/bin/ls”)
 exit(0)
else
 ;; Parent waits for child
 while waitpid(pid, NULL, 0) == 0
 end while
 ;; Finish Code
end if

See Also WEXITSTATUS
WIFEXITED
WIFSIGNALED
WTERMSIG

Category System Process Control: Single and Multiple Processes

RAPL-3 Reference Guide 325

WEXITSTATUS
Description If status is the child status returned by waitpid, then WEXITSTATUS returns the

actual exit code of the child process that exited. (This is simply the lower byte of
status.)

Syntax func int WEXITSTATUS(int status)

Parameter status an int - child status

Returns Success >= 0
Failure < 0

Example int status
...
status = WEXITSTATUS(status)

Category System Process Control: Single and Multiple Processes

WIFEXITED
Description WIFEXITED returns 1 if status indicates that the child process exited, and

returns 0 otherwise.

Syntax func int WIFEXITED(int status)

Parameters status an int - child process status

Returns Success >= 0
Failure < 0

Example int status
...
if WIFEXITED(status)

;; Process exited
else

;; Process was signaled
end if

Category System Process Control: Single and Multiple Processes

WIFSIGNALED
Description WIFSIGNALED returns 1 if the child process was signal-terminated, and returns

0 otherwise.

Syntax func int WIFSIGNALED(int status)

Parameters status an int - child process status

Returns Success >= 0
Failure < 0

Example int status
...
if WIFSIGNALED(status)

;; Process was signaled
else

;; Process exited
end if

326 Subprograms: Alphabetical Listing

See Also WTERMSIG returns the signal number

Category System Process Control: Single and Multiple Processes
Signal Handling

world_to_joint
Description Converts a location from world coordinates to joint angles. Used if a location of

one type needs to be converted to another type for checking or other use within
the program.

Syntax command world_to_joint(cloc world, var float[8] joint)

Parameters world the location in world coordinates: a cloc
joint the location in joint angles (an array of floats)

Returns Success >= 0
 joint is packed
Failure < 0

Example float[8] joints1
teachable cloc world1
...
world_to_joint(world1, joints1)

Result joint1 is packed with the appropriate joint data

RAPL-II Similar to SET with different location types.

See Also joint_to_world converts joint angles to world coordinates
world_to_motor converts world coordinates to motor pulses

Category Location: Kinematic Conversions

world_to_motor
Description Converts a location from world coordinates to motor pulses. Used if a location of

one type needs to be converted to another type for checking or other use within
the program.

Syntax command world_to_motor(cloc world, var ploc motor)

Parameters world the location in world coordinates: a cloc
motor the location in motor pulses: a ploc

Returns Success >= 0
 motor is packed

Failure < 0

Example ploc motor1
teachable cloc world1
...
world_to_joint(world1, motor1)

Result motor1 is packed with the appropriate joint coordinate data

RAPL-II Similar to SET with different location types.

See Also motor_to_world converts motor pulses to world coordinates
world_to_joint converts world coordinates to joint angles

Category Location: Kinematic Conversions

RAPL-3 Reference Guide 327

write
Description Attempts to write nwords from buf to the file descriptor fd. If the number of

words specified in nwords cannot be written the command performs a blocking
write, unless the file descriptor was opened with mode O_NONBLOCK. After
writing, the file position is increased by the number of words written. This
provides a sequential move through the file.
write() handles 4-byte words. writes() handles characters.
Similar to send() which is used with sockets.

Syntax command write(int fd, void@ buf, int nwords)

Returns Success >= 0
Failure < 0

-EINVAL the arguments were invalid (ie., -ve fd)
-EBADF the file descriptor isn't open
-EACCESS not open for writing
-ESPIPE can't r/w on a socket
-EIO an I/O error occurred
-ENOSPC out of space on the device
-ENOMEM (mfs only) out of memory
-EAGAIN (nonblocking I/O) not ready to write any bytes
-EINTR was interrupted by a signal

Example int fd
int[10] buf
...
open (fd, “filename.txt”, O_RDONLY, 0)
write (fd, buf, sizeof(buf))

See Also read read words from a file
writes write a string to a file
send write to a socket

Category File Input and Output: Unformatted Output

writeread
Description Writes wlen number of words to the file descriptor fd and then reads at most rlen

number of words from the file descriptor fd.
This command may or may not block, depending on the flags (O_NONBLOCK)
used when opening the file descriptor fd and the device driver (which may not
support blocking or non-blocking modes). Many devices do not support this call,
and with those devices writeread() returns -ENODEV on invocation. For example,
all the file systems (MFS, NFS, etc.) do not support writeread().

