
Automated GUI Testing

How to test an interactive
application automatically

AGUI–2

Some GUI facts

 Software testing accounts for 50-60% of total software
development costs

AGUI–3

Some GUI facts – 2

 Software testing accounts for 50-60% of total software development
costs

 GUIs can constitute as much as 60% of the code of an
application

AGUI–4

Some GUI facts – 3

 Software testing accounts for 50-60% of total software development
costs

 GUIs can constitute as much as 60% of the code of an application

 GUI development frameworks such as Swing make GUI
development easier

AGUI–5

Some GUI facts – 4

 Software testing accounts for 50-60% of total software development
costs

 GUIs can constitute as much as 60% of the code of an application

 GUI development frameworks such as Swing make GUI
development easier

 Unfortunately, they make GUI testing much more difficult

AGUI–6

Why is GUI testing difficult?

 Why is GUI testing so difficult?

AGUI–7

Why is GUI testing difficult? – 2

 Why is GUI testing so difficult?
 Event-driven architecture

 User actions create events
 An automatic test suite has to simulate these

events somehow

AGUI–8

Why is GUI testing difficult? – 3

 Why is GUI testing so difficult?
 Large space of possibilities

 The user may click on any pixel on the screen
 Even the simplest components have a large

number of attributes and methods
 JButton has more than 50 attributes and 200 methods

 The state of the GUI is a combination of the states
of all of its components

AGUI–9

Challenges of GUI testing

 Test case generation
 What combinations of user actions to try?

AGUI–10

Challenges of GUI testing – 2

 Test case generation
 What combinations of user actions to try?

 Oracles
 What is the expected GUI behaviour?

AGUI–11

Challenges of GUI testing – 3

 Test case generation
 What combinations of user actions to try?

 Oracles
 What is the expected GUI behaviour?

 Coverage
 How much testing is enough?

AGUI–12

Challenges of GUI testing – 4

 Test case generation
 What combinations of user actions to try?

 Oracles
 What is the expected GUI behaviour?

 Coverage
 How much testing is enough?

 Regression testing
 Can test cases from an earlier version be re-used?

AGUI–13

Challenges of GUI testing – 5

 Test case generation
 What combinations of user actions to try?

 Oracles
 What is the expected GUI behaviour?

 Coverage
 How much testing is enough?

 Regression testing
 Can test cases from an earlier version be re-used?

 Representation
 How to represent the GUI to handle all the above?

AGUI–14

A GUI test case

1. Select text “Some”
2. Menu “Format”
3. Option “Font”

AGUI–15

A GUI test case

4. Combobox “Size”
5. Click on 26
6. Click OK

AGUI–16

A GUI test case

7. Select “text”
8. Click U
9. Verify that the
 output looks
 like this

AGUI–17

GUI vs. business model testing

 GUI testing
 The look of the text in the editor window corresponds

to the operations performed
 The U button is selected
 All appropriate actions are still enabled

 I.e. we can italicize the underlined text

AGUI–18

GUI vs. business model testing – 2

 Business model testing
 Wordʼs internal model reflects the text formatting we

performed

AGUI–19

Two approaches to GUI testing

 Why is GUI testing so difficult?

AGUI–20

Two approaches to GUI testing – 2

 Why is GUI testing so difficult?
 Black Box
 Glass Box

AGUI–21

Black box GUI testing

 How do we do black box testing?

AGUI–22

Black box GUI testing – 2

 How do we do black box testing?
 Launch application
 Simulate mouse and keyboard events
 Compare final look to an existing screen dump

 Very brittle test cases
 Cannot test business model
 Framework independent

AGUI–23

Glass box GUI testing

 How do we do glass box testing?

AGUI–24

Glass box GUI testing – 2

 How do we do glass box testing?
 Launch application in the testing code
 Obtain references to the various components and

send events to them
 Assert the state of components directly

 Test cases more difficult to break
 Business model can be tested
 Framework dependent

AGUI–25

A first approach

 The Java API provides a class called java.awt.Robot

 It can be used to generate native system input events
 Different than creating Event objects and adding them

to the AWT event queue
 These events will indeed move the mouse, click, etc.

