Automated GUI Testing

How to test an interactive
application automatically

Some GUI facts

= Software testing accounts for 50-60% of total software
development costs

AGUI-2

Some GUI facts — 2

= Software testing accounts for 50-60% of total software development
costs

s GUIs can constitute as much as 60% of the code of an
application

AGUI-3

Some GUI facts — 3

Software testing accounts for 50-60% of total software development
costs

GUIs can constitute as much as 60% of the code of an application

GUI development frameworks such as Swing make GUI
development easier

AGUI-4

Some GUI facts — 4

Software testing accounts for 50-60% of total software development
costs

GUIs can constitute as much as 60% of the code of an application

GUI development frameworks such as Swing make GUI
development easier

Unfortunately, they make GUI testing much more difficult

AGUI-5

* Why is GUI testing difficult?

= Why is GUI testing so difficult?

AGUI-6

Why is GUI testing difficult? — 2

= Why is GUI testing so difficult?
= Event-driven architecture
= User actions create events

= An automatic test suite has to simulate these
events somehow

AGUI-7

Why is GUI testing difficult? — 3

= Why is GUI testing so difficult?
= Large space of possibilities
« The user may click on any pixel on the screen

« Even the simplest components have a large
number of attributes and methods

JButton has more than 50 attributes and 200 methods

= The state of the GUI is a combination of the states
of all of its components

AGUI-8

Challenges of GUI testing

= Test case generation
= What combinations of user actions to try?

AGUI-9

Challenges of GUI testing — 2

= Test case generation
= What combinations of user actions to try?

= Oracles
= What is the expected GUI behaviour?

AGUI-10

Challenges of GUI testing — 3

= Test case generation
= What combinations of user actions to try?

= Oracles
= What is the expected GUI behaviour?

= Coverage
« How much testing is enough?

AGUI-11

Challenges of GUI testing — 4

Test case generation

= What combinations of user actions to try?

Oracles
= What is the expected GUI behaviour?

Coverage

= How much testing is enough?

Regression testing

= Can test cases from an earlier version be re-used?

AGUI-12

Challenges of GUI testing — 5

Test case generation
= What combinations of user actions to try?

Oracles
= What is the expected GUI behaviour?

Coverage
= How much testing is enough?

Regression testing

s Can test cases from an earlier version be re-used?

Representation
= How to represent the GUI to handle all the above?

AGUI-13

A GUI test case

il Document1 - Microsoft Word

Sl 2 30 415 4

: Some teXt
B EER | >

Page 1 11 At 25m Ln1l Col10 [REC | 4

1. Select text "Some”
2. Menu “Format”
3. Option “Font”

—)

AGUI-14

A GUI test case

4, Combobox “Size”
5. Click on 26
6. Click OK

Font
Font I Character Spacing I Text Effects I
Font: Font style: Size:
[Courier tew [Reqular 26
18 -
Estrangelo Edessa i i 20
Franklin Gothic Medium Bold 22 (i
Garamond Bold Italic 24
Gautami L' _I >
Font color: Underline style: |
Automatic LI |(n0ne} LI I _I
Effects
[Strikethrough [~ Shadow I Small caps
[Double strikethrough I™ Outline I~ all caps
[Superscript I Emboss [~ Hidden
[Subscript I~ Engrave
Preview
This is a TrueType font. This font will be used on both printer and screen,
Default. .. QK Cancel

—)

AGUI-15

A GUI test case

@i Document1 - Microsoft Word 7_ SeleCt “teXt"

File Edit Yiew Insert Format Tools Table Window Help Acrobat .
helds gV %hv%:]mwo 8. CIICkg
nE | 9. Verify that the

L 3'l'2'l'1'|'§'|'1‘I'2'|'3'I'4'l‘5~l'6‘l‘?'|§ OUtpUtIOOkS
like this

S Olne text}
|

11 At 2.5cm Ln 1 Col 10

2

AGUI-16

GUI vs. business model testing

s GUI testing

= The look of the text in the editor window corresponds
to the operations performed

= The U button is selected
= All appropriate actions are still enabled
= |l.e. we can italicize the underlined text

AGUI-17

GUI vs. business model testing — 2

= Business model testing

= Word’s internal model reflects the text formatting we
performed

AGUI-18

Two approaches to GUI testing

= Why is GUI testing so difficult?

AGUI-19

Two approaches to GUI testing — 2

= Why is GUI testing so difficult?
= Black Box

» Glass Box

AGUI-20

Black box GUI testing

= How do we do black box testing?