Syntax command writeread(int fd, void@ wbuf, int wlen, void@ rbuf, int
rlen)

Returns Success >= 0 Returns the number of words read.
Failure < 0

-EINVAL the arguments were invalid (ie., -ve fd)
-EBADF the file descriptor isn't open
-EACCESS not open for reading and writing
-ESPIPE can't r/w on a socket
-ENODEV this is not a device that supports writeread().
-EIO an I/O error occurred

See Also write write words from a buffer to the file
writes write a string to a file

328 Subprograms: Alphabetical Listing

read read words from a file
reads reads a string from a file

Category File Input and Output: Unformatted Output

writes
Description Writes the string s to the file indicated by fd. This is different from the write

command in that a string is used, and the starting location start is the first
character of the string to be sent.

Syntax command writes(int fd, var string[] s, int start)

Returns Success >= 0 Returns the number of characters written to the file
Failure < 0 Returns a negative error code if the write fails.

Example string[] buf = “only writes_test”
int fd
open (fd, “/temp/writes_test”, O_RDONLY, 0)
;; Only write “writes_test”
writes (fd, buf, 5) ;; start from the character ‘w’

See Also write write words to a file
Category File Input and Output: Unformatted Output

WTERMSIG
Description Returns the actual signal number that terminated a WIFSIGNALED() process.
Syntax func signal_code WTERMSIG(int status)

Returns Success >= 0, one of:
SIGKILL = 1
SIGSEGV = 2
SIGILL = 3
SIGFPE = 4
SIGSYS = 5
SIGABRT = 6
SIGINT = 7
SIGALRM = 8
SIGHUP = 9
SIGPIPE = 10
SIGSOCK = 11
SIGRPWR = 12
SIG13 = 13
SIG14 = 14
SIG15 = 15
SIG16 = 16
SIGCHLD = 17
SIG18 = 18
SIG19 = 19
SIG20 = 20
SIG21 = 21
SIG22 = 22
SIG23 = 23
SIG24 = 24

Failure < 0
Category System Process Control: Single and Multiple Processes

Signal Handling

RAPL-3 Reference Guide 329

wx
Alias jog_w ...

alias same as
wx(...) jog_w(WORLD_X, ...)

Description In the world frame of reference, moves the tool centre point to the end point
which is a specified distance along the X axis, in current units (millimetres or
inches). This command, wx() is joint-interpolated. The tool centre point travels as
a result of various joint motions, not in a straight line.

For cartesian-interpolated (straight line) motion, see wxs().

Syntax command wx(float distance)

Parameters distance the distance of travel, in current units: a float
Returns Success = 0

Failure < 0
Example move(base_point)

wx(200) ;; millimetres

RAPL-II Similar to JOG and X, without straight line parameter.
See Also wxs jogs like wx, but in straight line motion

jog_w alias of wx and moves along other axes
wy jogs like wx, but along Y axis
wz jogs like wx, but along Z axis
jog_t jogs like wx, but in tool frame of reference
joint moves by joint degrees
motor moves by encoder pulses

Category Motion

wxs
Alias jog_ws ...

alias same as
wxs(...) jog_ws(WORLD_X, ...)

Description In the world frame of reference, moves the tool centre point along the X axis by
the specified distance in current units (millimetres or inches). This command,
wxs(), is cartesian-interpolated (straight line).

For joint-interpolated (not straight) motion, see wx()

Syntax command wxs(float distance)

Parameters distance the distance of travel, in current units or degrees: a float

Returns Success = 0
Failure < 0

Example move(base_point)
wxs(200) ;; millimetres

RAPL-II Similar to JOG and X, with straight line parameter.