AGUI–26

RobotDemo

AGUI–27

Testing with Robot

 User input can be simulated by the robot

 How to evaluate that the correct GUI behaviour has
taken place?
 Robot includes method
public BufferedImage
createScreenCapture (Rectangle screenRect)

 Creates an image containing pixels read from the
screen

AGUI–28

Problems with this approach

 Low-level
 Would rather say “Select "blue" from the colour list”

than
Move to the colour list co-ordinates
Click
Press ↓ 5 times
Click

 Brittle test cases (regression impossible)

AGUI–29

A better approach

 Every GUI component should provide a public API which
can be invoked in the same manner via a system user
event or programmatically
 Principle of reciprocity

AGUI–30

A better approach – 2

 Every GUI component should provide a public API which can be
invoked in the same manner via a system user event or
programmatically
 Principle of reciprocity

 Component behaviour should be separated from event
handling code

AGUI–31

A better approach – 3

 Every GUI component should provide a public API which can be
invoked in the same manner via a system user event or
programmatically
 Principle of reciprocity

 Component behaviour should be separated from event handling
code

 For example, class JButton contains the doClick()
method

AGUI–32

Unfortunately…

 Most GUI development frameworks are not designed in
this fashion

AGUI–33

Unfortunately… – 2

 Most GUI development frameworks are not designed in this fashion

 In Swing, event handling is mixed with complex
component behaviour in the Look and Feel code

AGUI–34

Unfortunately… – 3

 Most GUI development frameworks are not designed in this fashion

 In Swing, event handling is mixed with complex component
behaviour in the Look and Feel code

 Few components offer methods such as doClick()

AGUI–35

Abbot – A Better ʼBot

 A GUI testing framework for Swing

AGUI–36

Abbot – A Better ʼBot – 2

 A GUI testing framework for Swing

 Works seamlessly with Junit
 Uses some Junit 3 features

AGUI–37

Abbot – A Better ʼBot – 3

 A GUI testing framework for Swing

 Works seamlessly with Junit
 Uses some Junit 3 features

 Can be used to create
 Unit tests for GUI components
 Functional tests for existing GUI apps

AGUI–38

Abbot – A Better ʼBot – 4

 A GUI testing framework for Swing

 Works seamlessly with Junit
 Uses some Junit 3 features

 Can be used to create
 Unit tests for GUI components
 Functional tests for existing GUI apps

 Open source
 http://abbot.sourceforge.net/

AGUI–39

Goals of the Abbot framework

 Reliable reproduction of user input

AGUI–40

Goals of the Abbot framework – 2

 Reliable reproduction of user input

 High-level semantic actions

AGUI–41

Goals of the Abbot framework – 3

 Reliable reproduction of user input

 High-level semantic actions

 Scripted control of actions

AGUI–42

Goals of the Abbot framework – 4

 Reliable reproduction of user input

 High-level semantic actions

 Scripted control of actions

 Loose component bindings

AGUI–43

Abbot overview

 A better Robot class is provided
 abbot.tester.Robot includes events to click, drag, type

on any component

AGUI–44

Abbot overview – 2

 A better Robot class is provided
 abbot.tester.Robot includes events to click, drag, type on

any component

 For each Swing widget a corresponding Tester class is
provided
 E.g. JPopupMenuTester provides a method called

getMenuLabels()

AGUI–45

Abbot overview – 3

 A better Robot class is provided
 abbot.tester.Robot includes events to click, drag, type on

any component

 For each Swing widget a corresponding Tester class is provided
 E.g. JPopupMenuTester provides a method called

getMenuLabels()

 Components can be retrieved from the component
hierarchy
 No direct reference to any widget is necessary

AGUI–46

A typical test case

JButton button = (JButton)getFinder().find(
 new Matcher() {
 public boolean matches(Component c) {
 return c instanceof JButton &&
 ((JButton)c).getText().equals("OK");
 }});
AbstractButtonTester tester =
 new AbstractButtonTester();
Tester.actionClick(button);
assertEquals("Wrong button tooltip",
 "Click to accept", button.getToolTipText());

AGUI–47

Testing with Abbot demo

AGUI–48

JUnit 3 features

 Abbot requires JUnit 3

 Only the differences between JUnit 3 and JUnit 4 are
presented in the next slides

 The JUnit 3 jar file is included in the abbot distribution

AGUI–49

Extending TestCase

 Each test class needs to extend class
junit.framework.TestCase

public class SomeClassTest
 extends junit.framework.TestCase {

…
}

AGUI–50

Naming vs. Annotations

 protected void setUp()

 The @Before method must have this signature

 protected void tearDown()

 The @After method must have this signature

 public void testAdd()
public void testToString()

 All @Test methods must have names that start with
test

 Do not include any annotations

AGUI–51

Test suite creation

 Creating a test suite with JUnit 3 is also different

 Use the code in the next slide as a template

AGUI–52

Test suite creation template

import junit.framework.*;

public class AllTests {

 public static void main(String[] args) {
 junit.swingui.TestRunner.run(AllTests.class);
 }

 public static Test suite() {
 TestSuite suite = new TestSuite(”Name");
 suite.addTestSuite(TestClass1.class);
 suite.addTestSuite(TestClass2.class);
 return suite;
 }
}