AGUI-21

Black box GUI testing — 2

= How do we do black box testing?
= Launch application
= Simulate mouse and keyboard events
= Compare final look to an existing screen dump
« Very brittle test cases
« Cannot test business model

« Framework independent

AGUI-22

Glass box GUI testing

= How do we do glass box testing?

AGUI-23

Glass box GUI testing — 2

= How do we do glass box testing?
= Launch application in the testing code

= Obtain references to the various components and
send events to them

= Assert the state of components directly
« Test cases more difficult to break
« Business model can be tested
« Framework dependent

AGUI-24

A first approach

= The Java API provides a class called java.awt.Robot

= |t can be used to generate native system input events

= Different than creating Event objects and adding them
to the AWT event queue

= These events will indeed move the mouse, click, etc.

AGUI-25

RobotDemo

r

Java - RobotDemo. java - Eclipse Platform

File Edit Source Refactor Mavigate Search Project Run Window Help

8/%-0-4- | WHEG- | = N =R FRE R

Package Ex... Hierarchy = JuJUnit &2 [J] ArrowButtonTest.java A RobotDemo.java X

)

4

= B [J] ArrowButton.java

8| 5= outline £2

v N

ArrowButtonTest . .
e -import Jjava.awt.*;
oo @ Emors: import Jjava.awt.event.*;
import javax.swing.*;

Runs: 0 B Failures: 0

peFaiures | [fHierarchy

-public class RobotDemo ({
public static void mai
t

~

// set up frames and ¢

= Failure Trace

v

TR »ama 'Fw:?nn

naur . TR+¥Y
>

Problems | Javadoc | Declaration | E Console £2

ArrowButtonTest (1) [JUnit] C:\Pi'ogram Files\Javalj2rel.4.2_07\bin\javaw.exe (Mar 14, 2005 6:01:44 PM)

‘Writable Smart Insert Sy

Launching: {S0%)

|~

E | 8f3ava [(Resource
=0

BV Y e w v
“= import declarations

4 java.awt*

4 java.awt.event.*

4~ javax.swing.*
=@, RobotDema

= @ ° main(Strinal])

] new ActionListen

@ . actionPerfor
new ActionListen
@ . actionPerfol

=2-Q

m ¢

AGUI-26

Testing with Robot

= User input can be simulated by the robot

= How to evaluate that the correct GUI behaviour has
taken place?

= Robot includes method

public Bufferedimage
createScreenCapture (Rectangle screenRect)

= Creates an image containing pixels read from the
screen

AGUI-27

Problems with this approach

s Low-level

= Would rather say “Select "blue" from the colour list”
than

Move to the colour list co-ordinates
Click

Press | 5 times
Click

= Brittle test cases (regression impossible)

AGUI-28

A better approach

= Every GUI component should provide a public APl which
can be invoked in the same manner via a system user
event or programmatically

= Principle of reciprocity

AGUI-29

A better approach — 2

= Every GUI component should provide a public API which can be
invoked in the same manner via a system user event or
programmatically

= Principle of reciprocity

= Component behaviour should be separated from event
handling code

AGUI-30

A better approach — 3

= Every GUI component should provide a public API which can be
invoked in the same manner via a system user event or
programmatically

= Principle of reciprocity

= Component behaviour should be separated from event handling
code

= For example, class JButton contains the doClick()
method

AGUI-31

i Unfortunately...

= Most GUI development frameworks are not designed in
this fashion

AGUI-32

Unfortunately... — 2

= Most GUI development frameworks are not designed in this fashion

= In Swing, event handling is mixed with complex
component behaviour in the Look and Feel code

AGUI-33

Unfortunately... — 3

Most GUI development frameworks are not designed in this fashion

In Swing, event handling is mixed with complex component
behaviour in the Look and Feel code

Few components offer methods such as doClick()

AGUI-34

i Abbot — A Better 'Bot

= A GUI testing framework for Swing

AGUI-35

Abbot — A Better 'Bot — 2

= A GUI testing framework for Swing

= Works seamlessly with Junit
= Uses some Junit 3 features

AGUI-36

Abbot — A Better '‘Bot — 3

= A GUI testing framework for Swing

= Works seamlessly with Junit
» Uses some Junit 3 features

= Can be used to create
= Unit tests for GUl components
=« Functional tests for existing GUI apps