See Also wx jogs like wxs, but joint interpolated
jog_ws alias of wxs and moves along other axes
wys jogs like wxs, but along Y axis

330 Subprograms: Alphabetical Listing

wzs jogs like wxs, but along Z axis
jog_ts jogs like wxs, but in tool frame of reference
joint moves by joint degrees
motor moves by encoder pulses

Category Motion

wy
Alias jog_w ...

alias same as
wy(...) jog_w(WORLD_Y, ...)

Description In the world frame of reference, moves the tool centre point to the end point
which is a specified distance along the Y axis, in current units (millimetres or
inches). This command, wy() is joint-interpolated. The tool centre point travels as
a result of various joint motions, not in a straight line.

For cartesian-interpolated (straight line) motion, see wys().

Syntax command wy(float distance)

Parameters distance the distance of travel, in current units: a float

Returns Success = 0
Failure < 0

Example move(base_point)
wy(200) ;; millimetres

RAPL-II Similar to JOG and Y, without straight line parameter.

See Also wys jogs like wy, but in straight line motion
jog_w alias of wy and moves along other axes
wx jogs like wy, but along X axis
wz jogs like wy, but along Z axis
jog_t jogs like wy, but in tool frame of reference
joint moves by joint degrees
motor moves by encoder pulses

Category Motion

wys
Alias jog_ws ...

alias same as
wys(...) jog_ws(WORLD_Y, ...)

Description In the world frame of reference, moves the tool centre point along the Y axis by
the specified distance in current units (millimetres or inches). This command,
wys(), is cartesian-interpolated (straight line).

For joint-interpolated (not straight) motion, see wy()

Syntax command wys(float distance)

Parameters distance the distance of travel, in current units or degrees: a float

RAPL-3 Reference Guide 331

Returns Success = 0
Failure < 0

Example move(base_point)
wys(200) ;; millimetres

RAPL-II Similar to JOG and Y, with straight line parameter.

See Also wy jogs like wys, but joint interpolated
jog_ws alias of wys and moves along other axes
wxs jogs like wys, but along X axis
wzs jogs like wys, but along Z axis
jog_ts jogs like wys, but in tool frame of reference
joint moves by joint degrees
motor moves by encoder pulses

Category Motion

wz
Alias jog_w ...

alias same as
wz(...) jog_w(WORLD_Z, ...)

Description In the world frame of reference, moves the tool centre point to the end point
which is a specified distance along the Z axis, in current units (millimetres or
inches). This command, wz() is joint-interpolated. The tool centre point travels as
a result of various joint motions, not in a straight line.

For cartesian-interpolated (straight line) motion, see wzs().

Syntax command wz(float distance)

Parameters distance the distance of travel, in current units: a float

Returns Success = 0
Failure < 0

Example move(base_point)
wz(200) ;; millimetres

RAPL-II Similar to JOG and Z, without straight line parameter.

See Also wzs jogs like wz, but in straight line motion
jog_w alias of wz and moves along other axes
wx jogs like wz, but along X axis
wy jogs like wz, but along Y axis
jog_t jogs like wz, but in tool frame of reference
joint moves by joint degrees
motor moves by encoder pulses

Category Motion

wzs
Alias jog_ws ...

alias same as
wzs(...) jog_ws(WORLD_Z, ...)

332 Subprograms: Alphabetical Listing

Description In the world frame of reference, moves the tool centre point along the Z axis by
the specified distance in current units (millimetres or inches). This command,
wzs(), is cartesian-interpolated (straight line).

For joint-interpolated (not straight) motion, see wz()

Syntax command wzs(float distance)

Parameters distance the distance of travel, in current units or degrees: a float

Returns Success = 0
Failure < 0

Example move(base_point)
wzs(200) ;; millimetres

RAPL-II Similar to JOG and Z, with straight line parameter.

See Also wz jogs like wzs, but joint interpolated
jog_ws alias of wzs and moves along other axes
wxs jogs like wzs, but along X axis
wys jogs like wzs, but along Y axis
jog_ts jogs like wzs, but in tool frame of reference
joint moves by joint degrees
motor moves by encoder pulses

Category Motion

xpulses_get
Description Gets xpulses, the number of encoder pulses per revolution of a motor, for all

axes.

Syntax command xpulses_get(var int[8] pulses)

Parameter pulses the pulses of all axes: an array of ints

Returns Success >= 0.
The array ‘pulses’ is packed.

Failure < 0

See Also xpulses_set sets the number of pulses per revolution for an axis

Category Robot Configuration

xpulses_set
Description For an axis, sets xpulses, the number of encoder pulses per revolution of the

motor.

Syntax command xpulses_set(int axis , int xpulses)

Parameters axis the axis being set: an int
xpulses the number of pulses per revolution: an int

Returns Success >= 0
Failure < 0

Example xpulses_set(8,1000)

RAPL-II @XPULSES

See Also configaxis configures an axis including sets pulses
xpulses_get gets the number of pulses per revolution for all axes

RAPL-3 Reference Guide 333

Category Robot Configuration

xratio_get
Description Gets xratio, the ratio of the number of motor turns (revolutions) per unit of joint

displacement (degrees for robot joints and carousels, mm or inch for track).

Syntax command xratio_get(var float[8] ratio)

Parameter ratio the ratios for all axes: an array of up to 8 floats

Returns Success >= 0. the parameter is packed
Failure < 0

Example float[8] ratios
int check
;; get pulse to motion conversions
check = xratio_get(ratios)

See Also xratio_set sets the ratio of conversion

Category Robot Configuration

xratio_set
Description Sets xratio, the ratio of the number of motor turns (revolutions) per unit of joint

displacement (degrees for robot joints and carousels, mm or inch for track).

Syntax command xratio_set(int axis , float xratio)

Parameters axis the axis being set: an int
xratio the ratio of conversion: a float

Returns Success >= 0
Failure < 0

Example xratio_set(8,11.5)

RAPL-II @XRATIO

See Also configaxis configures an axis including sets ratio
xratio_get gets the ratio of conversion

Category Robot Configuration

xrot
Alias jog_w ...

alias same as
xrot(...) jog_w(WORLD_XROT, ...

)

Description In the world frame of reference, rotates the tool around the X axis by the specified
degrees.

This command, xrot(), is joint-interpolated. The end-point is determined and the
tool travels to it as a result of various joint motions. The start point and end
point for the tool centre point are the same (no change in distance along the axis

334 Subprograms: Alphabetical Listing

or angle between the axis and the tool), but the start position and end position of
the tool are different.

For cartesian-interpolated (straight line) motion, see xrots().

Syntax command xrot(float distance)

Parameters distance the distance of travel, in current units or degrees: a float

Returns Success = 0
Failure < 0

Example appro(centre)
pitch(45) ;; pitch around tool point
xrot(45) ;; rotate around world X axis

RAPL-II Similar to JOG, without straight line parameter.

Also similar to ROLL. In RAPL-II this name was used for a rotation in the world
frame of reference. In RAPL-3, the world rotation is called xrot and the tool
rotation is called roll.

See Also xrots like xrot, but in straight-line mode
jog_w like xrot and around and along all axes
yrot rotates around world Y axis
zrot rotates around world Z axis
jog_t jogs, but in tool frame of reference
joint moves by joint degrees
motor moves by encoder pulses

Category Motion

xrots
Alias jog_ws ...

alias same as
xrots(...) jog_ws(WORLD_XROT, ...

)

Description In the world frame of reference, rotates the tool around the X axis by the specified
degrees.

This command, xrots(), is cartesian-interpolated (straight-line). The tool centre
point travels in a straight line along the axis to the end point.

For joint-interpolated (not straight) motion, see xrot().

Syntax command xrots(float distance)

Parameters distance the distance of travel, in current units or degrees: a float

Returns Success = 0
Failure < 0

Example appro(centre)
pitch(45) ;; pitch around tool point
xrots(45) ;; rotate around world X axis

RAPL-II Similar to JOG, with straight line parameter.

Also similar to ROLL. In RAPL-II this name was used for a rotation in the world
frame of reference. In RAPL-3, the world rotation is called xrot and the tool
rotation is called roll.

RAPL-3 Reference Guide 335

See Also xrot like xrots, but joint-interpolated
jog_w like xrots and around and along all axes
yrots rotates around world Y axis
zrots rotates around world Z axis
jog_t jogs, but in tool frame of reference
joint moves by joint degrees
motor moves by encoder pulses

Category Motion

yaw
Alias jog_t ...

alias same as
yaw(...) jog_t(TOOL_YAW, ...)