AGUI-37

Abbot — A Better 'Bot — 4

A GUI testing framework for Swing

Works seamlessly with Junit
» Uses some Junit 3 features

Can be used to create

= Unit tests for GUI components

= Functional tests for existing GUI apps
Open source

« http://abbot.sourceforge.net/

AGUI-38

i Goals of the Abbot framework

= Reliable reproduction of user input

AGUI-39

Goals of the Abbot framework — 2

= Reliable reproduction of user input

= High-level semantic actions

AGUI-40

Goals of the Abbot framework — 3

= Reliable reproduction of user input

= High-level semantic actions

= Scripted control of actions

AGUI-41

Goals of the Abbot framework — 4

Reliable reproduction of user input
High-level semantic actions

Scripted control of actions

Loose component bindings

AGUI-42

Abbot overview

= A better Robot class is provided

= abbot.tester.Robot includes events to click, drag, type
on any component

AGUI-43

Abbot overview — 2

= A better Robot class is provided

= abbot.tester.Robot includes events to click, drag, type on
any component

= For each Swing widget a corresponding Tester class is
provided

= E.g. JPopupMenuTester provides a method called
getMenuLabels()

AGUI-44

Abbot overview — 3

= A better Robot class is provided

= abbot.tester.Robot includes events to click, drag, type on
any component

= For each Swing widget a corresponding Tester class is provided

= E.g. JPopupMenuTester provides a method called
getMenuLabels()

= Components can be retrieved from the component
hierarchy

= No direct reference to any widget is necessary

AGUI-45

A typical test case

JButton button = (JButton)getFinder () .find(
new Matcher () {
public boolean matches (Component c) {
return ¢ instanceof JButton &&
((JButton)c) .getText () .equals ("OK") ;
PY) g
AbstractButtonTester tester =
new AbstractButtonTester () ;
Tester.actionClick (button) ;
assertEquals ("Wrong button tooltip",
"Click to accept", button.getToolTipText()) ;

AGUI-46

Testing with Abbot demo

& Java - ArrowButtonTest. java - Eclipse Platform [D@

File Edit Source Refactor Mavigate Search Project Run Window Help
IB-H @ |%-0-Q- | BHG- | @S| 4B | ¢ -0

Package Ex... | Hierarchy = JuJUnit &3 = B || [J] arrowButton.java B ArrowButtonTest.java X [J] RobotDemo. java B[5= outline 52 =8

package example; kR X e X ~

ArrowButtonTest -
example

@ BB £
[+ "= import declarations
Runs: 0/0 HErrors: 0 B Failures: 0 T =@, ArrowButtonTest
. . o tester : ComponentTe
»import java.awt.event.*; sastpd
o gotClick : String
-l @ testClick{)
= Q new ActionListen
. @ . actionPerfol
public class ArrowButtor @ it
-l @ testRepeatedFire()
S| Q new ActionListen

) v v E5 | &ava [(9Resource

T

~

pPFailures | [fHierarchy

extends ComponentTestE o actonPerfo
. (=] z nrr‘owBL{ttonTest(strir
// ComponentTestFixtur * man(srnal)

private ComponentTeste
protected void setUp()

+ac+‘av~ —_— ("‘f\hr\ﬁr\ha'hi-'l")c‘_'

= Failure Trace

£

|~
R4

Problems | Javadoc | Declaration | Bl Console 52 % |l & | B -=0
ArrowButtonTest (1) [JUnit] C:\Program FilesiJavalj2rel.4.2_07\bin\javaw.exe (Mar 14, 2005 7:55:06 PM)

Writable Smart Insert 86:1

AGUI-47

i JUnit 3 features

= Abbot requires JUnit 3

= Only the differences between JUnit 3 and JUnit 4 are
presented in the next slides

= The JUnit 3 jar file is included in the abbot distribution

AGUI-48

Extending TestCase

s Each test class needs to extend class
junit.framework.TestCase

public class SomeClassTest
extends junit.framework.TestCase {

AGUI-49

Naming vs. Annotations

= protected void setUp()
= The @Before method must have this signature

= protected void tearDown()
= The @After method must have this signature

= public void testAdd()
public void testToString()

» All @Test methods must have names that start with
test

= Do not include any annotations

AGUI-50

Test suite creation

= Creating a test suite with JUnit 3 is also different

= Use the code in the next slide as a template

AGUI-51

Test suite creation template

import junit.framework.*;
public class AllTests {

public static void main(String[] args) {
junit.swingui.TestRunner.run(AllTests.class);

}

public static Test suite() {
TestSuite suite = new TestSuite(”Name");
suite.addTestSuite(TestClassl.class);
suite.addTestSuite(TestClass2.class);
return suite;

AGUI-52