Description In the tool frame of reference, rotates around the normal axis, by the specified
number of degrees.

motion axis

common name F3
coordinate
system

A465/A255
coordinate
system

yaw normal X Z

This command, yaw(), is joint-interpolated. The end position is determined and
the tool travels to it as a result of various joint motions. The start point and end
point for the tool centre point are the same (no change in distance along the axis
or angle between the axis and the tool), but the start position and end position of
the tool are different by the amount of rotation.

For cartesian-interpolated (straight line) motion, see yaws().

Syntax command yaw(float distance)

Parameter distance the amount of rotation in degrees: a float

Returns Success = 0
Failure < 0

Example yaw(45)

yaw(-8.25)

Application Shell Same as yaw.

RAPL-II No equivalent. In RAPL-II, YAW performed a different motion. See zrot.

See Also yaws moves around the tool normal axis, but in straight line motion
pitch moves around the tool orientation axis
roll moves around the tool approach/depart axis

Category Motion

yaws
Alias jog_ts ...

alias same as

336 Subprograms: Alphabetical Listing

yaws(...) jog_ts(TOOL_YAW, ...)

Description In the tool frame of reference, rotates around the normal axis, by the specified
number of degrees.

motion axis

common name F3
coordinate
system

A465/A255
coordinate
system

yaw normal X Z

This command, yaws(), is cartesian-interpolated (straight-line) motion. The tool
centre point stays on the axis, in the same place, while the tool rotates around
the axis.

For joint-interpolated motion, see yaw().

Syntax command yaws(float distance)

Parameter distance the amount of rotation in degrees: a float

Returns Success = 0
Failure < 0

Example yaws(45)

yaws(-57.5)

Application Shell Same as yaws.

RAPL-II No equivalent. In RAPL-II, YAW performed a different motion. See zrots.

See Also yaw moves around the tool normal axis, but joint-interpolated
pitchs moves around the tool orientation axis in straight line motion
rolls moves around the tool approach/depart axis in straight line motion

Category Motion

yrot
Alias jog_w ...

alias same as
yrot(...) jog_w(WORLD_YROT, ...

)

Description In the world frame of reference, rotates the tool around the Y axis by the specified
degrees.

This command, yrot(), is joint-interpolated. The end-point is determined and the
tool travels to it as a result of various joint motions. The start point and end
point for the tool centre point are the same (no change in distance along the axis
or angle between the axis and the tool), but the start position and end position of
the tool are different.

For cartesian-interpolated (straight line) motion, see yrots().

Syntax command yrot(float distance)

Parameter distance the distance of travel, in current units or degrees: a float

Returns Success = 0
Failure < 0

RAPL-3 Reference Guide 337

Example appro(centre)
pitch(45) ;; pitch around tool point
yrot(45) ;; rotate around world Y axis

RAPL-II Similar to JOG, without straight line parameter.

Also similar to PITCH. In RAPL-II this name was used for a rotation in the world
frame of reference. In RAPL-3, the world rotation is called yrot and the tool
rotation is called pitch.

See Also yrots like yrot, but in straight-line mode
jog_w like yrot and around and along all axes
xrot rotates around world X axis
zrot rotates around world Z axis
jog_t jogs, but in tool frame of reference
joint moves by joint degrees
motor moves by encoder pulses

Category Motion and Locations: Motion

yrots
Alias jog_ws ...

alias same as
yrots(...) jog_ws(WORLD_YROT, ...

)

Description In the world frame of reference, rotates the tool around the Y axis by the specified
degrees.

This command, yrots(), is cartesian-interpolated (straight-line). The tool centre
point travels in a straight line along the axis to the end point.

For joint-interpolated (not straight) motion, see yrot().

Syntax command yrots(float distance)

Parameter distance the distance of travel, in current units or degrees: a float

Returns Success = 0
Failure < 0

Example appro(centre)
pitch(45) ;; pitch around tool point
yrots(45) ;; rotate around world Y axis

RAPL-II Similar to JOG, with straight line parameter.

Also similar to PITCH. In RAPL-II this name was used for a rotation in the world
frame of reference. In RAPL-3, the world rotation is called yrot and the tool
rotation is called pitch.

See Also yrot like yrots, but joint-interpolated
jog_w like yrots and around and along all axes
xrots rotates around world X axis
zrots rotates around world Z axis
jog_t jogs, but in tool frame of reference
joint moves by joint degrees
motor moves by encoder pulses

Category Motion

338 Subprograms: Alphabetical Listing

zero
Description Sets all the current motor position registers to 0.

Syntax command zero()

Returns Success >= 0
Failure < 0

Example zero()

RAPL-II Same as @ZERO.

See Also here stores a location in a location variable
pos_get gets the position of the robot
pos_set sets the position of the robot to any value

Category Calibration
Home

zrot
Alias jog_w ...

alias same as
zrot(...) jog_w(WORLD_ZROT,...)

Description In the world frame of reference, rotates the tool around the Z axis by the specified
degrees.

This command, zrot(), is joint-interpolated. The end-point is determined and the
tool travels to it as a result of various joint motions. The start point and end
point for the tool centre point are the same (no change in distance along the axis
or angle between the axis and the tool), but the start position and end position of
the tool are different.

For cartesian-interpolated (straight line) motion, see zrots().

Syntax command zrot(float distance)

Parameter distance the distance of travel, in current units or degrees: a float

Returns Success = 0
Failure < 0

Example appro(centre)
pitch(45) ;; pitch around tool point
zrot(45) ;; rotate around world Z axis

RAPL-II Similar to JOG, without straight line parameter.

Also similar to YAW. In RAPL-II this name was used for a rotation in the world
frame of reference. In RAPL-3, the world rotation is called zrot and the tool
rotation is called yaw.

See Also zrots like zrot, but in straight-line mode
jog_w like zrot and around and along all axes
xrot rotates around world X axis
yrot rotates around world Y axis
jog_t jogs, but in tool frame of reference
joint moves by joint degrees
motor moves by encoder pulses

Category Motion

RAPL-3 Reference Guide 339

zrots
Alias jog_ws ...

alias same as
zrots(...) jog_ws(WORLD_ZROT, ...

)

Description In the world frame of reference, rotates the tool around the Z axis by the specified
degrees.

This command, zrots(), is cartesian-interpolated (straight-line). The tool centre
point travels in a straight line along the axis to the end point.

For joint-interpolated (not straight) motion, see zrot().

Syntax command zrots(float distance)

Parameter distance the distance of travel, in current units or degrees: a float

Returns Success = 0
Failure < 0

Example appro(centre)
pitch(45) ;; pitch around tool point
zrots(45) ;; rotate around world Z axis

RAPL-II Similar to JOG, with straight line parameter.

Also similar to YAW. In RAPL-II this name was used for a rotation in the world
frame of reference. In RAPL-3, the world rotation is called zrot and the tool
rotation is called yaw.

See Also zrot like zrots, but joint-interpolated
jog_w like zrots and around and along all axes
xrots rotates around world X axis
yrots rotates around world Y axis
jog_t jogs, but in tool frame of reference
joint moves by joint degrees
motor moves by encoder pulses

Category Motion

340 Subprograms: Alphabetical Listing

A P P E N D I C E S

Signals

Symbol Number Description Default Action
SIGKILL 1 Kill

(cannot be masked or modified)
Terminate

SIGSEGV 2 Segmentation violation Terminate

SIGILL 3 Illegal instruction Terminate

SIGFPE 4 Floating point exception Terminate

SIGSYS 5 Bad argument to system call Terminate

SIGABRT 6 Abort Terminate

SIGINT 7 Interrupt Terminate

SIGALRM 8 Alarm clock Terminate

SIGHUP 9 Hang up Terminate

SIGPIPE 10 Write to pipe,
but no process to read it

Terminate

SIGSOCK 11 Write to socket,
but no process to read it

Terminate

SIGRPWR 12 Robot power fail Terminate

SIG13 13 Undefined Terminate

SIG14 14 Undefined Terminate

SIG15 15 Undefined Terminate

SIG16 16 Undefined Terminate

SIGCHLD 17 Child process died Ignore

SIG18 18 Undefined Ignore

SIG19 19 Undefined Ignore

SIG20 20 Undefined Ignore

SIG21 21 Undefined Ignore

SIG22 22 Undefined Ignore

SIG23 23 Reserved for system use Ignore
(non-interruptible)

SIG24 24 Reserved for system use Ignore
(will interrupt a process blocked on
socket i/o)

Any signal interrupts msleep() or waitpid().
Signal <= 8, SIGKILL to SIGALRM, interrupts WAITIO, WAITSOCK, WAITSEM.
Signal 11, SIGSOCK, interrupts WAITSOCK.
WAITIO, WAITSOCK, and WAITSEM are states that a process can be in.

342 Subprograms: Alphabetical Listing

342

	Title Page
	A. CRS LICENCE AGREEMENT
	B. CRS ROBOTICS CORPORATION (“CRS”) SOFTWARE LICENCE
	C. LIMITED WARRANTY
	Contents at a Glance
	Contents
	Preface
	Documentation Conventions
	Text and Programming Code

	Related Resources

	CHAPTER 1
	General Program Format
	The Main Program
	Lines of a Program
	Comments
	Labels
	Keywords

	CHAPTER 2
	Data Types and Variables
	Basic Data Types
	Identifiers
	Declarations
	Strings
	Arrays
	Teachables
	User-Defined Types
	Pointers
	Enumerated Types
	Record Structures
	Unions
	Initializers
	Named Constants
	Sizeof() Function
	Dimof() Function

	CHAPTER 3
	Expressions, Assignment, and Operators
	Variable References
	Assignment statements
	Operators
	Type Casts

	CHAPTER 4
	Constants
	Numeric Constants
	String Constants
	Location Constants

	CHAPTER 5
	Control Flow

	CHAPTER 6
	Subroutines, Functions and Commands
	Subprograms
	Kinds of Subprograms
	Parameters
	Func, Sub, and Command Prototypes
	Libraries
	Variable and Subprogram Scope
	Relevant Statements

	CHAPTER 7
	Preprocessor Directives
	File Inclusion
	Preprocessor Directives in General
	The Preprocessor Directives
	Using the Compiler from the Command Line

	CHAPTER 8
	Structured Exception Handling
	try-except Construct
	Related Keywords and Subprograms

	CHAPTER 9
	Library Subprograms
	General
	RAPL-II to RAPL-3

	Subprograms: Category Listing
	Analog Input
	Calibration
	Configuration File Handling
	Date and Time
	Device Input and Output
	Digital Input and Output
	Environment Variables
	Error Message Handling
	File Input and Output
	File and Device System Management
	Front Panel
	Gripper
	Home
	Location
	Math
	Memory
	Motion
	Pendant
	Pointer Conversion and Function Pointers
	Robot Configuration
	Signals
	Stance
	Status
	String Manipulation
	System Process Control
	Tool Transform and Base Offset
	v3 Files
	Win 32

	Subprograms: Alphabetical Listing
	abort
	accel_get
	accels_set
	access
	acos
	addr_decode
	addr_to_file
	addr_to_line
	align
	analogs_get
	app_close
	app_open
	appro
	appros
	argc
	argv
	armpower
	asin
	atan2
	axes_get
	axes_set
	axis_status
	base_get
	base_set
	boardtemp_get
	build_cloc
	build_ploc
	calibrate
	call_ifunc
	caldry
	 calzc
	cfg_load
	cfg_load_fd
	cfg_save
	cfg_safe_fd
	chdir
	chmod
	chr_is_lower
	chr_is_upper
	chr_to_lower
	chr_to_upper
	clear_error
	close
	closenp
	conf_get
	confirm_menu
	connectnp
	cos
	cpath
	ctl_get
	ctl_give
	ctl_rel
	ctpath
	ctpath_go
	deg
	delay
	depart
	departs
	disonnectnp
	dup
	dup2
	environ
	err_compare
	err_compose
	err_get_b1
	err_get_b2
	err_get_code
	err_get_subsys
	error_addr
	error_code
	error_line
	error_file
	execl
	execv
	exit
	fabs
	finish
	flock
	fprint
	fprintf
	freadline
	fstat
	ftime
	gains_get
	gains_set
	get_ps
	getenv
	getopt
	getpid
	getppid
	grip
	grip_cal
	grip_close
	grip_finish
	grip_open
	gripdist_get
	gripdist_set
	gripisfinished
	gripper_stop
	griptype_get
	griptype_set
	halt
	heap_set
	heap_size
	heap_space
	here
	home
	homezc
	hsw_offset_get
	iabs
	input
	inputs
	ioctl
	jog_t
	job_ts
	jog_w
	jog_ws
	joint
	joint_to_motor
	joint_to_world
	jointlim_get
	jointlim_set
	limp
	linacc_get
	linacc_set
	link
	linklen_get
	linklen_set
	linspd_get
	linspd_set
	ln
	loc_cdata_get
	loc_cdata_set
	loc_check
	loc_class_get
	loc_class_set
	loc_flags_get
	loc_flags_set
	loc_machtype_get
	loc_machtype_set
	loc_pdata_get
	loc_pdata_set
	loc_re_check
	lock
	log
	MAJOR
	malarm
	maxvel_get
	maxvel_set
	maxvels_get
	maxvels_set
	mem_alloc
	mem_free
	memcopy
	memset
	memstat
	MINOR
	mkdir
	mknod
	module_name_get
	motor
	motor_to_joint
	motor_to_world
	mount
	move
	moves
	msleep
	mtime
	net_in_get
	net_ins_get
	net_out_set
	net_outs_get
	net_outs_set
	nolimp
	obs_get
	obs_rel
	onbutton
	online
	open
	opennp
	output
	output_get
	output_pulse
	output_set
	outputs
	outputs_get
	outputs_set
	panel_button
	panel_button_wait
	panel_buttons
	panel_light_get
	panel_light_set
	panel_lights_get
	panel_lights_set
	panel status
	pdp_get
	pdp_set
	pendant_ball
	pendant_chr_get
	pendant_close
	pendant_cursor_pos_set
	pendant_cursor_set
	pendant_flush
	pendant_home
	penant_home_clear
	pendant_open
	pendant_write
	pipe
	pitch
	pitchs
	pos_axis_set
	pos_get
	pos_set
	pow
	print
	printf
	rad
	rand
	rand_in
	rcv
	read
	readdir
	readline
	reads
	readsa
	ready
	rmdir
	robot_abort
	robot_cfg_save
	robot_error_get
	robot_flag_enable
	robot_info
	robot_mode_get
	robot_move
	robot_odo
	robot_servo_stat
	robot_type_get
	robotisdone
	robotisfinished
	robotishomed
	robotislistening
	robotispowered
	roll
	rolls
	rotacc_get
	rotacc_set
	rotspd_get
	rotspd_set
	seek
	select_menu
	sem_acquire
	sem_release
	sem_test
	send
	server_get
	server_info
	server_protocol
	server_set
	server_version
	setenv
	setprio
	shift_t
	shift_w
	shutdown
	sig_arm_set
	sig_mask_set
	sigfifo
	sigmask
	signal
	sigsend
	sin
	size_to_bytes
	sizeof
	snprint
	snprintf
	socketpair
	speed
	speed_get
	speed_set
	split
	sqrt
	srand
	stance_get
	stance_set
	startup
	stat
	statfs
	statusnp
	str_append
	str_chr_find
	str_chr_get
	str_chr_rfind
	str_chr_set
	str_cksum
	str_dup
	str_edit
	str_error
	str_len
	str_len_set
	str_limit
	str_limit_set
	str_scanf
	str_signal
	str_sizeof
	str_substr
	str_subsys
	str_to_float
	str_to_int
	str_to_lower
	str_to_upper
	sync
	sysconf
	sysid_string
	tan
	teach_menu
	time
	time_set
	time_to_str
	tool_get
	tool_set
	tx
	txs
	ty
	tys
	tz
	tzs
	units_get
	units_set
	unlink
	unlock
	unmount
	unsetenv
	utime
	v3_save_on_exit
	v3_vars_save
	va_arg_get
	va_arg_type
	var_teach
	vars_save
	verstring_get
	waitpid
	WEXITSTATUS
	WIFEXITED
	WIFSIGNALED
	world_to_joint
	world_to_motor
	write
	writeread
	writes
	WTERMSIG
	wx
	wxs
	wy
	wys
	wz
	wzs
	xpulses_get
	xpulses_set
	xratio_get
	xratio_set
	xrot
	xrots
	yaw
	yaws
	yrot
	yrots
	zero
	zrot
	zrots

	APPENDICES
	Signals

